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Abstract

In this paper, we introduce and explore ways to include a notion of partiality of
information in knowledge representation formalisms. This leads to the definition
of an algebraic structure based on observation and partial representation, and to
the study of the logical behaviour of those structures, with the characterization of
a new modal logic calledOL.

1 Introduction

In the process of the formalization of some system, any information available about
its constitution or its state comes from observations which can be performed on the
system. Thus, this notion of observation, and that of knowledge acquisition has to be
taken into account, be considered when defining a model.

This idea is not new, and has already been studied [1, 9], focusing on the fact
that it is only possible to have some finite information about the state of the system.
This approach leads to the fact that only semi-decidable properties can be used for
expressing informations about the system.

In the present article, we will study another approach. Instead of focusing on the
finiteness of observations, we will rather take the fact that they have to be partial and
imperfect as their most important property. Thus, we will use the notion of partial
description as a formalization of the state of the system. Those descriptions can be
embedded in a partially ordered set, arepresentation, where the informational content
is used to define the ordering. We will also considerer the existence of severals points
of observation of the system (and several representations). As all those representations
are related to the same system, it is possible to exhibit some correlations between the
descriptions appearing in different representations. Thus, in this context, we will re-
place the study of the behaviour of the system by the study of the relationships that
exist between the different representations, and will forget the existence of the system,
leading to the definition of a modal logic which formalizes the way partial information
behaves.

In the following, we will introduce two algebraic structures :representationsand
representations systemswhich contain several representations and some ways to relate
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them. Then, we will define a logic on those structures, and characterize its behaviour,
leading to the definition of the observational logicOL. Finally, we will discuss some
properties of this logic and show that there exists very weak relations between the
knowledge accessible from different points of view.

2 Knowledge Representation Formalism

Let us first discuss what approach we want to take in order to formalize data. Any piece
of information about the studied system can be seen as a partial description of its state.
In the following, we will call such a piece of information adescription, so that we only
want to take into account the elements of information which are related to the state of
the system, and forget anything about the physical implementation of the description.
Another important notion which comes with descriptions, is that of comparison. As
the descriptions we consider are partial, it follows that it is possible to compare them,
by telling whether a description is more precise than another. This comparison relation
acts as a partial order on descriptions, and we will include it in our framework, so that
we get the following definition :

Definition 1
A representation is a pair R = 〈R,≤〉 where R is a set of descriptions and ≤ is a
partial order on the descriptions.

Conventionally, if two descriptions are comparable then the smallest element cor-
responds to a more accurate description than the other : ifd1 ≤ d2, d1 is the most
accurate, andd2 can be seen as an approximation ofd1.

With this definition, it appears that a representation is nothing more than aposet.
Actually, many refinements of the definition could be considered, such as the existence
of extremal elements or of internal operations such as the meet and the join. But since
they shall play no role in the logical study we want to make, we will keep the previ-
ous definition unchanged, and use the terminology ofrepresentationanddescription
instead of poset and element only in order to keep in mind the fact that they are related
to an observation and a formal representation of a system. For notation convenience,
we will always identify a representation with its set of descriptions.

2.1 Representation System

2.1.1 A collection of representations

A representation, as we have just defined it, is a set of elements which correspond
to the descriptions that can possibly be made from a given point of view. But in the
presence of partial observations, one should more generally consider that there exist
several points of view. For instance, different observations may correspond to different
resolutions. If an observation yields information on a determined part of the system,
one can imagine a point of view observing another part of it. Many other possibilities
may exist. The main reason for this lies in the word “partial” itself : knowing that a
point of view is partial implies that there exists some information that is not available
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or accessible from this point of view, so that there might exist other points of view
which permit to have access to those informations.

As a representation is associated to a point of view, one should in general consider
the existence of several representations. In the following, letI be a set of indexes corre-
sponding to the existing points of view, and for eachi ∈ I, letRi be the representation
associated to the observation process indexed byi.

2.1.2 A set of transformation functions

Since all the representations are supposed to be a formalization of a unique system,
there should in general exist relations between the different representations. We will
define a collection of functions between the representations to express this relationship.
Here is the idea : suppose one has a descriptiondi ∈ Ri corresponding to the point of
view i. This description correspond to some information about the state of the system.
This implies pieces of information which can be accessible from another point of view
Rj (possibly including no information at all). Letdj be the best description ofRj

corresponding to this and definefj|i(di) = dj .
This way, it is possible to define a collection of description transformation func-

tionsfj|i : Ri → Rj . If the previous considerations are rather informal, they allow
us to give a characterization of those functions. First of all, the function which has the
same representation as range and domain has to be the identity function on this repre-
sentation, since the best description of a given state remains itself :∀ d, fi|i(d) = d.
Moreover, thefj|i’s have to be monotonous : if one has two descriptiond1 ≤ d2 in Ri

(this inequality means thatd1 represents more information thatd2), then any piece of
information present infj|i(d2) has to be present infj|i(d1).

Finally, from the definition of thefi|j ’s, one may conclude that a descriptiond ∈
Ri corresponds to more information thatfj|i(d), even though they do not belong to
the same representation. It is possible to express this fact using a third representation,
and translate those two descriptions into this third representation. This leads to the
following : let i, j, k be three indexes, and letdk be a description ofRk. If fj|k(dk) has
fewer information thatdk, then it implies thatfi|j ◦fj|k(dk) also has fewer information
thanfi|k(dk). This can be seen as a generalization of the monotony condition. This
can be expressed by the following inequality :

∀ i, j, k ∈ I, ∀ d ∈ Rk, fi|k(d) ≤ fi|j ◦ fj|k(d) (1)

We think that those conditions provide a good characterization of what a set of trans-
formation functions should verify. They actually express very strong constraints on the
different observations. First, they imply that they are all related to the same system.
But more important, the last condition also means that they all correspond to observa-
tions of the system in a single state, since it also provides a way to relate the results of
the different observations.

We can now combine those two elements together, in order to define the main
algebraic structure which will be used to formalize and study observed systems.
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Definition 2
A representation systemis a tuple :

S =
〈
I, {Ri}i∈I ,

{
fi|j

}
i,j∈I

〉
where I is a set of indexes, for each i ∈ I, Ri is a representation, and for any i, j ∈ I,
fi|j is a monotonous function from Rj to Ri. Moreover, those functions verify :

∀ i ∈ I, fi|i = idi

∀ i, j, k ∈ I, fi|k ≤ fi|j ◦ fj|k

Using this structure, we will now provide some ways to explore and characterize
the logical behaviors which comes from the observational approach we are using.

3 Logical Characterization

In order to express facts about the system which is studied, we are now going to define
a propositional language which sentences will be interpreted as assertions about the
state of the system. LetΨ denote a countable set of atomic propositions about the
system. We defineLΨ as the smallest language includingΨ, the false element⊥ (we
assume that⊥ 6∈ Ψ), and closed for∨, ∧,→. We define¬ϕ as a short-cut forϕ→ ⊥,
but as we will soon show, the logics we will exhibit are based on intuitionnistic logic,
so that we cannot define∧ as a combination of∨ and¬.

We also need to defineLI,Ψ, which also contains a set of modal operators{Ki}i∈I .
Those operators will be used to express facts such that a given assertion can be proved
using observations made from point of viewi. This use of modal operators is similar
to that in the field of epistemic logic [5].

3.1 Single Representations

In this section, we will first focus of the use of a single representation as the interpre-
tation of logical assertions. Since we are considering only one point of view, we shall
restrict ourselves toLΨ, that is we do not consider the modal operators. LetR be a
representation. Our first objective is to define an interpretation function[[·]] which as-
sociates a sentenceϕ ∈ LΨ to a set of descriptions. More precisely, we define[[ϕ]] as
the set of descriptions which provide enough information about the state of the system
for proving thatϕ holds.

First, suppose that one has two descriptionsd1 ≤ d2, and thatd2 ∈ [[ϕ]]. From
the definition,d1 provides more information thand2. But if d2 suffices to prove thatϕ
holds, then so doesd1. This implies that for anyϕ ∈ LΨ, its interpretation[[ϕ]] is an
ideal ofR, that is a downward-closed subset (verifying∀ d1 ≤ d2, d2 ∈ [[ϕ]] ⇒ d1 ∈
[[ϕ]]). If ℘↓(P ) denotes the set of ideals of a posetP , then[[·]] is a function fromLΨ to
℘↓(R). We will now define this function inductively considering the structure of the
terms. For atomic propositions, one has to provide their interpretations, so that we need
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∀ψ ∈ Ψ, [[ψ]]R,ν = ν(Ψ)
[[ϕ ∨ ψ]]R,ν = [[ϕ]]R,ν ∪ [[ψ]]R,ν

[[ϕ ∧ ψ]]R,ν = [[ϕ]]R,ν ∩ [[ψ]]R,ν

[[ϕ→ ψ]]R,ν = {d | ∀ d′ ≤ d, d′ ∈ [[ϕ]]R,ν ⇒ d′ ∈ [[ψ]]R,ν}
[[¬ϕ]]R,ν = {d | ∀ d′ ≤ d, d′ 6∈ [[ϕ]]R,ν}
[[⊥]]R,ν = ∅

Figure 1: Definition of[[·]]R,ν : LΨ → ℘↓(R)

ϕ→ ϕ ∧ ϕ ϕ ∧ ψ → ψ ∧ ϕ (ϕ→ ψ) → (ϕ ∧ ϑ) → (ψ ∧ ϑ)

ϕ→ ϕ ∨ ψ ϕ ∨ ψ → ψ ∨ ϕ (ϕ→ ϑ) ∧ (ψ → ϑ) → (ϕ ∨ ψ) → ϑ

ϕ→ (ψ → ϕ) ϕ ∧ (ϕ→ ψ) → ψ ⊥ → ϕ

Ax
` ϕ

` ϕ→ ψ ` ϕ
M.P.

` ψ

Figure 2: Axioms and rules of intuitionnistic logic

an atomic interpretation functionν : Ψ → ℘↓(R). The interpretation of the conjunc-
tion and the disjunction are straightforward, taken from their set-theoretic equivalent.
For instance,[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]. It is not possible to do so for the implication→ :
it would be tempting to define[[ϕ→ ψ]] as the set{d | d ∈ [[ϕ]] ⇒ d ∈ [[ψ]]}, but it is
generally not an ideal. Instead, one has to restrict to the greatest ideal included in that
set. We summarize this definition in figure 1.

With this function, we can define a validation symbol as follows : given a represen-
tationR, an atomic interpretation functionν : Ψ → ℘↓(R), and a descriptiond ∈ R,
we say that a propositionϕ ∈ LΨ is valid for d and writeR, ν, d |=R ϕ if and only
if d ∈ [[ϕ]]R,ν . We also defineR, ν |=R ϕ for [[ϕ]]R,ν = R and|=R ϕ if and only if
R, ν |=R ϕ for all representationsR and atomic interpretationsν : Ψ → ℘↓(R).

In the next proposition, we will show that this validation symbol|=R is exactly
equivalent to intuitionnistic logic. This logic, which formulation is given in figure 2,
was defined as an alternative to classical logic, where the excluded middle principle
is rejected, and where implication embodies a cause to consequence relation much
stronger that its equivalent in classical logic. Let us write`IL ϕ to denote thatϕ can
be proved using the axioms of intuitionnistic logic.
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Proposition 1
Given a sentence ϕ ∈ LΨ, one has the equivalence :

`IL ϕ ⇔ |=R ϕ

Proof This comes from the fact that representation, which are just posets, can be seen
as Kripke structures, where the accessibility relation is reflexive and transitive. Such
structures are the usual models for intuitionnistic logic [6, 4]. �

Now that we have precisely characterized the logic associated to representations,
we will turn to representation systems. This time, there will be several points of view
to consider, so that it is the full languageLI,Ψ which will be used now.

3.2 General Representation Systems

3.2.1 Extension of the interpretation function

We will now consider a representation systemS =
〈
I, {Ri} ,

{
fi|j

}〉
. We have de-

fined an interpretation function[[·]] associated to a given representation. Since a repre-
sentation system is made of several representation, one will have to consider as many
interpretation functions[[·]]i : LI,Ψ → ℘↓(Ri). Moreover, as an interpretation function
is based on an atomic interpretation function (previously denotedν), we will also need
to consider a collection of atomic interpretationsνi : Ψ → ℘↓(Ri) in order to define
the[[·]]i.

We also need to define the interpretation of the modalKi operators. For doing
this, considerd ∈ [[Ki ϕ]]j (in particular,d ∈ Rj). From the interpretation ofKi, this
means thatd corresponds to a description which contains enough information to assert
that the propertyϕ in the representationRi. Since the descriptiond belongs toRj , it
follows that if it is transformed into anRj description usingfi|j , it is included in the
interpretation ofϕ for i. Stated formally, one has :

d ∈ [[Ki ϕ]]j ⇔ fi|j(d) ∈ [[ϕ]]i

This leads to the definition of{[[·]]S,ν,i}i∈I given in figure 3, whereS is a rep-
resentation system, andν denotes the collection

{
νi : Ψ → ℘↓(Ri)

}
. We define the

notation|=S ϕ which means that for any representation systemS, and for any atomic
interpretation functionsν = {νi}i∈I , one has :

∀ i ∈ I, [[ϕ]]S,ν,i = Ri

Before starting the characterization of the logic which corresponds to|=S , we first
give two useful propositions. The first one, which concerns intuitionnistic logic, gives
a simpler version of the validation of an implication.

Proposition 2
Given two terms ϕ and ψ, one has :

|=S ϕ→ ψ ⇔ ∀S, ν, i, [[ϕ]]S,ν,i ⊆ [[ψ]]S,ν,i
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∀ψ ∈ Ψ, [[ψ]]S,ν,i = νi(Ψ)
[[ϕ ∨ ψ]]S,ν,i = [[ϕ]]S,ν,i ∪ [[ψ]]S,ν,i

[[ϕ ∧ ψ]]S,ν,i = [[ϕ]]S,ν,i ∩ [[ψ]]S,ν,i

[[ϕ→ ψ]]S,ν,i = {d | ∀ d′ ≤ d, d′ ∈ [[ϕ]]S,ν,i ⇒ d′ ∈ [[ψ]]S,ν,i}
[[⊥]]S,ν,i = ∅

[[Kj ϕ]]S,ν,i =
{
d

∣∣ fj|i(d) ∈ [[ϕ]]S,ν,j

}
Figure 3: Definition of

{
[[·]]S,ν,i : LΨ → ℘↓(Ri)

}
i∈I

Proof It comes from the following simple calculation :

|=S ϕ→ ψ ⇔ ∀S, ν, i, [[ϕ→ ψ]]S,ν,i = Ri

⇔ ∀S, ν, i, ∀ d ∈ Ri, d ∈ [[ϕ]]S,ν,i ⇒ d ∈ [[ψ]]S,ν,i

⇔ ∀S, ν, i, [[ϕ]]S,ν,i ⊆ [[ψ]]S,ν,i

�

The second one relates, for a given indexi, the modal operatorKi and the interpre-
tation[[·]]i.

Proposition 3
Given an index i ∈ I and a term ϕ, one has :

[[Ki ϕ]]i = [[ϕ]]i

Proof It comes from the fact thatfi|i is the identity onRi, so that :

[[Ki ϕ]]i =
{
d

∣∣ fi|i(d) ∈ [[ϕ]]i
}

= {d | d ∈ [[ϕ]]i} = [[ϕ]]i

�

3.2.2 Identification of the corresponding logic

Since the definition of the interpretation[[·]]S is an adaptation of the previous interpre-
tation defined on single representations, it follows that the logic modelized by repre-
sentations systems will be based on intuitionnistic logic.

Some axioms have to be added to it in order to give a formalization of the behaviour
of the modal operators, so that we will now study the validation of modal axioms. First,
we will consider some classic axioms taken from the literature [3, 8] : we will explore
the validation ofK, D, T, 4 and5.
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The first axiom,K : Ki (ϕ → ψ) → Ki ϕ → Ki ψ can be interpreted in the
present situation as the fact that an agentAi associated to a given point of view (and
a representationRi) can make deduction. In other words, ifAi has enough informa-
tion for proving that bothϕ → ψ andϕ hold for the observed system, thenψ also
holds. This can be proved, using proposition 2, by showing that[[Ki (ϕ→ ψ)]]j ⊆
[[Ki ϕ→ Ki ψ]]j . This is true, since :

[[Ki (ϕ→ ψ)]]j =
{
d

∣∣ ∀ d′ ≤ fi|j(d), d′ ∈ [[ϕ]]i ⇒ d′ ∈ [[ψ]]i
}

[[Ki ϕ→ Ki ψ]]j =
{
d

∣∣ ∀ d′ ≤ d, fi|j(d′) ∈ [[ϕ]]i ⇒ fi|j(d′) ∈ [[ψ]]j
}

and using the monotony offi|j , one hasd′ ≤ d⇒ fi|j(d′) ≤ fi|j(d).

The axiomD : Ki ϕ → ¬Ki ¬ϕ is also valid for representation systems. Used in
conjunction withK, it is equivalent toKi⊥ → ⊥. It is easy to show that this latter is
valid for representation systems, since :

[[Ki⊥]]j =
{
d

∣∣ fi|j(d) ∈ [[⊥]]j
}

=
{
d

∣∣ fi|j(d) ∈ ∅
}

= ∅ = [[⊥]]j

Using the previous agent interpretation, this means that the knowledge of a given agent
is consistent, since it cannot prove the absurd proposition. Yet, as we will now show,
this does not imply that the knowledge of an agent corresponds to properties that are
actually verified by the observed system. This is reflected by the fact that the axiom
T : Ki ϕ → ϕ is not valid. It is possible to show this by considering a representation
system with at least two indicesi andj, and a set of atomic interpretation function{νi}i

such thatνi(ψ) = Ri andνj(ψ) = ∅ (whereψ is an atomic proposition). IfT were
verified, it would imply that[[Ki ψ]]j ⊆ [[ψ]]j . But in the present case,[[Ki ψ]]j = Rj

and[[ψ]]j = ∅.
Actually, a weaker version ofT is valid for representation systems. This version

reduces the scope ofT to proposition of the formKi ϕ. More precisely, we define the
axiomT2 : KiKj ϕ → Kj ϕ. Its validity is the exact expression that the transforma-
tion functions verifyfi|k ≤ fi|j ◦ fj|k, since :

[[KiKj ϕ]]k ⊆ [[Kj ϕ]]k
⇔ fj|i ◦ fi|k(d) ∈ [[ϕ]]j ⇒ fj|k(d) ∈ [[ϕ]]j
⇔ fj|k(d) ≤ fj|i ◦ fi|k(d)

Thus, in this formalism, the knowledge an agent has about the studied system might
not correspond to reality, but it is consistent, and what she knows about the knowledge
of another agent is exact.

We will now turn to the introspection axioms. First, let’s consider4 : Ki ϕ →
KiKi ϕ. This axioms expresses the fact that an agent knows that she knows some
particular proposition. It is valid for representation systems, sincefi|i is the identity on
Ri. The other introspection axiom5 : ¬Ki ϕ → Ki ¬Ki ϕ, which applies to things
which are not known (or more precisely that cannot be known), is not valid. This
can be understood from the postulate that knowledge comes from observation, since
knowledge would in the case of5 also come from an absence of observation.
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Using proposition 3, it is possible to define an extra axiom which expresses more
precisely how introspection occurs in the present framework. As shown above, one
has :

[[Ki ϕ]]i = [[ϕ]]i

It follows from this that if we defineL : Ki (ϕ↔ Ki ϕ), this axiom is valid for
representation systems. Since the equivalence↔ is only a notation and not a real
connector, this axiom can be split into two parts :

LT : Ki (Ki ϕ→ ϕ) L4 : Ki (ϕ→ Ki ϕ)

With those notations, it is easy to see that withK, L4 implies4. Thus, we have given a
characterization of an agent’s knowledge about herself which is better than just stating
that4 is verified.

To finish this survey of axioms valid for representation systems, we will also intro-
duceKV : Ki (ϕ ∨ ψ) → Ki ϕ ∨ Ki ψ. This axiom can be seen as an adaption to
agents of the way the disjunction operation behaves in intuitionnistic logic. Thus, if an
agents knows thatϕ ∨ ψ is true, then she knows that eitherϕ orψ is true.

Finally, let’s take a look at the rules which can be used. First, theNec (necessity)
rule, which allows to infer̀ Ki ϕ from ` ϕ is valid, since[[ϕ]]i = Ri implies that
[[Ki ϕ]]j = Rj . Another rule can be defined, which expresses the way|=S is defined.
If a propositionϕ is valid for representation systems, then it means that given a rep-
resentation systemS, one has∀ i, [[ϕ]]i = Ri. But this is equivalent to stating that
∀ i, j, [[Ki ϕ]]j = Rj . This leads to the definition of a new rule which we callUniv
(universality) :

∀ i ∈ I, ` Ki ϕ
Univ

` ϕ

With all those definitions, we will now introduce the observational logicOL. This
logic is an intuitionnistic modal logic which modal axioms areK, D, L, T2 andKV
and which modal rules areNec andUniv. A summary is given in figure 4. This logic
is exact the logic modeled by representations systems :

Proposition 4
Given a sentence ϕ ∈ LI,Ψ, one has the equivalence :

`OL ϕ ⇔ |=S ϕ

Proof The complete proof can be found in the appendix. �

It is interesting to remark that the logic we have just identified has strong relation-
ships withIS4 + KV. This logic has been identified in the case of representation
systems where there exists a representation which is more expressive than the others,
and where all knowledge is related to this representation [2]. Yet,OL is neither weaker
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Ki (ϕ→ ψ) → Ki ϕ→ Ki ψ K

Ki ϕ→ ¬Ki ¬ϕ D

Ki (ϕ↔ Ki ϕ) L

KiKj ϕ→ Kj ϕ T2

Ki (ϕ ∨ ψ) → Ki ϕ ∨Ki ψ KV

` ϕ

` Ki ϕ
Nec

∀ i ∈ I, ` Ki ϕ

` ϕ
Univ

Figure 4: Modal axioms and rules ofOL

nor stronger thanIS4+KV. Rather, this logic is a variant of the latter, and the fact that
it does not verifyT leads to some interesting properties about the way the knowledge
of different agents can be related.

4 Discussion

Using this framework and the logic we have devised, it is possible to initiate a dis-
cussion about the possible relationships that exist between the knowledge of different
agents. In the definition ofOL, only one axiom does relate the existence of different
modal operators. This axiom is the one we calledT2 :

T2 : KiKj ϕ→ Kj ϕ

It expresses the fact that if an agentAi knows that another agentAj knows a property
ϕ, then agentAj actually knowsϕ. Yet, this axiom is weaker thanT, and does not
permit to deduce any property aboutAi knowingϕ. This can be expressed by the fact
that agents do not trust each other. If it were the case, it would mean that representation
systems do verify an axiom which we callC :

C : KiKj ϕ→ Ki ϕ

This axiom is very similar toT2, except that it removes the rightmost modal operator
instead of the leftmost. Stated another way, withT2, one has to keep the rightmost
modal operator, andC would allow to remove it. It is easy to show that this axiom is
not valid for representation systems, since it would imply the validity ofT, as shows
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the following derivation :

∀ i, j, k, [[KiKj ϕ]]k ⊆ [[Ki ϕ]]k
⇒ ∀ i, j, k,

{
d

∣∣ fi|k(d) ∈ [[Kj ϕ]]i
}
⊆

{
d

∣∣ fi|k(d) ∈ [[ϕ]]i
}

⇒ ∀ i, j,
{
d

∣∣ fi|i(d) ∈ [[Kj ϕ]]i
}
⊆

{
d

∣∣ fi|i(d) ∈ [[ϕ]]i
}

⇒ ∀ i, j, [[Kj ϕ]]i ⊆ [[ϕ]]i

Thus, we have shown that agents cannot trust each other. A weaker way to relate the
agents’ knowledge can be expressed by a condition of global consistency, which we
formalize by axiomGD :

GD : Ki ϕ→ ¬Kj ¬ϕ

It can be shown that this axiom is not valid either, and it is even possible to build a
representation system which modelizesKi ϕ ∧Kj ¬ϕ. This implies that it is not even
possible to ensure that for a defined state of the system, a property and its negation
cannot be observed.

As we have seen, even though we have identified the observational logicOL from a
very general algebraic structure used to formalize the notion of partial observation, this
logic expresses very weak conditions on the relations between the knowledge of the
different observers. More precisely, it appears that the only way to relate two different
agents is the use of axiomT2 which, as mentioned earlier, forces to keep the rightmost
modal operator. Thus, it is impossible to disconnect an observation from its originating
point of view.

Yet, this does not imply thatOL is useless, or that it cannot express any relation
between agents. On the contrary, its behaviour shows that an important point which
has to be taken into account is that as soon as the originating point of view is consid-
ering, thus leading to consider propositions of the formKi ϕ, then the information is
trustworthy, and the axiomsC andGD are verified. For instance, one has :

`OL KiKj Kk ϕ→ KiKk ϕ

Thus, propositions of this form can be used safely to describe the state of the sys-
tem, since it does not depend on a specific representation. This suggests the existence
of a category of propositions which behave the same way, and can be used safely.

5 Conclusion

In this article, we have introduced a simple algebraic structure in order to formalize
knowledge and information based on partial and incomplete observation. This led us
to the definition ofrepresentation structures, using very general assumptions on the
structure of studied systems. Using those structures, we have defined a specific logic,
namelyOL, intended to formalize the behaviour of information in such a context.

The study of this logic has permitted to identify some very interesting and maybe
counter-intuitive properties of information. The first point is that it is based on intu-
itionnistic logic, rather than on classical logic. Thus, the excluded middle principle
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is not verified. Similarly, the modal axiom5 : ¬Ki ϕ → Ki ¬Ki ϕ is not verified
either. This suggests that knowledge comes solely from observations, and is obtained
inductively.

Another important aspect is that there exists a category of propositions which can
be used without any reference to a particular representation, or point of view. We have
seen that propositions of the formKi ϕ are in this category, since a particular represen-
tation is explicitly given. Yet, there might exist other propositions in this category, and
this notion is still to be studied.
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A Proof of completeness

We will prove the completeness by defining a canonical model ofOL. For this, let us
define for each indexi ∈ I the representationRi. Let this representation be the set
of all prime setsΓi of OL such that they containϕ ↔ Ki ϕ for all propositionsϕ,
ordered by reverse inclusion. We recall that given a logicL, a setΓ is prime for this
logic if and only if it is closed by deduction forL, it is consistent (so that⊥ 6∈ Γ), and
if ϕ∨ψ ∈ Γ, then eitherϕ orψ belongs toΓ. This is a simple adaption of the canonical
model used for intuitionnistic logic as it can be found in [4] for instance.

We also definefi|j(Γj) = {ϕ | Ki ϕ ∈ Γj} andνi(ψ) = {Γi | ψ ∈ Γi}. With
those definitions, it is easy to check thatSC =

〈
I, {Ri} ,

{
fi|j

}〉
is a representation
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system. The canonical interpretation[[·]]C is defined as[[·]]SC ,ν . This interpretation
verifies :

Proposition 5
For any proposition ϕ, one has :

∀ i, [[ϕ]]C,i = {Γi | ϕ ∈ Γi}

Proof This result is proved by induction on the length of the considered term. We
will only develop the modal case :

[[Ki ϕ]]C,j =
{

Γj

∣∣ fi|j(Γj) ∈ [[ϕ]]C,i

}
=

{
Γj

∣∣ ϕ ∈ fi|j(Γj)
}

= {Γj | Ki ϕ ∈ Γj}

�

Proposition 6
One has :

[[ϕ]]C,i = Ri ⇒ `OL Ki ϕ

Proof If [[ϕ]]C,i = Ri, then there exists a finite set{ψ1, . . . , ψn} such that :

`OL (ψ1 ↔ Ki ψ1) ∧ . . . ∧ (ψn ↔ Ki ψn) → ϕ

Using ruleNec, this implies :

`OL Ki (ψ1 ↔ Ki ψ1) ∧ . . . ∧Ki (ψn ↔ Ki ψn) → Ki ϕ

So that one can deducèOL Ki ϕ thanks to axiomL. �

Proposition 7
For all ϕ ∈ LI,Ψ, one has :

`OL ϕ⇔ |=S ϕ

Proof The soundness direction can easily be checked by hand, and has been sketched
in 3.2.2. The completeness direction

|=S ϕ⇒ ∀ i, [[ϕ]]C,i = Ri ⇒ ∀ i, `OL Ki ϕ⇒ `OL ϕ

The last implication comes from the application of the universality rule. �
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