
Lattice Approach to Classifications

Olivier Brunet

December 4, 2002

Abstract

We present a translation of J. Barwise and J. Seligman’sInformation
Flow Theoryinto a lattice and Galois connection based formalism. We show
how to transform the different structures of the theory into this formalism
and show that this translation extends the expressivity of the theory.

1 Introduction

Information is now present everywhere in science. Should it be the way it is repre-
sented, it evolves or it is shared, it arises in a wide range of fields such as biology,
quantum physics and, of course, computer science. Our present work is based on a
theory of information flow developped by Jon Barwise and Jerry Seligman and pre-
sented in a comprehensive way in [BS97]. Their formalism is based on two basic
entities : classifications and infomorphisms. Classifications can be viewed as a pair
of two sets, one fortokens(entities which are studied) and one fortypes(pieces of
information), together with a relation between those two sets, which expresses the
information one has about the tokens. The other basic entities, informorphisms, are
functions which relate different classifications. Using this formalism, they present
a way to build logical theories out of observations, and they explain how simple
objects can be put together using what is called an information channel, and what
it implies on the respective logics. In the following, we will present a translation
of this formalism into lattices and Galois connections. This kind of formalism has
strong mathematical foundations (see [Bir67]), and is widely used in fields such as
program analysis [Cou96] and concept analysis [GW99], in both of which partial
information representation issues are present.

The present article is divided into several parts, each devoted to one component
of the theory. In section 1, we deal with regular theories and their equivalent trans-
lation into what we call abstract power-sets, and give a few basic definitions. In
section 2, we present the main part of the transformation, namely the one of clas-
sifications into approximations. In section 3, we transform informorphisms into
approximation morphisms, and show that the latter formalism is strictly more ex-
pressive than the former. We close with a section on further developments of this
translation, and a conclusion.

1

2 Lattice representation of regular theories

A very simple way to provide a setΣ with some structure is to give it a deduc-
tion relation which gives rise to a logic onΣ. This deduction relation is a relation
between subsets ofΣ : If we denote` this relation,Γ ` ∆ means that if all the
elements inΓ are true, then at least one element in∆ is true either. In the follow-
ing, we will considerregular theories, which verify some properties concerning
monotonicity.

Definition 1 (Theory)
A theoryis a pair 〈Σ, `〉where Σ is a set and ` is a binary relation between subsets
of Σ.

Definition 2 (Regular theory)
A theory 〈Σ,`〉 is regularif it satisfies the following three properties :

∀α ∈ Σ, α ` α (1)

∀Γ,∆,Σ0,Σ1 ⊆ Σ, Γ ` ∆ ⇒ Γ,Σ0 ` ∆,Σ1 (2)

∀Γ,∆,Σ′ ⊆ Σ,

(
∀Σ0,Σ1,

{
Σ0 ∪ Σ1 = Σ′

Σ0 ∩ Σ1 = ∅

}
⇒ Γ,Σ0 ` ∆,Σ1

)
⇒ Γ ` ∆

(3)

which are respectively called Identity, Weakeningand Global Cut.

We are now going to define a similar structure based on complete lattices which
will be proved to be equivalent to regular theories. But we first need to setup our
notations. Following abstract interpretations conventions, we will only consider
additive morphismes in the following, for which we can always define an adjoint.

Definition 3 (Additive morphism)
A poset-morphism f : E → F between two complete lattices is said to be additive
if :

∀X ⊆ E,
∨

x∈X

f(x) = f(
∨

x∈X

x)

Those morphisms are ordered using the pointwise order :

f ≤ g ⇔ ∀x, f(x) ≤ g(x)

Definition 4 (Adjoint)
Given an additive morphism f : E → F , we define its adjointf# : F → E by :

∀ y ∈ F , f#(y) =
∨
{x ∈ E | f(x) ≤F y}

Proposition 1 (Galois connection)
Given an additive morphism f : E → F , we have :

∀x ∈ E, ∀ y ∈ F , f(x) ≤F y ⇔ x ≤E f#(y)

2

With this, we can easily define what we callabstract power-sets(a.p.s.). An
abstract power-set can be seen as a collection of subsets of a setΣ, with equivalent
operations for union and intersection.

Definition 5 (Abstract power-set)
Given a set Σ, an abstract power-setover Σ is a pair 〈P, e〉 where P is a lattice and
where e : 〈℘(Σ),⊆〉 → P is an additive onto poset-morphism verifying e(Σ) =
>P .

To prove that abstract power-sets are equivalent to regular theories, we will
define the functions which will realize the one-to-one transformation. We first
show how to define a regular theory generated by an abstract power-set.

Definition 6
Given an abstract-power set 〈P, e〉 over a set Σ, we define the logic 〈Σ,`P 〉where :

Γ `P ∆ ⇔ ∃ δ ∈ ∆ : e({δ}) ≤P e(Γ)

This is equivalent to :

∃ δ ∈ ∆ : ∀x ∈ P , (∀ γ ∈ Γ, e({γ}) ≤ x) ⇒ e({δ}) ≤ x

Proposition 2
〈Σ,`P 〉 is a regular theory.

Proof The only point to prove is theGlobal Cut. Now, let Γ,∆,Σ′ verify the
left part of the axiom. We splitΣ′ into the partition{Σ0,Σ1} whereΣ0 = {σ ∈
Σ′ / Γ ` σ}. We have :

Γ,Σ0 ` ∆,Σ1

Now, we have
∨
{e({γ}) / γ ∈ Γ ∪ Σ0} =

∨
{e({γ}) / γ ∈ Γ}, so that :

Γ,Σ0 ` ∆,Σ1 ⇔ Γ ` ∆,Σ1

By definition,Γ 6` Σ1 so that we have :

Γ ` ∆,Σ1 ⇒ Γ ` ∆

This ends the proof.

Conversely, regular theories can easily be turned into abstract power-sets. For
convenience of notation,Σ` will denote the set of subsets ofΣ closed under̀ . The
fact that this containsΣ and is closed under intersection leads us to the following
definition :

Definition 7
Given a regular theory 〈Σ,`〉, we define an abstract power-set 〈Σ`, e〉 where :

3

– Σ` is ordered by ⊆

– e = λX.
⋂
{Y ∈ Σ` / X ⊆ Y }

Proposition 3
There is an isomorphism between the regular theories of a set Σ and its abstract
power-sets, this isomorphism being realized by the functions P → 〈Σ,`P 〉 and
〈Σ,`〉 → 〈Σ`, e〉 as defined above.

Justification It comes from the fact that a regular theory is uniquely determined
by its closed subsets :

Γ ` δ ⇔ ∀E ∈ Σ`, Γ ⊆ E ⇒ δ ∈ E

3 Classifications and Approximations

Now that we have introduced the basic ideas of our formalism, we can present
the lattice version of classifications. But contrary to what was shown in the pre-
vious section, there is no one-to-one translation between classifications and what
we call approximations, since approximations can embed some of the regular logic
generated by the typing relation. In [BS97], classifications are defined as follows :

Definition 8 (Classification)
A classificationC = 〈tokC , typC ,`〉 consists of :

1. a set tokC of objects to be classified, called the tokensof C,

2. a set typC of objects used to classify the tokens, called the typesof C, and

3. a binary relation ` between tokC and typC .

If a ` α, we say thata is of typeα. Let us defineTyp(x) = {α / x ` α} and
Typ(X) =

⋃
{Typ(x) / x ∈ X}. Conversely, we defineTok(α) andTok(A).

Example

Suppose we have an electrical circuit composed by a battery, two switches
S1 andS2 and a light bulbL. At various momentsτ ∈ T , we note the
stateSt(τ) = 〈S1(τ), S2(τ), L(τ)〉 of the circuit. To shorten the notations,
we use bits to denote the parts state. A1 (resp. a0) means for a switch
that it is on (resp. off) and for the bulb that it islit (resp. unlit). Thus, the
state of the circuit can be denoted by a list of 3 bits. We get a classification
Cir =

〈
T,23,`C

〉
where :

τ `C S ⇔ S = St(τ)

4

Example

With the same circuit, we define another classification, where the tokens are
the state of the light bulb and the types are the states of the switches. Thus,
we haveBulb =

〈
21,22,`B

〉
where :

α `B 〈β1, β2〉 ⇔ ∃ τ ∈ T : St(τ) = 〈β1, β2, α〉

It is to be noted that contrary toCir, the typing relation ofBulb is not
function-like.

Definition 9 (Approximation)
An approximationof E by F is a tuple A = 〈tokA, typA, pA〉 where :

1. tokA (resp. typA) is an abstract power-set of E (resp. of F)

2. pA : tokA → typA is the relation of approximation between the tokens
(representing elements of E) and the types (for F).

We now give the first part of the relation between classifications and appro-
ximations.

Definition 10
Given an approximation A from E to F , we define a classification cla(A) =
〈E,F,`A〉 where :

a `A α ⇔ pA ◦ eE({a}) ≤F eF ({α})

Conversely, we would be tempted to perform the reverse transformation. But
as said above, given a classificationC, we can associate several approximations to
it. We shall then consider the approximations which agree with a classificationC
on any subset oftokC (due to additivity) :

AC = {A /∀X ⊆ tokC , Typ(X) = e#
typA

◦ pA ◦ etokA
(X)}

In order to specify the structure of thisAC, we make the set of approximation
a poset with the order≤appr defined by :

Definition 11
Given two approximations 〈A,B, p〉 and 〈A′, B′, p′〉 of a classification C, we say
that :

〈A,B, p〉 ≤appr 〈A′, B′, p′〉 ⇔

A v A′

B v B′

e#
B ◦ p ◦ eA = e#

B′ ◦ p′ ◦ eA′

where E v E′ means that {e#
E (x) / x ∈ E} ⊆ {e#

E′(x) / x ∈ E′}.

5

With this order, an approximation which is above another is more general,
since it can distinguish more tokens and types. Conversely, the one below is more
abstract.

Given a classificationC, there is a most general approximation generating it
(since℘(X) can be seen as an a.p.s ofX) :

Definition 12
Given a classification C = 〈E,F,`〉, we define the most general approximation
appr>(C) = 〈℘(E), ℘(F), λX.Typ(X)〉.

This is the exact translation of a classification in terms of lattices. It is the most
general approximation, since there is no loss of information, so any property on
the original classification can be transfered to its most general approximation. We
have the correctness proposition :

Proposition 4
For any classification C, we have :

cla(appr>(C)) = C

The fact thatappr> is the most general approximation comes from the follow-
ing proposition :

Proposition 5
Given a classification C, we have :

∀A ∈ AC, A ≤appr appr>(C)

Conversely, we define a most abstract approximation :

Definition 13
Given a classification C, we define the most abstract approximation appr⊥(C) =
〈tok⊥, typ⊥, p⊥〉 where :

tok⊥ =
{

X ⊆ tokC /∀A ∈ AC, X = e#
tokA

◦ etokA
(X)

}
typ⊥ =

{
Y ⊆ typC /∀A ∈ AC, Y = e#

typA
◦ etypA

(Y)
}

p⊥ = etyp⊥ ◦ Typ ◦ e#
tok⊥

Proposition 6
The following equalities do hold :

typ⊥ = {Typ(X) | X ⊆ tokC}

tok⊥ =
{⋃

{X | Typ(X) ⊆ Y }
∣∣∣ Y ∈ typ⊥

}
This proposition shows that there is a one-to-one correspondance betweentyp⊥

andtok⊥.

6

Proposition 7
For any classification C, we have :

cla(appr⊥(C)) = C

Proof Let x ∈ tokC. We define[x] = {y / Typ(y) ⊆ Typ(x)}. We have
Typ(Y) ⊆ Typ(x) ⇔ Y ⊆ [x]. We prove that[x] ∈ typ⊥. Let A ∈ AC.
Galois-connection properties tell us that :

[x] ⊆ e#
tokA

◦ etokA
([x])

etokA
([x]) = etokA

◦ e#
tokA

◦ etokA
([x])

But sinceA is in AC, we have :

Typ
(
e#
tokA

◦ etokA
([x])

)
= e#

typA
◦ pA ◦ etokA

(e#
tokA

◦ etokA
([x]))

= e#
typA

◦ pA ◦ etokA
([x])

= Typ([x])

So thate#
tokA

◦ etokA
([x]) ⊆ [x] which leads to the equality. As this is true for any

A in AC, we have[x] ∈ tok⊥. This also implies thatTyp([x]) ∈ typ⊥. Finally,
there remains to show thate#

typ⊥
◦ p⊥ ◦ etok⊥(x) = Typ(x), but this comes from :

Typ(x) ⊆ e#
typ⊥

◦ p⊥ ◦ etok⊥(x) ⊆ e#
typ⊥

◦ p⊥ ◦ etok⊥([x]) = Typ(x)

Proposition 8
Given a classification C, we have :

∀A ∈ AC, appr⊥(C) ≤appr A

Justification It comes from the fact that∀X ∈ tok⊥, e#
tok⊥

(X) = X = e#
tokA

◦
etokA

(X), so thattok⊥ ⊆ tokA. The same argument applies to show thattyp⊥ ⊆
typA.

Proposition 9
tokappr⊥(C) is isomorphic to Sep(C) as defined in [BS97] page 85. typappr⊥(C)

is isomorphic to the regular theory Th(C) generated by C.

We can now give our main result concerning classifications and approxima-
tions :

Proposition 10
Given any classification C, we have :

AC = {A | appr⊥(C) ≤ A} = {A | A ≤ appr>(C)}

7

Proof We only need to prove thatappr⊥(C) ≤ A ≤ appr>(C) ⇒ A ∈ AC.
But sinceA ≤ appr>(C), we have :

∀X, e#
typA

◦ pA ◦ etokA
(X) = e#

typ>
◦ Typ ◦ etok>(X) = Typ(X)

The different ways to encode a classification using approximations represent
several approaches of what one can do with classifications. On the one hand, if we
considerappr>, none of the logic of the classification is encoded, which means
that we want to keep the typing assertions aspartial information on the tokens, and
that there remains a way to sharpen the assertions. In particular, none of the tokens
are aggregated to others, they are still distinct.

On the other hand, consideringappr⊥, the situation is the same as if we looked
at the tokens only through their types, i.e. considering the information we have on
them. That means that different tokens having the same type are indistiguishable.

4 Infomorphisms and Galois connections

After having presented a way to formalize classifications using lattices, we now
need to setup our formalism concerning informorphisms, i.e. to have the possibility
to connect classifications (and their lattice counterparts) together. The basic idea
of informorphisms is to connect classifications in a Galois connection-like way
between tokens and types :

Definition 14 (Infomorphism)
An infomorphismbetween two classifications C1 and C2 is a tuple 〈f∧, f∨〉 veri-
fying :

∀α ∈ typ1, ∀ b ∈ tok2, f∨(b) `1 α ⇔ b `2 f∧(α)

It is natural to consider an equivalent for approximations which verifies a sim-
ilar relation. This leads to the following definition :

Definition 15 (Approximation morphism)
Given two approximations A and B, an approximation morphismfrom A to B is
a pair 〈g4, g5〉 verifying the property :

∀α ∈ typA, ∀ b ∈ tokB, pA ◦ g5(b) ≤ α ⇔ pB(b) ≤ g4(α)

Given an approximation morphism〈g4, g5〉, there is a strong relation between
the two functions of the pair. This is expressed in the next propositions :

Proposition 11
The two morphisms pA ◦ g5 and p#

B ◦ g4 form a Galois connection.

8

Proof Using the former definition, we can write

pA ◦ g5(b) ≤ α ⇔ pB(b) ≤ g4(α) ⇔ b ≤ p#
B ◦ g4(α)

As a consequence, using the uniqueness of functions in a Galois connection,
we have the following proposition :

Proposition 12
Given an approximation morphism g from A to B, the two functions g4 and g5

verify :
g5 ≤ p#

A ◦ g4# ◦ pB g4 ≥ pB ◦ g5# ◦ p#
A

A consequence of this is that given a morphismg4 : typA → typB, the pair
〈g4, p#

A ◦ g4# ◦ pB〉 forms an approximation fromA to B. The same can also be
done giveng5.

Proposition 13
Given a morphism g4 : typA → typB , there exists a morphism g5 : tokB →
tokA such that 〈g4, g5〉 is an approximation morphism from A to B.

We now turn to the translation between informorphisms and approximation
morphisms. In the following, given a classificationC, the corresponding approx-
imation considered will beappr>(C). This way, the results are expressed using
subsets, which increases their readability. Another reason is that we consider the
most general approximation of a given classification, in which all the following
results apply, while it might not be the case for more abstract approximations.

Definition 16
Given an informorphism f : C1 → C2, we define the approximation morphism
a(f) by :

a(f) =
〈
λX.{f∧(x) / x ∈ X}, λY.{f∨(y) / y ∈ Y }

〉
a(f) is indeed an approximation morphism since :

p1 ◦ a(f)5(X) ⊆ Y ⇔
(
∀x ∈ tok2, ∀α ∈ typ1, f∨(x) ` α ⇒ α ∈ Y

)
⇔

(
∀x ∈ tok2, ∀α ∈ typ1, x ` f∧(α) ⇒ α ∈ Y

)
⇔ p2(X) ⊆ a(f)4(Y)

There is no reverse transformation in general, since informorphisms are defined on
elements, whereas approximation morphisms are defined on sets.

Now, there remains to explore the ways a morphismf∧ can be embedded in an
informorphism. Suppose we have a morphismf∧ : typ1 → typ2. We define :

g4 = λX.{f∧(x) / x ∈ X}

9

Using the former proposition, let’s defineg5 = p#
1 ◦ g4 ◦ p2. We have :

g5({y}) = {x / g4(typ1(x)) ⊆ typ2(y)} = {x / ∀α, x ` α ⇒ y ` f∧(α)}

Now suppose we havef∨ such thatλY.{f∨(y) / y ∈ Y } ≤ g5. Then,

∀ y, {f∨(y)} ⊆ g5({y})

so that we need to have∀ y, g5({y}) 6= ∅ which is equivalent to :

∀ y, ∃x : ∀α, x ` α ⇒ y ` f∧(α)

This is precisely the condition we need to verify for every informorphism, and any
f∨ such thatλY.{f∨(y) / y ∈ Y } ≤ g5 do form an infomorphism withf∧.

Proposition 14
Given a morphism f∧ : typ1 → typ2, there exists f∨ : tok2 → tok1 such that
〈f∧, f∨〉 is an infomorphism if and only if :

∀ y, ∃x : ∀α, x ` α ⇒ y ` f∧(α)

It should be noted that this result can be found without using any lattice formal-
ism. But what is important is that approximation morphisms can exactly represent
infomorphisms (which comes from the previous proposition) but are strictly more
expressive, since any morphism can be turned into an approximation morphism.

5 Conclusion

The work presented here is just a sketch of what would be the whole information
flow theory expressed in a lattice formalism. The central structure of the theory,
namely the information channel, has not been studied. Yet, all the necessery ma-
chinery is provided in this paper.

For further study, more investigation might be done concerning the effects of
adding imprecision (and so approximations) to classifications. As we have seen,
a first result is that it allows to consider more morphismes between classification
structures.

Another direction can be presented this way : consider two classificationsC1

andC2 with the same token set. Then, to what extend can one build a new clas-
sificationD wheretokD = typC1

andtypD = typC2
and which would be the

properties of this classification.
Finally, a last direction would be to explore the equivalent to classification

manipulation to approximations. This is closely related to abstract domain manip-
ulation as developped for instance by R. Giacobazzi, F. Ranzato and F. Scozzari
[GRS00].

10

References

[Bir67] G. Birkhoff. Lattice Theory. Amer. Math. Soc., 1967. 3rd ed., Collo-
quium Publications.

[BS97] J. Barwise and J. Seligman.Information Flow, the logic of distributed
systems. Cambridge University Press, 1997.

[Cou96] P. Cousot.Abstract Interpretation. Symposium on Models of Pro-
gramming Languages and Computation, ACM Computing Surveys,
28(2):324-328, June 1996.

[GW99] B. Ganter and G. Wille.Formal Concept Analysis. Springer Verlag,
1999.

[GRS00] R. Giacobazzi, F. Ranzato and F. Scozzari.Making Abstract Interpre-
tations Complete. To appear in Journal of the ACM, may 2000 issue.

11

