An API for ontology alignment

Jérbme Euzenat
INRIA Rhéne-Alpes
Montbonnot, France,

Jerome.Euzenat@inrialpes.fr

April 30, 2004

Abstract

Ontologies are seen as the solution to data heterogeneity on the web. How-
ever, the available ontologies are themselves source of heterogeneity. This can
be overcome by aligning ontologies, or finding the correspondence between their
components. These alignments deserve to be treated as objects: they can be refer-
enced on the web as such, be completed by an algorithm that improves a particular
alignment, be compared with other alignments and be transformed into a set of ax-
ioms or a translation program. We present here a format for expressing alignments
in RDF, so that they can be published on the web. Then we propose an imple-
mentation of this format as an Alignment API, which can be seen as an extension
of the OWL API and shares some design goals with it. We show how this API
can be used for effectively aligning ontologies and completing partial alignments,
thresholding alignments or generating axioms and transformations.

1 Introduction

Like the web, the semantic web will have to be distributed and heterogeneous. As such,
the integration of resources found on this semantic web is its main problem. For con-
tributing solving this problem, data will be expressed in the framework of ontologies.
However, ontologies themselves can be heterogeneous and some work will have to be
done for restoring interoperability.

Semantic interoperability can be grounded on ontology reconciliation: finding re-
lationships between concepts belonging to different ontologies. We call this process
“ontology alignment”. The ontology alignment problem can be described in one sen-
tence: given two ontologies each describing a set of discrete entities (which can be
classes, properties, rules, predicates, etc.), find the relationships (e.g., equivalence or
subsumption) holding between these entities.

“Reifying” alignment results in a standardized format can be very useful in various
contexts:

— for collecting alignment in libraries gathering alignments, made by hand or au-
tomatically, that can be used for linking two particular ontologies;

2 ALIGNMENT FORMAT 2

— for modularizing alignments algorithms, for instance, by first using terminologi-
cal alignment methods for labels, having this alignment agreed or amended by a
user and using it as input alignment for a structural alignment;

— for comparing the results with each others or with possible “standard” results;

— for generating automatically and from the output of different algorithms, vari-
ous forms of interoperability enablers like transformations from one source to
another, bridge axioms for merging two ontologies, query wrappers (or media-
tors) which rewrite queries for reaching a particular source, inference rules for
transferring knowledge from one context to another.

We propose here an alignment format and an application programming interface
(API) for manipulating alignments, which is illustrated through a first implementation.
Providing an alignment format is not solely tied to triggering alignment algorithms but
can help achieving other goals such a:

— allowing a user to select parts of alignments to be used,

— transforming the alignment into some translation programme or articulation ax-
ioms,

— thresholding correspondence in an alignment on some criterion,

— improving a partial alignment with a new algorithm,

— comparing alignment results,

— publishing ontology alignment on the web.

The design of this API follows that of the OWL APBechhoferet al,, 2003 in sepa-
rating these various concerns that are involved in the manipulation and implementation
of the API.

In the remainder, we shall define the current alignment format (82), present it as an
alignment API (83) and its implementation on top of the OWL-API (84). Then we will
demonstrate the extension of the system by adding new algorithms (85), composing
alignments (86), generating various output formats (§7) and comparing the alignments
(88).

2 Alignment format

As briefly sketched above and befol€izenat, 2003, in first approximation, an
alignment is a set of pairs of elements from each ontology. However, as already pointed
outin[Noy and Musen, 20Q2this first definition does not cover all needs and all align-
ments generated. So the alignment format is provided in several levels, which depend
on more elaborate definitions of alignment.

2.1 Alignment
The alignment description can be stated as follows:

a statement of levelused for characterizing the type of correspondence (see below);

2 ALIGNMENT FORMAT 3

a set of correspondencesvhich express the relation holding between entities of the
first ontology and entities of the second ontology. This is considered in the fol-
lowing subsections;

a statement of arity (default 1:1) Usual notations are 1:1, 1:m, n:1 or n:m. We prefer
to note if the mapping is injective, surjective and total or partial on both side. We
then end up with more alignment arities (noted with, 1 for injective and total, ?
for injective, + for total and * for none and each sign concerning one mapping
and its converse): ?:?, ?:1, 1:?, 1:1, 2+, +:2, 1+, +:1, +:+, 2%, %2, 1%, *1,
+:* *:+ ** These assertions could be provided as input (or constraint) for the
alignment algorithm or be provided as a result by the same algorithm.

This format is simpler than the alignment representatiofiMe#dhavaret al,, 1999,
but is supposed possible to produce by most alignment tools.

2.2 LevelO

The very basic definition of a correspondence is that of a pair of discrete entity in
the language. This first level of alignment has the advantage of not depending on a
particular language. Its definition is roughly the following:

entityl the first aligned entity. It is identified by an URI and corresponds to some
discrete entity of the representation language.

entity2 the second aligned entity with the same constraint as entity1.

relation (default "=") the relation holding between the two entities. It can be equiv-
alence, subsumption, incompatibility, or even some fuzzy relation. So, this is
not only equivalence but also more sophisticated operators (e.g., subsumption
[Giunchiglia and Shvaiko, 2008

strength (default 1.) denotes the confidence held in this correspondence. Since
many alignment methods compute a strength of the relation between entities,
this strength can be provided as a normalized measure. This measure is by no
mean characterizing the relationship (e.g., as a fuzzy relation which should be
expressed in the relation attribute), but reflects the confidence of the alignment
provider in the relation holding between the entities. Currently, we restrict this
value to be a float value betweénand1.. If found useful, this could be gener-
alised into any lattice domain.

id an identifier for the correspondence.

A simple pair can be characterised by the default relation "=" and the default
strength "1.". These default values lead to consider the alignment as a simple set of
pairs.

In this level 0, the aligned entities can, of course, be classes, properties or individ-
ual. But they can be any kind of complex term that is used by the target language. For
instance, it can use the concatenation of firstname and lastname considgRetirim
and Bernstein, 20Q1f this is an entity, or it can use a path algebra like in:

hasSoftCopy.softCopyURI = hasURL
However, in the format described above and for the purpose of storing it in some RDF

format, it is required that these entities (here, the paths) be discrete and identifiable by
a URI.

3 ALIGNMENT API 4

This level 0 of alignment is basic but found everywhere: there are no algorithm that
cannot account for such alignments. It is, however, somewhat limited: there are other
aspects of alignments that can be added to this first approximation.

2.3 Levell

Level 1 replaces pairs of entities by pairs of sets (or lists) of entities. A level 1 corre-
spondence is thus a slight refinement of level 0, which fills the gap between level 0 and
level 2. However, it can be easily parsed and this is still language independent.

2.4 Level2 ()

Level 2 considers sets of expressions of a particular languggeith variables in these
expressions. The intent is that correspondences are now directional and correspond to
a clause:

VIp(f = 37,49)

in which the variables of the left hand side are universally quantified over the whole
formula and those of the right hand side (which do not occur in the left hand side) are
existentially quantified. It can express correspondences like:

YV, z grandparent(x, z) = Jy; parent(x,y) A parent(y, z)

Restrictions of this kind of rules are commonly used in logic-based languages or
in the database world for defining the views of the “global-as-view” of “local-as-view”
approache$Calvaneseet al, 2004. This also resembles the SWRL rule language
[Horrockset al,, 2003 when used with OWL (see §7.3 for a simple example of such

rules). This can also be generalised to any relation and drop the orientation constraint.

Level 2 can be applied to other languages than OWL (SQL, regular expressions,
F-Logic, etc.). For instance, the expression can apply to character strings and the align-
ment can denote concatenation like in

name = firstname+" "+lastname

This alignment format has been given an OWL ontology and a DTD for validating
it in RDF/XML. Given such a format, we will briefly describe how is an API designed
around it (83) before explaining its implementation (§4) and functions (85-88).

3 Alignment API

A JAVA API, implementing this format, is briefly sketched here

3.1 Classes

The OWL API is extended with thevg.semanticweb.owl.align) package. Which
describes the Alignment API. This package name is used for historical reasons. In fact,
the API itself is fully independent from OWL or the OWL API. This APl is, in turns,

an “implementation” of the Alignment format.

3 ALIGNMENT API 5

Itis essentially made of three interfaces. We present here under the term “features”,
the information that the API implementation must provide. For each feature, there are
the usual reader and writer accessors:

Alignment The Alignment interface describes a particular alignment. It contains a
specification of the alignment and a list of cells. Its features are the following:

level (values "0", "1", "2*") indicates the level of alignment format used;

type (values: "11", "1?2", "1+", "1*" "1, UM, MR4N, MR MH1N, MM, M4",
e R me4t e the type of alignment;

ontol (value: URL) the first ontology to be aligned;

onto2 (value: URL) the second ontology to be aligned,;

map (value:cCell *)the set of correspondences between entities of the ontologies.

cell The Cell interface describes a particular correspondence between entities. It pro-
vides the following features:

rdf:resource (value: URI) the URI identifying the current correspondence;

entityl (value: URI) the URI of some entity of the first ontology;

eniity2 (value: URI) the URI of some entity of the second ontology;

measure (value: float between 0. and 1.) the confidence in the assertion that the
relation holds between the first and the second entity (the higher the value,
the higher the confidence);

relaton (value: Relation) the relation holding between the first and second
entity.

Relaton ~ The Relation interface does not mandate any particular feature.

To these interfaces, implementing the format, are added a couple of other interfaces:

ProcessAlignment ~ The ProcessAlignment interface extends the Alignment interface
by providing analign method. This interface must be implemented for each
alignment algorithm.

Evaluator ~ The Evaluator interface describes the comparison of two alignments (the
first one could serve as a reference). Its features are the following:

alignl (value: URI) a first alignment, sometimes the reference alignment;
align2 (value: URI) a second alignment which will be compared with the first
one;

3.2 Functions

Of course, this API does not only provide support for storing alignments but support
for manipulating them. It offers a number of services for manipulating the API. As in

[Bechhoferet al., 2003, these functions are separated in their implementation. The

following primitives are available:

parsing/serializing an alignment from a file in RDF/XMLAlignmentParser.read() ,
Alignment.write());

4 IMPLEMENTATION AND EXAMPLE 6

computing the alignment, with input alignmenii(gnment.align(Alignment, Parameters));

thresholding alignment with threshold as argumentignment.cut(double));

hardening an alignment by considering that all correspondences are absolute
(Alignment.harden(double));

comparing one alignment with anotheEyaluator.eval(Parameters)) and serialis-
ing them Evaluator.write());

outputting alignment in a particular format (rule, axioms, transformations)
(Alignment.render(stream,visitor));

These functions are more precisely described below.

In addition, alignment and evaluation algorithms can be passed parameters. These
are put in a structure that allows storing and retrieving them. The parameter name is a
string and its value is any Java object. The parameters can be the various weights used
by some algorithms, some intermediate thresholds or the tolerance of some iterative
algorithms.

4 Implementation and example

For validating the API, we carried out a first implementation, on top of the OWL API
[Bechhoferet al,, 2003, which is presented here and illustrated in further sections.

4.1 Defaultimplementation

A (default) implementation of this API can be found in thigrialpes.exmo.align.impl
package. Itimplements the API by providing the simple basic clagaesalignment
BasicCell , BasicRelation , BasicParameters and BasicEvaluator . These classes
provide all the necessary implementation for the API but the algorithm specific meth-
ods @lignment.align() andEevaluator.eval). It also provides an RDF/XML parser
that can parse the format into amnment object.

Along with these basic classes the default implementation provides a library of
other classes, which are mentioned below.

4.2 Command-line interface
There is a stand-alone programirrialpes.exmo.align.util.Procalign) which:

— Reads two OWL/RDF ontologies;

— Creates an alignment object;

— Computes the alignment between these ontologies;
— Displays the result.

So, this programme implements the standard structure for using the API.
Additionally, a number of options are available:

— displaying debug information (-d);
— controlling the way of rendering the output (-r);
— deciding the implementation of the alignment method (-i);

4 IMPLEMENTATION AND EXAMPLE 7

— providing an input alignment (-a).
Running the program is achieved through:
$ java -jar lib/procalign.jar

Two URIs required
usage: Procalign [options] URI1 URI2

options are:
--impl=className -i classname Use the given alignment implementation.
--renderer=className -r classname Specifies the alignment renderer
--output=filename -o filename Output the alignment in filename
--alignment=filename -a filename Start from an XML alignment file
--threshold=double -t double Filters the strengths under threshold
--debug[=n] -d [n] Report debug info at level n
--help -h Print this message

4.3 Processing an example

Using this alignment processor works in the following way (assumingsthatcorre-
sponds to the current directory):

$ java -jar lib/procalign.jar -i fr.inrialpes.exmo.align.impl.SubsDistNameAlignment
file://localhost$CWD/rdf/ontol.owl file://localhost$CWD/rdf/onto2.owl
-0 aligns/sample.owl

This asks for aligning the ontologtol.rdf andonto2.rdf ~ With the SubsDist
NameAlignment class which implements a substring based distance on the labels of
classes and properties, and output the result tadingle.owl file. Since the results
are not very satisfying, the program can be called again by asking to threshold under
.6:

$ java -jar lib/procalign.jar -i fr.inrialpes.exmo.align.impl.SubsDistNameAlignment
file://localhost$CWD/rdf/ontol.owl file:/localhost$CWD/rdf/onto2.owl -t .6

which returns:

<?xml version="1.0' encoding="utf-8’ standalone="no'?>
<IDOCTYPE rdf:RDF SYSTEM "align.dtd">

<rdf:RDF xmins="http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#’
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#>
<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<ontol>http://www.example.org/ontologyl</ontol>
<onto2>http://www.example.org/ontology2</onto2>
<map>
<Cell>
<entityl rdf:resource="http://www.example.org/ontologyl#reviewedarticle’/>
<entity2 rdf:resource="http://www.example.org/ontology2#article’/>
<measure rdf:datatype="http://www.w3.0rg/2001/XMLSchema#float’>0.6363636363636364</measure>
<relation>=</relation>
</Cell>
<Cell>
<entityl rdf:resource="http://www.example.org/ontologyl#journalarticle’/>
<entity2 rdf:resource="http://www.example.org/ontology2#journalarticle’/>
<measure rdf:datatype="http://www.w3.0rg/2001/XMLSchema#float’>1.0</measure>
<relation>=</relation>
</Cell>
</map>
</Alignment>
</rdf:RDF>

5 ADDING AN ALGORITHM 8

4.4 Example data

In order to provide a simple example, we picked up, on the web, two bibliographic
ontologies described in OWL:

— eBiquity Publication Ontology Resourge
— BIBTEX Definition in Web Ontology Languade

These ontologies are obviously based oBTEX (see Table 1). This explains the rela-
tive ease of alignment with very simple algorithms. The only purpose of this example
is to demonstrate the use of the API and its implementation. However, both ontologies
display a number of differences, especially in the name of properties.

The expected alignments of both ontologies is the one given in Table 1. It as been
described in the alignment format for the purpose of evaluating the results of the various
algorithms (see 88).

5 Adding an algorithm

There are many different methods for computing alignments. However, they always
need at least two ontologies as input and provide an alignment as output (or as an in-
termediate step because some algorithms are more focussed on merging the ontologies
for instance). Sometimes they can take an alignment or various other parameters as
input.

5.1 Extending the implemented algorithms

The API enables the integration of the algorithms based on that minimal interface. Itis
used by creating an alignment object, providing the two ontologies, callingighe
method which takes parameters and initial alignment as arguments. The alignment
object then bears the result of the alignment procedure.

Adding new alignments methods amounts to create a A@nmentProcess
class implementing the interface. Generally, this class can extend the proposed
BasicAlignment class. TheBasicAlignment class defines the storage structures for
ontologies and alignment specification as well as the methods for dealing with align-
ment display. All methods can be refined (no one is final). The only method it does not
implement isalign itself.

5.2 Collection of predefined algorithms

Several algorithms have been run to provide the alignments between these two ontolo-
gies:

NameEgAlignment Simply compares the equality of class and property names (once
downcased) and align those objects with the same name;

Lhttp://ebiquity.umbc.edu/v2.1/ontology/publication.ow!
2http:/ivisus.mit.edu/bibtex/0.1/

5 ADDING AN ALGORITHM

9
BIBTEX UMBC MIT BIBTEX UMBC MIT
Resource SoftCopy
Publication Entry
Unpublished Conference
article Article Article book Book Book
inbook InBook Inbook incollection | InCollection Incollection
inproceedings InProceedings| Inproceedings || mastersthesis MastersThesis Mastersthesis
misc Misc Misc phdthesis PhdThesis Phdthesis
proceedings Proceedings Proceedings techreport TechReport Techreport
booklet Booklet
title title hasTitle author author hasAuthor
editor editor hasEditor publisher publisher hasPublisher
edition edition hasEdition chapter chapter hasChapter
series series hasSeries pages pages hasPages
volume volume hasVolume number number hasNumber
note note hasNote address address hasAddress
organization organization | hasOrganizatior journal journal hasJournal
booktitle booktitle hasBooktitle shool school hasSchool
howpublished howPublished institution institution haslinstitution
type type hasType year hasYear
annotation hasAnnotation
(affiliation) hasAffiliation (abstract) abstract hasAbstract
(copyright) hasCopyright (content) hasContent
(keywords) keywords hasKeywords
(URL) softCopyURI hasURL (ISBN) hasISBN
(size) softCopySize hasSize (ISSN) hasISSN
(location) hasLocation (LCCN) hasLCCN
(language) hasLanguage (price) hasPrice
softCopy relatedProject
softCopyFormat counter
version description
publishedOn pageChapterData
firstAuthor humanCreator

Table 1: Classes and properties in the three ontologies (FrefiEh, this table avoids

technical terms like key and crossref). Standam®lIBX classes have been separated
from non-standard ones (some of the non-standard-but-common are mentionned in

parenthesis).

6 COMPOSING ALIGNMENT 10

EditDistNameAlignment Uses an editing (or Levenstein) distance between (down-
cased) entity names. It thus have to build a matrix of distance and to choose the
alignment from the distance.;

SubsDistNameAlignment Computes a substring distance on the (downcased) entity
name;

StrucSubsDistNameAlignment Computes a substring distance on the (downcased)
entity names and uses and aggregates this distance with the symmetric difference
of properties in classes.

These simple algorithms should increase the accuracy of the alignment results. We
will see what happens in §8.

6 Composing alignment

One of the claimed advantages of expressing alignment is the ability to improve it by
composing alignment algorithms. This would allow iterative alignment: starting with a
first alignment, followed by user feedback, subsequent alignment rectification, and so
on. A previous alignment can, indeed, be passed taligite method as an argument.
The correspondences of this alignment can be incorporated in those of the alignment
to be processed.

For instance, it is possible to implement th@ucSubsDistNameAlignment , by
first providing a simple substring distance on the property names and then to apply
the structural distance on classes. The new modular implementation of the algorithm
yields the same results.

Moreover, modularizing these alignment algorithms offers the opportunity to ma-
nipulate the alignment in the middle, for instance, by thresholding. As an example, the
algorithm used above can be obtained by:

— aligning the properties;

— thresholding those undetteshold

— aligning the classes with regard to this partial alignment;
— generating axioms (see below);

Selecting on some other criterion (only retain the alignments on classes or in some
specific area of the ontology) is also possible in this fashion.

7 Generating output

The obtained alignment can, of course, be generated in some RDF serialisation form
like this is demonstrated by the example of 84.3. However, there are other formats that
are directly available for the use the alignment.

The API provides the notion of a visitor on the elements of an alignment. These
visitors are used in the implementation for rendering the alignments. So far, the imple-
mentation is provided with four such visitors:

7 GENERATING OUTPUT 11

RDFRendererVisitor displays the alignment in the RDF format described in §2. An
XSLT stylesheet is available for displaying the alignments in HTML from the
RDF/XML format (see Figure 1).

OWLAxiomsRendererVisitor generates an ontology merging both aligned ontolo-
gies and comprising OWL axioms for expressing the subsumption, equivalence
and exclusivity relations.

XSLTRendererVisitor generates an XSLT stylesheet for transforming data expressed
in the first ontology in data expressed in the second ontology;

SWRLRendererVisitor generates a set of SWHHorrockset al, 2003 rules for
inferring from data expressed in the first ontology the corresponding data with
regard of the second ontology.

Some of these methods, like XSLT or SWRL, take the first ontology in the align-
ment as the source ontology and the second one as the target ontology.

7.1 Generating axioms

OWL itself provides tools for expressing axioms corresponding to some relations
that we are able to generate such as subsumptatCigssOf) or equivalence
(equivalentClass). From an alignment, thewLAxiomsRendererVisitor Visitor gen-
erates an ontology that merges the previous ontologies and adds the bridging axioms

corresponding to the cells of the alignment.
They can be generated from the following command-line invocation:

$ java -jar lib/procalign.jar -i fr.inrialpes.exmo.align.impl.SubsDistNameAlignment
file://localhost$CWD/rdf/ontol.owl file://localhost$CWD/rdf/onto2.owl -t .6
-r fr.inrialpes.exmo.align.impl.OWLAxiomsRendererVisitor

which returns:

<rdf:RDF
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">

<owl:Ontology rdf:about="">
<rdfs:comment>Aligned ontollogies</rdfs:comment>
<owl:imports rdf:resource="http://www.example.org/ontology1"/>
<owl:imports rdf:resource="http://www.example.org/ontology2"/>
</owl:Ontology>

<owl:Class rdf:about="http://www.example.org/ontologyl#reviewedarticle">
<owl:equivalentClass rdf:resource="http://www.example.org/ontology2#article"/>

</owl:Class>

<owl:Class rdf:about="http://www.example.org/ontology1#journalarticle">
<owl:equivalentClass rdf:resource="http://www.example.org/ontology2#journalarticle"/>

</owl:Class>

</rdf:RDF>

7.2 Generating translations

Alignments can be used for translation as well as for merging. Such a transformation
can be made on a very syntactic level. The most neutral solution seems to generate

7 GENERATING OUTPUT 12

translators in XSLT. However, because it lacks deductive capabilities, this solution is
only suited for transforming data (i.e., individual descriptions) appearing in a regular

form. . . .
We have implemented arsLTRendererVisitor ~ , which generates transformations

that recursively replace the name of class and properties in the individuals. The ren-
derer produces stylesheets like:

<xsl:stylesheet xmins:xs|="http://www.w3.0rg/1999/XSL/Transform" version="1.0"
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#">

<xsl:template match="http://www.example.org/ontologyl#reviewedarticle">
<xsl:element name="http://www.example.org/ontology2#article">
<xsl:apply-templates select="*|@*|text()"/>
</xsl:element>
</xsl:template>

<xsl:itemplate match="http://www.example.org/ontologyl#journalarticle">
<xsl:element name="http://www.example.org/ontology2#journalarticle">
<xsl:apply-templates select="*|@*|text()"/>
</xsl:element>
</xsl:template>

<l-- Copying the root -->

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>

<l-- Copying all elements and attributes -->
<xsl:template match="*|@*|text()">
<xsl:copy>
<xsl:apply-templates select="*|@*|text()"/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

7.3 Generating SWRL Rules

Finally, this transformation can be implemented as a set of rules which will “interpret”
the correspondence. This way of working is more adapted than XSLT stylesheets be-
cause, we can assume that a rule engine will work semantically (i.e., it achieves some

degree of completeness with regard to the semantics) rather than purely syntactically.
The sWRLRenderervVisitor ~ transforms the alignment into a set of SWRL rules
which have been defined [iHorrockset al, 2003. The result on the same example

will be the following?;
<?xml version="1.0" encoding="UTF-8"?>

<swrlx:Ontology swrlx:name="generatedAl"
xmins:swrix="http://www.daml.org/2003/11/swrl#"
xmins:owlIx="http://www.w3.0rg/2003/05/owl-xml"
xmins:ruleml="http://www.ruleml.org/inspec#">
<owlx:Imports rdf:resource="http://www.example.org/ontology1"/>

<ruleml:imp>
<ruleml:_body>

3Namespaces are those used by the Bossam system (http://mknows.etri.re.kr/), since the standards are not
clear here.

8 COMPARING ALIGNMENT 13

<swrlx:classAtom>
<swrlx:Class swrix:name="http://www.example.org/ontologyl#reviewedarticle"/>
<ruleml:var>x</ruleml:var>
</swrlx:classAtom>
</ruleml:_body>
<ruleml:_head>
<swrlx:classAtom>
<swrlx:Class swrlx:name="http://www.example.org/ontology2#journalarticle"/>
<ruleml:var>x</ruleml:var>
</swrlx:classAtom>
</ruleml;_head>
</ruleml:imp>

</swrlx:Ontology>

Of course, level 2 alignments would require specific renderers targeted at their
particular languages.

8 Comparing alignment

Last, but not least, one of the reasons for having a separate alignment format is to be
able to compare the alignments provided by various alignment algorithms. They can
be compared with each other or against a “correct” alignment. For that purpose, the
API proposes théevaluator interface.

8.1 Implementing comparison

The implementation of the API providesgasicEvaluator that implements a con-
tainer for the evaluation (it has real method).

Implementing a particular comparator thus consists in creating a new subclass of
BasicEvaluator ~ and implementing iteval method that will compare two alignments
(the first one can be considered as the reference alignment). Currently available sub-
classes are:

PRecEvaluator, which implements a classical precision/recall/fallout evaluation as
well as the derived measures introducedDo et al, 2004. Precision is the
ratio between true positive and all aligned objects; Recall is the ratio between
the true positive and all the correspondences that should have been found.

SymMeanEvaluator, which implements a weighted symmetric difference between
the entities that are in one alignment and those common to both alignments
(missing alignments count for 0., others weight 1. complemented by the differ-
ence between their strengths). This is thus a measure of the similarity between
two alignments: the highest the value the closest are the alignments: 1. corre-
sponds to exactly the same alignments while 0. corresponds to alignments that
do not share a single cell. The result is here split between the kinds of entity
considered (Class/Property/Individual).

8 COMPARING ALIGNMENT

bibref.html NameEq.html EditDistName.html O § i 4(\ubSMS(html O StrucSubsDist7.html O §

v o USIISZATIIORSS
Proceedings = Proceedings series = hasSeries {

10 (level 0) 1 08]
title = hasTitle Mise = Misc

10 Alignment asEdition | descripion = hasEdion | I
editor = hasEditor i 454545454545454 0.38095238095238093 author = hasAuthor

10 Source: \mu:rhcm Mastersthesis MastersThesis = Mastersthesis 08 I
edition = hasEdition 0.945076923076923 Book = Bool 11

10 http://ebiquity.umbc. e mecdmm Proceedings Proceedings = Proceedings 0 9x557a97;u7a97;|
series = hasSeries 09SSTO90T60231 publishedOn = howPublished

10 Tar ! PhaThets = Phdihesis PhdThesis 0.782608693652174 J
Volume = hasVolume rget S Sis0ne0ss076023 InCollection = Incollection 4

10 file: //loLalhost/Volumu institution = hasInsitution institution = hasInsttution 0.945076923076923]
note = hasNote ORI T oass7142857142857 publisher = hasPublisher

1 . § number = hasN b number = hasNuber 0.8571428571428571 |
organization = hasOrganization Corresp | | school = hasSchool I

10 mn(:npyvmnm: m“md hasKeywords 0.]
bookitle = hasBooktitle Miso—Mise tasCopyrght OTTTTITITITTITTTS MastersThesis = Mastersthesis |

10 M | softCopyFormat = 0.945076923076923
type = hasType ‘ — Proc | hasCopyright Proceedings = Procecngs 1]

10 Proceedings = Proccedings i 363 03076923076923077 smwmm '3
keyword = hasKeywords ction = Incollect 1 tite = mqmc title = hasTitle PhdThess - Phdibes

10 InCollection = Incollection | 0.7692307692307693 0945076923076923 |
sofiCopyURI = hasURL _ \nullm] mqnuum journal = hasJournal institution = hasInsttution

10 PhdThests = Phihesis 0823520411764705% 0.88 1
softCopySize = hasSize L Person Person = Masterst number = hasNumber

10 Book 2 Book 0 (57x947mx47ms; 08 b
author = hasAuthor : e : keyword = hasKeywords

10 TechReport = Techreport H 7 0.948076923076923 | 0.
publisher = _ InProceedings = Inproceedings | | edition = hasEdition tite = hasTitle b

10 o { OSBSITON0SS || 0.7692507692307693 1
chapter = hasChapter Article 2 Artic edition = hasEdition abstract = hasAbst jounal = hasloumal

10 [Article = Article 0 0.5421052651575047 235294117647058 b
pages = hasPages - | editor = hasEdito ditor = hsEdior InProceadings < Tnprocacdngs

10 MastersThesis =Mastersthesis | 0.6666666666666667 0.948076923076923 b
number = hasNumber H InBook < Inbook counter = hasChapter courig o lusChaper dition = haskdion k

10 5 04 0.3
address = hasAddress 1 k

0 3337

journal = hasJournal hasOrganization | § organization = hasOrganization | || editor = hasEditor

10 0.S585888858888885 0.
school = hasSchool 1 paau mmau £ pages = hasPages mmnmmn:m«)mmummn

10 | 0.7692307692307693 0.BRSERRRRASEERE
institution = hasInstitution | hookille = hasBookiile § bookile ~hasBookue | pages=

10 0.8571428571428571 B Toonstise307693
abstract = hasAbstract Publication = Incollection Publication = Unpublished bookitle = hasBookitle

10 0.41666666666666663 0.6753496503496503 0.8571428571428571
(= = (=
Docament Q)| Document @ | oocument @ | oocument @ | ocument 9

Figure 1: The various alignments output in HTML

8.2 Examples

14

We provided, by hand, an alignment file that corresponds to the alignment of the classes
and properties in Table 1. Each cell, is ranked with strength 1. and relation "=". The
result of applying a particular evaluator (h@mecEvaluator) is obtained by calling

a simple command-line evaluation on the files representing the standard alignment
(vibref.owl) and the result of the application of a particular alignment method (here
EditDistName.owl):

$ java -cp lib/procalign.jar fr.inrialpes.exmo.align.util.EvalAlign
-i fr.inrialpes.exmo.align.impl.PRecEvaluator
file://localhost$CWD/aligns/bibref.owl file://localhost$CWD/aligns/EditDistName.ow!

The result is:

<?xml version="1.0' encoding="utf-8' standalone="yes'?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#’
xmins:map="http://www.atl.external.Imco.com/projects/ontology/ResultsOntology.n3#">
<map:output rdf:about=">
<map:precision>0.6976744186046512</map:precision>
<map:recall>0.9375</map:recall>
<fallout>0.3023255813953488</fallout>
<map:fMeasure>0.8000000000000002</map:fMeasure>
<map:oMeasure>0.53125</map:oMeasure>
<result>1.34375</result>
</map:output>
</rdf:RDF>

As can be noted, we uses the format developed at LocKhedended with a few
attributes, but any other format could have been generated.
We have used these comparisons for providing the figures of Table 2.

“http:/iwww.atl.external.Imco.com/projects/ontology/

9 CONCLUSION 15

substring| substring substring
egstring| editdist | substring| property property property
threshold=.4| threshold=.7

Correct 10 30 31 31 31 30
Total 10 43 43 43 38 31
Precision 1. .70 72 72 .82 .97
Recall 31 .94 .97 .97 .97 .94
Weighted 48 .63 71 .70 .75 .82

Table 2: Performance measure for the algorithms presented in 85 with the ontologies
presented in 84 (the reference alignment has 32 correspondences).

9 Conclusion

In order to exchange and evaluate results of alignment algorithms, we have provided
an alignment format. A Java API has been proposed for this format and a default
implementation been described. We have shown how to integrate new alignment algo-
rithms, composing algorithms, generating transformations and axioms and comparing
alignments.

This API and its implementation could fairly easily be adapted to other representa-
tion languages than OWL. In particular, if there were some ontology API that would be
a better basis for the implementation than the OWL API. It is unlikely that this format
and API will satisfy all needs, but there is no reason that it could not be improved.

To our knowledge, there is no similar API. There are some attempts at defining on-
tology alignment or ontology mapping either very close to a particulaf@smchiglia
and Shvaiko, 2003; Rahm and Bernstein, 400rinstead a very abstract definition
which is neither immediately implementable nor shardbiadhavanet al., 1999.

This was the analysis dNoy and Musen, 2042 which leads to the conclusion that

the alignment algorithms are not comparable and that their results are different. So,
there would be no alignment format. Contrary to this, our position is that it is better
to define a general as possible ontology alignment challenge and that we use it, not
for identifying the best tool, but for characterising strengths and weaknesses of these
algorithms. Moreover, the advantage of having an alignment format that can generate
—nearly for free — transformation, axioms and merged ontology, should be an incentive
for algorithm developer to generate such format.

The closest works we know are the RDFT and MAFRA systems. The main goal
of RDFT is to represents mapping that can be executed and imported in a transforma-
tion proces§Omelayenko, 2002 The mappings correspond to sets of pairs between
simple entities (RDFS classes and properties) with a qualification of the relation hold-
ing. The ontology is expressed in DAML+OIL. Surprisingly, if the correspondences
are generated by Bayes techniques no strength is retained. This format is aimed at
using the mapping but no hints are given for adding alignment algorithms or extend-
ing the format. MAFRA provides an explicit notion of semantic bridge modelled in a
DAML+OIL ontology [Madcheet al,, 2004. The MAFRA Semantic bridges share a

REFERENCES 16

lot with the mapping format presented here: they can be produced, serialised, manipu-
lated and communicated through the web. Moreover, the semantic bridges are relatively
independent from the mapped languages (though they can map only classes, attributes
and relations). They have, however, been built for being used with the MAFRA sys-
tem, not to be open to external uses, so the classes of the ontology are rather fixed and
cannot easily extended towards new relations or new kinds of mappings. This format
is also tailored to the processing architecture used (with non declarative primitives in
the transformations).

All the software and the examples presented here are available to evérybine
sources of the API and its implementation are available through anonymous CVS
server. Readers are invited to use it and report any need that is not covered by the
current state of the API.

Acknowledgements

This work has been partly supported by the European Knowledge Web network of
excellence (IST-2004-507482). It had benefited from discussions with Petko Valtchey,
Paolo Bouquet and Sergio Tessaris. The author thanks the OWL API developers for
their great work.

References

[Bechhoferet al, 2003 Sean Bechhofer, Rapahel Voltz, and Phillip Lord. Cooking
the semantic web with the OWL API. IRroc. 2nd International Semantic Web
Conference (ISWC), Sanibel Island (FL US)03.

[Calvaneset al., 200J Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenz-
erini. A framework for ontology integration. In Isabel Cruz, Stefan Decker, Jérome
Euzenat, and Deborah McGuinness, editdise emerging semantic wepages
201-214. 10S Press, Amsterdam (NL), 2002.

[Doetal, 2004 Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of
schema matching evaluations. Fnoc. GI-Workshop "Web and Databases", Erfurt
(DE), 2002. http://dol.uni-leipzig.de/pub/2002-28.

[Euzenat, 2008 Jérome Euzenat. Towards composing and benchmarking ontology
alignments. InProc. ISWC-2003 workshop on semantic information integration,
Sanibel Island (FL US)ages 165-166, 2003.

[Giunchiglia and Shvaiko, 2003Fausto Giunchiglia and Pavel Shvaiko. Semantic
matching. InProc. IJCAl 2003 Workshop on ontologies and distributed systems,
Acapulco (MX) pages 139-146, 2003.

Shittp://ico4.inrialpes.fr/align

REFERENCES 17

[Horrockset al, 2003 lan Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. SWRL: a semantic web rule language combining
OWL and RuleML, 2003. www.daml.org/2003/11/swrl/.

[Madhavaret al, 1999 Jayant Madhavan, Philip Bernstein, Pedro Domingos, and
Alon Halevy. Representing and reasoning about mappings between domain models.
In Proc. 18th National Conference on Artificial Intelligence (AAAI 2002), Edmonton
(CA), pages 122-133, 1998. http://citeseer.nj.nec.com/milo98using.html.

[Madcheet al., 2009 Alexander Madche, Boris Motik, Nuno Silva, and Raphael Volz.
MAFRA — a mapping framework for distributed ontologies. Rroc. ECAI work-
shop on Knowledge Transformation for the Semantic web, Lyon (&Res 60—68,
2002.

[Noy and Musen, 20J2Natasha Noy and Mark Musen. Evaluating ontology-mapping
tools: requirements and experience.Pimc. 1st workshop on Evaluation of Ontol-
ogy Tools (EON2002), EKAW’'02002.

[Omelayenko, 2002Borys Omelayenko. Integrating vocabularies: discovering and
representing vocabulary maps.Proc. 1st International Semantic Web Conference
(ISWC-2002), Chia Laguna (ITpages 206—220, 2002.

[Rahm and Bernstein, 20DErhard Rahm and Philip Bernstein. A survey of ap-
proaches to automatic schema matchivigDB Journal 10(4):334-350, 2001.

