——

SEVENTH FRAMEWORK
PROGRAMME

SEALS

Semantic Evaluation at Large Scale

FP7 — 238975

D12.5 Iterative implementation of
services for the automatic
evaluation of matching tools -

v2.0-FR

Coordinator: José Luis Aguirre Cervantes
With contributions from: Christian Meilicke, Jérome Euzenat
Quality Controller: Heiner Stuckenschmidt
Quality Assurance Coordinator: Rail Garcia Castro

Document Identifier: SEALS/2010/D12.5/Vv2.0-FR

Class Deliverable: SEALS EU-IST-2009-238975
Version: v2.0-FR

Date: June 5, 2012

State: final

Distribution: public

FP7 — 238975
Deliverable 12.5

EXECUTIVE SUMMARY

The aim of this deliverable is to report on the work that has been done in the last
phase of task 12.5: iterative implementation of services for automatic evaluation of
matching tools, and on the final status of those services. Since the previous iteration,
reported in [12], we have been working on the following main tasks:

e cxtending the previous BPEL workflows in order to integrate the new custom
services and fault handlers (§2));

e experimenting with the new release of SEALS RES environment (RES 1.2) (§3);

e defining suite metadata transformations for raw results and interpretations using
SPARQL queries to be compliant with new SEALS ontologies specifications (;

e working with SEDL development team to adapt our SEALS Evaluation De-
scription Document to the new version of the SEALS Evaluation Description
Language (§9));

e extensions of the SEALS client for ontology matching evaluation (§6).

The first four tasks concern integration with the SEALS technology, while the
last task concerns WP12 specific services that have been extended to advance the
automation of evaluation campaigns and to sustain the OAEI 2011.5 campaign.

Regarding integration with the SEALS technology, our focus was on extending
previous implementations of the WP12 services to conform with new versions/require-
ments of SEALS presented during the meeting held in Grenoble, France on February
2012. This comprehends a new distribution of RES (RES 1.2) and directives to trans-
form the metadata of raw and interpretation results to a format compliant with new
specifications of SEALS ontologies.

The new functionality and improvements introduced in the RES 1.2 version were
added to our BPEL work-flow. This includes the use of fine-grained facilities for tool
execution time and memory consumption measurements, and the standardization of
Core Tool Services fault handling. The modified work-flows have been successfully
tested with the RES 1.2 distribution, both on a local installation and on the SEALS
Platform. These tests confirmed that significant differences arose when comparing the
results obtained against results obtained using a runtime measurement custom service
implementation present in previous versions.

SPARQL queries have been written to transform legacy metadata generated for raw
results and interpretations in order to be compliant with the new SEALS ontologies
specifications. This shows that even if the ontologies evolve, the legacy data can still
be accessed and visualized using these or new transformations.

The SEALS client for ontology matching evaluation has been extended in two ways.
First, a specific parameter setting is now possible to use the client to store the results
in the Results Repository. Second, a flexible parameterization was introduced allowing
the manipulation of the client through a command line interface where the users can
specify the URL of a test repository, the ID of a test suite as well as the ID of a specific

2of

FP7 — 238975
Deliverable 12.5

version of that test suite. The SEALS client was extensively used for supporting the
third SEALS ontology matching evaluation campaign.

Finally, this document reports on the whole set of software pieces that have been
developed inside WP12 to support the automatic evaluation of matching tools.

30f

FP7 — 238975
Deliverable 12.5

DOCUMENT INFORMATION

IST Project FP7 - 238975 Acronym SEALS
Number
Full Title Semantic Evaluation at Large Scale

Project URL

http://www.seals-project.eu/

Document URL

EU Project Officer

Carmela Asero

. . Tterative implementation of services for the au-
Deliverable Number [12.5 | Title tomatic evaluation of matching tools - v2.0-FR
Work Package Number |12 Title |Matching Tools
Date of Delivery Contractual Ma37 Actual 30-06-2012
Status v2.0-FR final X

Nature

prototype X report [J dissemination [

Dissemination level

public (I consortium X

Authors (Partner)

José Luis Aguirre Cervantes (INRIA), Christian Meilicke (University
Mannheim), Jéréme Euzenat (INRIA)

Resp. Author

Name |José Luis Aguirre|E-mail | Jose-Luis.AguirreQinria.fr
Cervantes
Partner |INRIA Phone | +33 (476) 615 476

Abstract
(for dissemination)

This deliverable reports on the current status of the service implementa-
tion for the automatic evaluation of matching tools, and on the final sta-
tus of those services. These services have been used in the third SEALS
evaluation of matching systems, held in Spring 2012 in coordination with
the OAEI 2011.5 campaign. We worked mainly on the tasks of modifying
the WP12 BPEL work-flow to introduce new features introduced in the
RES 1.2 version; testing the modified work-flows on a local installation
and on the SEALS Platform; writing transformations of result data to
be compliant with the new SEALS ontologies specifications; and finally,
extending the SEALS client for ontology matching evaluation for better
supporting the automation of WP12 evaluation campaigns and to ad-
vance in the integration with SEALS repositories. We report the results
obtained while accomplishing these tasks.

Keywords

ontology matching, ontology alignment, evaluation, benchmarks, effi-
ciency measure

4of

FP7 — 238975
Deliverable 12.5

Version Log

Issue Date Rev No. | Author Change

23/04/2012 1 José Luis Aguirre |Set up structure deliverable.
18/05/2012 2 José Luis Aguirre | Wrote chapter introduction
21/05/2012 3 José Luis Aguirre | Wrote chapter BPEL

22/05/2012 4 José Luis Aguirre | Wrote chapters RES, SPARQL
23/05/2012 5 José Luis Aguirre | Wrote chapter SEDL

25/05/2012 6 Christian Meilicke | Wrote chapter on client
25/05/2012 7 José Luis Aguirre | Wrote executive summary and introduction
25/05/2012 8 José Luis Aguirre | Wrote conclusion chapter
30/05/2012 9 José Luis Aguirre | Addressed comments of QC
30/05/2012 10 Christian Meilicke | Final revision

31/05/2012 11 José Luis Aguirre | Addressed comments of QAC
01/06/2012 12 Christian Meilicke | Addressed final comment of QAC

5of

FP7 — 238975
Deliverable 12.5

PRrROJECT CONSORTIUM INFORMATION

Participant’s name

Contact

Universidad Politécnica de Madrid

Asuncién Gémez-Pérez
Email: asun@fi.upm.es

University of Sheffield

Fabio Ciravegna

%‘]gfversity Email: fabio@dcs.shef.ac.uk
o Of
Sheffield.
Forschungszentrum Informatik Rudi Studer
= Email: studer@aifb.uni-karlsruhe.de

University of Innsbruck

n STI- INNSBRUCK

Barry Norton
Email: barry.norton@sti2.at

Institut National de Recherche en Informa-
tique et en Automatique

v d

: informatiques gFmathématiques

Jéréme Euzenat
Email: Jerome.Euzenat@inrialpes.fr

University of Mannheim

" MANNHEIM

Heiner Stuckenschmidt
Email: heiner@informatik.uni-mannheim.de

University of Zurich

Information Systems

Abraham Bernstein
Email: bernstein@ifi.uzh.ch

Open University

The Open University

John Domingue
Email: j.b.domingue@open.ac.uk

Semantic Technology Institute International

m STI- INTERNATIONAL

Alexander Wahler
Email: alexander.wahler@sti2.org

University of Oxford

Tan Horrocks
Email: ian.horrocks@comlab.oxford.ac.uk

60f

FP7 — 238975
Deliverable 12.5

TABLE OF CONTENTS

(LIST OF FIGURES| 8
I__INTRODUCTION] 9
2 UpDATING BPHE], EVALUATION TO RIS 1.2 DISTRIBUTION 10
2.1 Runtime measurement functionality| 10
(2.2 Standardization of Core Tool Service faults| 14
2.3 Comments on the use of new tunctionalityl 16
(3 FEXPERIMENTING WITH THE RIS 1.2 ENVIRONMENT] 17
[3.1 Testing the RES 1.2 distribution on a local installation] 17
[3.2 Testing the RES 1.2 distribution on the SEALS Platform| 17

[ING TOOLS 24
(8 FINAL REMARKS! 25
[REFERENCES 26
[A° SPARQL QUERIES FOR TRANSFORMATION OF RAW RESULTS AND INTERPRE- |
[___TATIONS METADATA| 29

[A.1 Transformation of Raw Resultsl 29

[A.2 'Transformation of Interpretations| 30
(B_SEDIL DOCUMENT] 33

7of

FP7 — 238975
Deliverable 12.5

LisT OF FIGURES

2.1 WPI12 BPEL workflow) oo 11
2.2 Tteration over a test suitel L. 11
[2.3 Iteration over a test suite without timestamp external service| 12
[2.4 Exception handling for the alignment step in previous version.| 15
[2.5 Exception handling for alignment after standardization of Core Service

Faults.|

80f

FP7 — 238975
Deliverable 12.5

1. Introduction

Last versions of deliverable D12.5 were focused, on the one hand, on the integration of
Work Package 12 developments (WP12) with SEALS components previously released,
including Runtime Evaluation Service 1.1.x distributions (RES) and Test Data and
Results Repositories (TDRS and RRS respectively). On the other hand, D12.5 deliv-
erables were also focused on WP12 specific services needed to run the first and second
SEALS ontology matching campaigns (OAEI 2010 and OAEI 2011). Those works have
been reported in [12], [13] and [I0]. This version focuses on the same subjects.

Regarding integration with SEALS, during the last stage of the project our fo-
cus was on extending previous implementations of WP12 services to conform with
new versions/requirements of SEALS presented during the meeting held in Grenoble,
France on February 2012. This comprehends a new distribution of RES (RES 1.2)
and directives to transform the metadata of raw and interpretation results to a for-
mat compliant with new specifications of SEALS ontologies, and that will be used to
uniformize the way these data will be visualized through the SEALS portal.

WP12 specific services have been also extended to advance the automation of
evaluation campaigns and to sustain the OAEI 2011.5 campaign, which was composed
of 5 tracks with several tools evaluated over various test suites [9]. As it was stated
in one of previous deliverables [10], BPEL evaluation work-flows compliant with the
SEALS guidelines do not support iteration over tools and test suites. For this reason
we considered to run just parts of the campaign using BPEL work-flows running on
the SEALS infrastructure. The fall-back strategy followed in OAEI 2011 campaign
has been retaken and used with an extended version of the client that was originally
designed to support tool developers in testing their tools locally.

In this deliverable, we report first in §2on the modifications of WP12 BPEL evalu-
ation description work-flow for use of new features and improvements included in RES
1.2 distribution. These new features are fine-grained facilities for tool execution time
and memory consumption measurements. Also, catching of exceptions was modified
for standardize the handling of Core Tool Services faults. In §3| we report on our
experiments installing and testing RES 1.2 in local mode, and testing our work-flows
on the SEALS Platform. We present in §4] the work done inside WP12 to deal with
transformation of raw results and interpretations through SPARQL queries in order to
be compliant with new SEALS ontologies specifications. To conclude with the subject
of SEALS integration, we deal in §5| with the adaptations of WP12 Seals Evaluation
Description Language (SEDL) bundle to the last version released of SEDL [2]. Then
we report in §6| on the client extensions done to support the third SEALS ontology
matching campaign (OAEI 2011.5). We present in §7| the final status of the services
implemented inside WP12 for the automatic evaluation of matching tools, and we end
in with some conclusions reflecting the experiences we got in the effort of mak-
ing our evaluation descriptions work on SEALS infrastructure and the most relevant
learning we had running the third evaluation campaign for ontology matching tools.

9of

FP7 — 238975
Deliverable 12.5

2. Updating BPEL evaluation to RES 1.2 distribution

The RES 1.2 distribution was introduced during the SEALS meeting held in Grenoble,
France from February 6th to February 9th 2012. RES 1.2 added features to the last
version RES 1.1.1, such as the support of fine-grained tool execution time measure-
ment, the support of memory consumption measurement for a given tool execution,
and the support of custom tools. Some improvements with respect to RES 1.1.1 were
also presented. Those improvements have to do with the standardization of Core
Tool Services faults handling, and the recovering of identifiers generated for raw re-
sults and interpretations, as this information was not included in the response of the
addRawResult and addInterpretations services in RES 1.1.1.

Even if previous versions of BPEL evaluations developed for RES 1.1.1 can run
with no modifications on RES 1.2, one of our goals was to modify our evaluation
description to take advantage of features/improvements presented within the new dis-
tribution. From features and improvements listed above we worked only on the runtime
and memory consumption measurements, and on the standardization of SEALS fault
handling. Regarding the recovering of raw results’ and interpretations’ identifiers, for
WP12 this information is directly passed as parameters via the SoapUI project, so we
did not need to modify our work-flow neither our metadata generation custom service
implementation. Next sub-sections detail the tasks that we had to do in order to
achieve that goal.

Before this, it is worth to remember the general functioning of our BPEL work-flow,
whose general structure is shown in Figure 2.1} After some initialization steps, the
while step, whose details are hidden in the figure, iterates a tool over a test suite. After
the iteration, results are processed and sent to SEALS Results Repository. Figure
shows the details of the iteration, where an alignment invocation consists in fact on a
two-step process. First the message sent to the alignment request mut be populated
with parameter data (setParamsAlign step); then the alignment process is invoked
(align step).

2.1 Runtime measurement functionality

Deliverable [10] reported on significant variations on runtime measurements of tools
when using the BPEL evaluation work-flow with respect to similar executions using
our client version. The reason was due to the fact that runtime measurement with
BPEL needed the invocation of an external timestamp service which revealed very
time consuming. Taking this into consideration, RES 1.2 offers the possibility to ask
for runtime measurement, and also memory consumption, each time a tool is executed.

For introducing the runtime and memory consumption measurement, we modified
our BPEL file as indicated during the Grenoble meeting, and we deleted all code
having to do with our ancient runtime measurement custom service implementation.
All this implied:

e To suppress all variables and links used by the custom service.
e To delete from the iteration part of our work-flow, shown in Figure all the
steps needed to set and invoke the external timestamp custom service. Fig-

10 of

FP7 — 238975
Deliverable 12.5

@] receivelnput
= setHeaderForlnvocations

& cleanBundleResults

=

= setParamsInitRRSuiteMetadata
& initRRSuiteMetadata

= setParamsinitiRSuiteMetadata
& initIRSuiteMetadata

= setParamsToLoadTestSuite

& loadTestSuite

@ While
=]
& hasNextTestCase
% Sequence
=
@ While
@ & nextTestCase

= setParamsGetRRSuiteMetadata & setParamsGetOntosRefAlign

. & getOntoSource
& getRRSuiteMetadata g
& getOntoTarget
= assignMetadataRRComposer
& getRefalign
& addMetadataRRComposer & =
% Sequence
& createBundleRR o
= setParamsTimestamp
= setParamsStoreRawResults
= setParamsAlign
& addRawResults

& getTimestampBefore
= setParamsGetlIRSuiteMetadata

= setTimestampBefore
& getlRSuiteMetadata & align™

. tTimestampAft
& cleanIRSuiteMetadata & getTimestampafter

= setTimestampAfter
& cleanBundlelR

= setParamsPRF
= assignMedatadalRComposer

& getPRF L]
& addIRMetadataComposer

= assignDataltemComposer

<9 createBundlelR & addDataltemComposer

. = setParamsAddRRDataltemMetadata
= setParamsstorelnterpretations

& addRRDataltemMetadata
& addinterpretation

= setParamsAddIRDataltemMetadata
= setCompletedOutput

& addIRDataltemMetadata

. =

& callbackClient i
= & hasNextTestCase

@ B

=

Figure 2.1: WP12 BPEL workflow. Figure 2.2: Iteration over a test suite.

11 of

FP7 — 238975
Deliverable 12.5

ure [2.3| shows the resulting iteration, where several steps have been deleted:
setParamsTimestamp, getTimestampBefore and setTimestampBefore before
the align step; getTimestampAfter, setTimestampAfter after the align step.

@ While
 Sequence

& nextTestCase

= setParamsGetOntosRefAlign
& getOntoSource
& getOntoTarget

& getRefAlign

E:3

= Sequence

= setParamsAlign
& align ©
= setParamsPRF
& getPRF X
= assignDatalterComposer
& addDataltemComposer
= setParamsAddRRDataltemMetadata
& addRRDatalternMetadata
= setParamsAddIRDataltemMetadata

& addIRDataltemMetadata

& hasNextTestCase

Figure 2.3: Iteration over a test suite without timestamp external service.

e To modify the reference of the ontology matching tools namespace to its new
value in the files referring to it (BPEL and deployment files).

12 of

FP7 — 238975
Deliverable 12.5

e To populate the tool-header part added to the message sent to the alignment
request by including in the setParamsAlign step the assignment provided for
that:

<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">
<tools-schema:ToolHeader >
<tools-schema:toolId>any-id</tools-schema:toolId>
<tools-schema:options>
<tools-schema:measure-time>true</tools-schema:measure-
time>
<tools-schema:measure-memory>
<tools-schema:frequency>1000</tools-schema: frequency
>
<tools-schema:unit>B</tools-schema:unit>
</tools-schema:measure -memory >
</tools-schema:options>
</tools-schema:ToolHeader >
</bpel:literal>
</bpel:from>
<bpel:to part="toolHeader" variable="AlignRequest"> </bpel:to>
</bpel:copy>

where the AlignRequest variable contains the message that will be passed to
the align procedure.

e To recover and process the response after the alignment invocation. As runtime
is one of the criteria added for interpretations in the same manner like precision,
recall and F-measure, this is done before calling the service that adds those meta-
data (addIRDataltemMetadata), inside the setParamsAddIRDataltemMetadata
step where the message AddIRMetadataRequest is populated:

<bpel:copy>
<bpel:from>
<! [CDATA[$AlignResponse.toolHeaderResponse//*[local -name ()="
ellapsed’] div 1000]1>
</bpel:from>
<bpel:to part="payload" variable="AddIRMetadataRequest">
<bpel:query querylLanguage="urn:oasis:names:tc:wsbpel:2.0:
sublang:xpathl.0">
<! [CDATA[gen-types:runtime]]>
</bpel:query>
</bpel:to>
</bpel:copy>

13 of

FP7 — 238975
Deliverable 12.5

2.2 Standardization of Core Tool Service faults

A result obtained during the execution of an evaluation is the number of problems
detected. This information comes in terms of variables incremented each time an
exception is caught. Exception catching in RES 1.1.1 was done through a fault type
specific to each work package (ontology matching tools, ontology engineering tools and
so on). This was redundant as three types of faults are detected independently of the
type of tool: platform, tool and bridge faults. Besides, this implied that each time
an exception was caught, we must include conditions to identify what was the cause
of the problem. Figure [2.4] shows how this was accomplished for exceptions thrown
during the alignment invocation. The code behind the steps shown in the figure is:

<bpel:catch faultName="omt:SEALSFault" faultVariable="Fault"
faultMessageType="omt:SEALSFault">
<bpel:sequence>
<bpel:if>
<bpel:condition><![CDATA[boolean ($Fault.payload//*[local -name ()
=’ToolBridgeFault ’])]]></bpel:condition>
<bpel:sequence name="CatchToolBridgeFault">
<bpel:assign validate="no" name="increaseNumToolBridgeFaults">
<bpel:copy>
<bpel:from><![CDATA[$NumToolBridgeFaults+1]]></bpel:from>
<bpel:to variable="NumToolBridgeFaults"/>
</bpel:copy>
</bpel:assign>
</bpel:sequence>
<bpel:elseif>
<bpel:condition><![CDATA [boolean ($Fault.payload//*[local -name
()="ToolFault’])]]1></bpel:condition>
<bpel:sequence name="CatchToolFault">
<bpel:assign validate="no" name="increaseNumToolFaults">
<bpel:copy>
<bpel:from><![CDATA[$NumToolFaults+1]]></bpel:from>
<bpel:to variable="NumToolFaults"/>
</bpel:copy>
</bpel:assign>
</bpel:sequence>
</bpel:elseif >
</bpel:if>
<bpel:rethrow/>
</bpel:sequence>
</bpel:catch>

One of the improvements in RES 1.2 is the standardization of Core Service Faults
handling. Platform faults are now separated from tool and bridge faults, giving
three types of SEALS faults defined like UnexpectedPlatformFault, ToolFault and
ToolBridgeFault. To introduce the new way of handling SEALS faults, we modi-
fied the namespaces pointing to new fault types and the catching of exceptions where
needed. Figure shows exception handling for the alignment invocation. The re-
sulting code is:

14 of

FP7 — 238975
Deliverable 12.5

<bpel:catch faultName="tools-service:ToolBridgeFault" faultVariable="
ToolBridgeFault" faultMessageType="tools-service:ToolBridgeFault">
<bpel:sequence>
<bpel:assign name="increaseNumToolBridgeFaults">
<bpel:copy>
<bpel:from><bpel:literal xml:space="preserve">true</bpel:
literal></bpel:from>
<bpel:to variable="haveToolFault"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from><![CDATA[$NumToolBridgeFaults+1]]></bpel:from>
<bpel:to variable="NumToolBridgeFaults"/>
</bpel:copy>
</bpel:assign>
<bpel:rethrow/>
</bpel:sequence>
</bpel:catch>
<bpel:catch faultName="tools-service:ToolFault" faultVariable="
ToolFault" faultMessageType="tools-service:ToolFault">
<bpel:sequence>
<bpel:assign name="increaseNumToolFaults">
<bpel:copy>
<bpel:from><bpel:literal xml:space="preserve">true</bpel:
literal></bpel:from>
<bpel:to variable="haveToolFault"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from><![CDATA[$NumToolFaults+1]]></bpel:from>
<bpel:to variable="NumToolFaults"/>
</bpel:copy>
</bpel:assign>
<bpel:rethrow/>
</bpel:sequence>
</bpel:catch>

The full BPEL code for the last version of WP12 evaluation can be found at https:
//svn.seals-project.eu/seals/deliverables/D12.5/M37/software/evals.

!
&align™

SEALSFault

£ Sequence
®If
If Else If

= CatchToolBridgeFault CatchToolFault

= increaseNumToolBridgeFaults = increaseNumToolFaults

12 Rethrow

Figure 2.4: Exception handling for the alignment step in previous version.

15 of

https://svn.seals-project.eu/seals/deliverables/D12.5/M37/software/evals
https://svn.seals-project.eu/seals/deliverables/D12.5/M37/software/evals

FP7 — 238975
Deliverable 12.5

& ahgné P

ToolBridgeFault ToolFault

= Sequence = Sequence

= increaseNumToolBridgeFaults = increaseNumToolFaults

13 Rethrow 1% Rethrow

Figure 2.5: Exception handling for alignment after standardization of Core Service
Faults.

2.3 Comments on the use of new functionality

The xsd type definition files describing how a request to invoke a tool must be pop-
ulated specify that asking for runtime and/or memory consumption measurement is
optional. However, we observed that if both of them are not included in the request,
an exception is thrown.

An interesting fact was that our tests confirmed that runtime measurements are
more fine grained that those we got when using the custom service implementation.
Results obtained were more realistic diminishing in a 30-40% percent measurements
obtained with custom service implementation.

16 of

FP7 — 238975
Deliverable 12.5

3. Experimenting with the RES 1.2 environment

During the Grenoble meeting it was announced that RES 1.2 will be available on the
SEALS Platform by the end of February. As the packages to install the RES 1.2
distribution were already available, we decided to test it first on a local installation
to prepare our experiments on the SEALS Platform. We present in this chapter some
reflections about these experiments.

3.1 Testing the RES 1.2 distribution on a local installation

The local installation of RES 1.2 is accomplished in the same manner than that of
RES 1.1.1. It is long and tedious but easily done following the instructions contained
in [6]. We proceeded successfully with this task, and we confirmed first that RES 1.1.1
evaluation descriptions could be run with no problem under the new distribution. We
take advantage of this installation to test also the requirement stated in [6] for wrapping
tools. A Python script was written to automate tool re-wrapping, liberating developers
to re-compile their code in order to produce the new bridge tool implementation asked
by RES. We observed however that tool re-wrapping is not necessary when running
RES on a local installation, but it is an important issue as it is needed to execute tools
on the SEALS Platform. Once we modify our BPEL work-flow as explained in §2] we
also proceed to test it successfully with various tools.

3.2 Testing the RES 1.2 distribution on the SEALS Platform

The RES 1.2 distribution was released on the SEALS Platform on February 22th. As
various differences were introduced in the way RES Worker instances are managed, we
tried first to test evaluation versions for RES 1.1.1. In RES 1.2, the life cycle of RES
Worker instances is controlled with a DOS command enabling four operations: stop,
clean, start and deploy. We had several problems at the beginning due to the fact
that the only documentation available to understand the effects of those operations is
a one page diapositive in a hands-on session document.

The biggest problem is that before an evaluation execution, RES worker instances
need to be stopped because one needs to inform the RES Worker of the location of the
currently deployed tool that will be used for that evaluation. This is done manually
by modifying the worker configuration file. Once the configuration file is set, the RES
Worker instance can be restarted. However when we executed the SoapUI project
to trigger the evaluation, the worker instance was never recognized. We searched for
an explanation in the log files, but as they are very huge and contain a lot of non
understandable information, we executed the clean operation to re-create them. We
did this without knowing that the effect of this operation is also to undeploy the RES
packages needed to run a RES Worker instance, so that was the reason the instance was
never recognized. After several exchanges with people in charge of RES development,
we finally knew that we needed to redeploy the instance.

17 of

FP7 — 238975
Deliverable 12.5

At the end we could run and test our BPEL work-flow successfully; as we said
before, in this context we need to use re-wrapped tools in order to make the resultant
alignments available through the File publisher.

At one time we considered the possibility to run part of the evaluation campaign
using the BPEL work-flow. However as it was also stated in previous deliverables,
BPEL work-flows are unable to iterate over tools and test suites. In current condi-
tions, we have to do a lot of manual work to run an evaluation campaign, and this
represented a problem for us, as around 15 tools participated in each track of the
ontology matching campaign, and several test suites were tried for each tool [9]. To
support that affirmation, we present below the steps needed to iterate over tools and
test suites on the SEALS Platform (all of them are manual). Before this, we recall
that tool interfaces are encapsulated in a ZIP file with the following structure:

bin/
lib/
demomatcher. jar

other jars/folders
demomatcher -bridge. jar
deploy.bat (or *.sh on linux)
start.bat
stop.bat
undeploy.bat
conf/

lib/

descriptor.xml

where the folder bin/1ib/ contains all required libraries for executing the tool,
while the folders conf/ and 1lib/ contain configuration and distribution resources
required by the tool at runtime, for example word dictionaries, background knowledge
and so on.

Now, to iterate over tools and test suites we would need to proceed like follows:

1. Stop and clean RES Worker instance.

2. Modify the RES Worker configuration file to indicate the location of the currently
deployed tool.

3. Deploy the tool if needed (install the conf and lib folders containing any resource
needed by the tool to be executed).

4. Start and deploy RES Worker instance.
5. Start SoapUI if it is not started.

6. Edit SoapUI project to indicate which is the test suite that will be used and to
assign identifiers to Raw Results and Interpretations.

18 of

FP7 — 238975
Deliverable 12.5

7. Run SoapUI project.

Steps 6 and 7 must be repeated to iterate over test suites, and all the steps must
be repeated to iterate over tools. Cleaning the RES worker is not really necessary but
it is better to do it to be sure that RES Worker instances will be correctly identified.

Considering all the manual work needed to implement the iterations, we decided
not to use BPEL evaluations for running the OAEI 2011.5 campaign. Instead, we use
extensively the client version already introduced in other deliverables. We comment
on extensions done to this version in g6

Nevertheless, we conducted several short tests with tools that do not need step 3
of the iteration to be performed. The tools for which we ran BPEL work-flows on the
SEALS Platform are Aroma [5], LogMapLt which is a light version of LogMap [7],
MapSSS [4], MapEVO [8] and MapPSO [3], and the results of these tests were stored
in the SEALS Results Repository. These results can be accessed via the identi-
fiers OMT-2011.5-biblio-SEALSbenchmarks-YSYSTEM),-rr, which refers to the unin-
terpreted raw results, and OMT-2011.5-biblio-SEALSbenchmarks-%SYSTEM)-ir for
interpretations where %SYSTEM/, must be replaced by the name of a tool.

19 of

FP7 — 238975
Deliverable 12.5

4. Metadata transformation of WP12 raw results and interpre-
tations

SEALS ontologies are used in the SEALS Platform for representing the resources
managed by it, including evaluation descriptions, test data, results, etc. Data stored
in the SEALS Result Repository concerns both raw results (i.e., alignments in WP12)
and interpretations of these results (i.e., precision and recall measurement). All those
data is described in a metadata format according to SEALS ontologies definitions®.
One functionality to be added to the SEALS portal is visualization of those data.

SEALS suite ontologies have evolved over the duration of the project, and several
updates have been done for describing raw results and interpretations in a generic way.
Previous versions of the BPEL workflow generated descriptions which are not com-
pletely compliant with new SEALS ontologies and just a few work packages integrated
already the new ontologies in their metadata results. Then, the problem of what to
do with legacy data arose during the Grenoble meeting.

The proposed solution consists in writing some code to transform raw results and
interpretations described with the old ontologies to the new ones, which permits on
the one hand the visualization of old and new data, and avoids on the other hand
rewriting the code that some work packages (including WP12) are currently using for
metadata generation. In this way, results of the transformation will be compliant with
new ontologies, in order to be processed for visualization purposes through the SEALS
portal.

Based on examples put on the SEALS wiki by Rail Garcia Castro, we wrote two
SPARQL queries to transform WP12 raw results and interpretations. The content of
these queries can be consulted in Appendix [A]

1See definitions in http://www.seals-project.eu/wiki/index.php/Ontologies.

20 of

http://www.seals-project.eu/wiki/index.php/Ontologies

FP7 — 238975
Deliverable 12.5

5. New version of SEDL bundle

As reported in [13], an Evaluation Description Document specified in the SEALS Eval-
uation Description Language (SEDL) defines all required resources and dependencies
among them for carrying out an evaluation in the SEALS Platform [1]. It comprises an
Execution Contract, a WS-BPEL 2.0 workflow, custom services that are invoked from
within the workflow, as well as ontologies that define categories used in the Execution
Contract. The last one describes the conditions that need to hold for tools, test suites,
and results that can be processed by the evaluation workflow. Those resources are
bundled in a ZIP file that must be stored into the Evaluation Description repository
(EDRS).

A new version of SEDL being released by January 2012 [2], our previous SEDL
bundle had to suffer minor modifications. The SEALS team in charge of SEDL specifi-
cation and implementation achieved the modifications resulting in the following struc-
ture:

ed-omt-test-sedl/
evaluation.sedl.xml
resources/
bpel/
EvaluationWP12.bpel
impl/
ed-omt -resources -1.0.0-SNAPSHOT -jar-with-dependencies.
jar
ontologies/
0MTOntology.owl
wsdl/
metadataGen.wsdl
prf.wsdl

Listing 5.1: EDRS bundle structure

The SEDL document evaluation.sedl.xml can be found in Appendix [B] We
observed no big differences between the two versions, the only one being the use of the
jar file ed-omt-resources-1.0.0-SNAPSHOT-jar-with-dependencies. jar instead of
ed-omt-resources-1.0.0-SNAPSHOT. jar

At the time this deliverable is written, the SEALS platform does not seem able to
run evaluations stored in the EDRS.

21 of

FP7 — 238975
Deliverable 12.5

6. Extensions for running WP12 campaigns

As already explained, we have executed the majority of our evaluations in OAEI 2011.5
with the help of the SEALS client for ontology matching. This client has first been
mentioned in deliverable D12.5-v2.0-beta [10], where we also report about its usage
in the context of OAEI 2011 (the second SEALS evaluation campaign for ontology
matching). The client is available as a single jar file. It can be used via a simple
command line call to execute a complete evaluation run for one tool and one test
suite. The tool needs to wrapped against the SEALS interface and the test suite needs
to be stored in the SEALS Test Data Repository. The evaluation can take place on a
standard laptop or on a powerful server machine. No specific infrastructure is required.

The client can be used for different purposes. Tool developers can use it to test
their systems. They can check whether their tool correctly implements the required
interface. This is a requirement for participating in the campaign. Moreover, they
can directly compute precision and recall scores for the test suites stored in the TDRS
(aside from any specific evaluation campaign). Evaluation campaign organizers can
use it to execute basic evaluation workflows, as long as they follow the simple pattern
that is common to each WP12 workflow (see Figure[2.1]and Figure 2.2)). As explained
on the previous pages, we have encountered several problems in running a complete
campaign on top of the SEALS platform with a BPEL workflow. For that reason we
decided to extend the client to integrate it more tightly with other SEALS components
and to prepare it for future campaigns. In particular, we extended the client in the
following way.

Storage of results The results generated by the usage of the previous version of the
client were stored locally in an proprietary format. They have not been stored
in the SEALS results repository. Meanwhile we have included the component
for storing results and interpretation, which has been developed for usage within
the BPEL workflow. Via a specific parameter setting it is now possible to use
the client to store the results in the Results Repository.

Flexible Parameterization In the previous version of the client we supported to
run three predefined test suites. These have been the test suites of OAI 2011.
However, in OAEI 2011.5, we needed to execute the client on several new test
suites, and the same can be expected to happen in any subsequent campaign.
For that reason we modified the command line interface of the client and allowed
to specify the URL of a test repository, the ID of a test suite as well as the ID
of a specific version of that test suite.

We have also modified and improved the documentation of the client. The client,
as well as its documentation, is available at http://oaei.ontologymatching.org/
2011.5/seals-eval.html. This documentation helped the tool developers to solve
the problem of wrapping their tool against the client on their own. Two or three
developers had problems within this process that could finally be solved with our
support. A list of available test suites (together with an explicit listing of relevant
IDs) can be found at http://oaei.ontologymatching.org/2011.5/suites.html.

292 of

http://oaei.ontologymatching.org/2011.5/seals-eval.html
http://oaei.ontologymatching.org/2011.5/seals-eval.html
http://oaei.ontologymatching.org/2011.5/suites.html

FP7 — 238975
Deliverable 12.5

The client itself supports no functionality to iterate over tools or test suites. How-
ever, it supports a minimal mechanism to deploy the resources required for a tool to
be executed correctly and it can easily be called from an external program. Thus, it is
easy to implement the iteration in a simple script or in a short java program. This was
the pragmatic approach that we have finally chosen to run most of our evaluations.
Note also that we executed a large deal of our evaluation runs on the SEALS virtu-
alization infrastructure, i.e., on virtual machines running on SEALS server machines.
This was possible due to the flexibility of the client-based approach.

23 of

FP7 — 238975
Deliverable 12.5

7. Final status of services for the automatic evaluation of match-
ing tools

Three objectives were established in the document SEALS Description of Work (DOW)
for WP12. One of them makes a clear reference to the technology that had to be de-
veloped to automate evaluations: “developing automated tools that perform all
aspects of evaluation: test generation, benchmark processing, result anal-
ysis, and publishing;”. With regard to this statement we present in the following
the final status of WP12 implementations.

We have implemented a test generator [11], [I3] which has been used to produce the
tests used in two evaluation campaigns. The generator receives as input a reference
ontology and a set of parameters describing the kind of modifications that will be
applied to the reference ontology. It delivers as output a set of modified ontologies
together with the corresponding reference alignments. The modifications can be done
on three dimensions: removing (classes, properties, comments or restrictions), adding
(classes or properties), and renaming (classes or properties).

Several pieces of software have been developed to support benchmark processing in
an automated way. A module allows for uploading complete data sets to the SEALS
Test Data Repository; SEALS metadata compliant with SEALS ontologies is generated
at the same time. A python script allows for downloading executable tools that have
been uploaded and stored by the tool developers in the SEALS tool repository. Also,
we have developed a client for ontology matching evaluation which has been used in
two evaluation campaigns; the client can receive as parameters the location where a
matching tool is deployed, the URL of a test repository, the ID of a test suite as well
as the ID of a specific version of that test suite, and it is able to run the evaluation of
that tool for the data set specified.

We have also produced a BPEL work-flow that can process the evaluation of a
tool with a data set in the RES 1.2 distribution. However, we did not use the SEALS
Evaluation Description Repository because work-flows stored there cannot yet be exe-
cuted. For the reasons explained in this document §2 we can not run a full campaign
via the BPEL work-flows. Instead of that, we wrote a simple Linux shell script as well
as a Java program that iterates the client over tools and data sets.

Finally, related with results analysis and publishing, both the client and the BPEL
work-flow allow for uploading the results of an evaluation to the SEALS Results Repos-
itory. These results data sets are freely available and can be donwloaded by everyone.
We have not developed visualization components as other SEALS partners are working
on this aspect, however, the ontology matching evaluation results stored in the Re-
sults Repository are compliant, through the use of SPARQL queries, with the SEALS
ontologies. This will allow visualization tools to process those results as soon as these
tools are available.

All these pieces of software can be found at https://svn.seals-project.eu/
seals/deliverables/D12.5/M37/softwarel

24 of

https://svn.seals-project.eu/seals/deliverables/D12.5/M37/software
https://svn.seals-project.eu/seals/deliverables/D12.5/M37/software

FP7 — 238975
Deliverable 12.5

8. Final remarks

This deliverable has reported about the work we have done in the last iteration of
task 12.5: iterative implementation of services for automatic evaluation of matching
tools, and on the final status of those services. We worked mainly on the task of
modifying the WP12 BPEL work-flow to take advantage of the new functionality and
improvements introduced in the RES 1.2 version during the SEALS meeting held in
Grenoble on February 2012. The modified work-flows have been successfully tested
both on a local installation and on the SEALS Platform. We worked also on the
task of writing transformations of result data to be compliant with the new SEALS
ontologies specifications. Finally, the SEALS client for ontology matching evaluation,
used extensively in the third SEALS ontology matching campaign , has been extended
for better supporting the automation of WP12 evaluation campaigns and to advance
in the integration with important parts of SEALS technology, like the Tools, Test Data
and Results repositories.

The lessons learned during this iterations can be resumed in the following points:

e Runtime measurement has been added to tools invocation confirming that sig-
nificant differences resulted when comparing the results obtained against results
obtained using a runtime measurement custom service implementation.

e [teration over tools and data sets using the RES environment revealed a big
time consuming task. A lot of manual work has to be done if we want to run a
complete evaluation campaign with this environment. We hope that the release
of the SEALS manager will help to solve this problem for future campaigns.

e Metadata generated for raw results and interpretations has been easily trans-
formed through SPARQL queries to be compliant with the new SEALS ontologies
specifications. It seems then that even though the ontologies continue to evolve,
legacy data for results and interpretations can still be accessed and visualized
using these transformations.

e We have seen that the client-based approach allows us to run a complete cam-
paign in an automated way. The client is both a flexible solution and integrated
with many other components of the platform. However, we cannot use it to
measure, for example, memory consumption.

As we said before, we hope that the release of the SEALS manager will permit to
fully exploit the hardware infrastructure and the software modules developed for the
SEALS project.

From the very beginning of the project we decided to integrate SEALS campaigns
with existing OAEI campaigns. Thus, we had a different starting point compared to
the other research work packages. Our decision was based on the high acceptance of
OAEI in the matching community. In doing so, we could benefit from a high number of
participants and a partially predefined overall procedure. At the same, this resulted in
a number of technical challenges. In particular, we had to use the software developed
within the project from the very beginning in a complex scenario with a high number
of participants that were used to a certain procedure following a tight schedule.

25 of

FP7 — 238975
Deliverable 12.5

Finally, we can draw the conclusion, that the SEALS technology we have introduced
to OAEI in an iterative way — from OAEI 2010 over OAEI 2011 to OAEI 2011.5 - has
been very positively accepted. The main improvements are the reproducibility of
results and the measurement of runtimes and scalability. As a side effect of asking
tool developers to wrap their tools against the interfaces of the SEALS platform,
many tools have become available in a more robust and executable version compared
to the time before OAEI 2011. Overall, we conclude that the technology introduced
by SEALS helped to improve OAEI evaluations significantly.

26 of

FP7 — 238975
Deliverable 12.5

REFERENCES

1]

2]

3]

[10]

[11]

[12]

Juergen Bock, Michael Schneider, and Carlos Moya. Language for describing eval-
uations — v2 (updated working specification). Technical Report D8.2-v2, SEALS
Project, February 2011.

Juergen Bock, Michael Schneider, and Stuart N. Wrigley. Language for describing
evaluations — v3. Technical Report D8.2-v3, SEALS Project, January 2012.

Jurgen Bock and Jan Hettenhausen. Discrete particle swarm optimisation for
ontology alignment. Information Sciences, 192(0):152 — 173, 2012.

M. Cheatham. MapSSS results for OAEI 2011. In Proceedings of the ISWC 2011
Workshop on Ontology Matching, Boston, USA, 2011.

Jérome David. AROMA results for OAEI 2009. In Proceedings of the ISWC 2009
Workshop on Ontology Matching, Washington DC, USA, 2009.

Miguel Esteban Gutiérrez, Matthias Pressnig, and Francisco Martin Recuerda.
[terative evaluation and implementation of the runtime evaluation service. Tech-
nical Report D9.3, V1.1, SEALS Project, October 2011.

Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and
scalable ontology matching. In Lora Aroyo, Chris Welty, Harith Alani, Jamie
Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noy, and Eva Blomqvist, ed-
itors, The Semantic Web ISWC 2011, volume 7031 of Lecture Notes in Computer
Science, pages 273-288. Springer Berlin / Heidelberg, 2011.

Carsten Danschel Jurgen Bock and Matthias Stumpp. MapPSO and MapEVO
results for OAEI 2011. In Proceedings of the ISWC 2011 Workshop on Ontology
Matching, Boston, USA, 2011.

Christian Meilicke, José-Luis Aguirre-Cervantes, Jérome Euzenat, Ondiej Svab
Zamazal, Ernesto Jiménez-Ruiz, lan Horrocksa, and Cassia Trojahn. Results of
the second evaluation of matching tools. Technical Report D12.6, SEALS Project,
May 2012.

Christian Meilicke, Céssia Trojahn, Jérome Euzenat, and Heiner Stuckenschmidt.

Iterative implementation of services for the automatic evaluation of matching
tools. Technical Report D12.5, V2.0-beta, SEALS Project, December 2011.

Maria Rosiou, Céssia Trojahn, and Jérome Euzenat. Ontology matching bench-
marks: generation and evaluation. In Proceedings of the ISWC 2011 Workshop
on Ontology Matching, Bonn, DE, 2011.

Cassia Trojahn, Christian Meilicke, and Jérome Euzenat. Iterative implementa-
tion of services for the automatic evaluation of matching tools. Technical Report
D12.5, V1.0-beta, SEALS Project, March 2011.

27 of

FP7 — 238975
Deliverable 12.5

[13] Céssia Trojahn, Christian Meilicke, and Jérome FEuzenat. Iterative implementa-

tion of services for the automatic evaluation of matching tools. Technical Report
D12.5, V1.0-FR, SEALS Project, July 2011.

28 of

FP7 — 238975
Deliverable 12.5

A. Spargl queries for transformation of raw results and interpre-
tations metadata

This section lists the queries written to transform WP12 metadata formats to new
SEALS ontologies descriptions.

A.1 Transformation of Raw Results

PREFIX rdf:
PREFIX dc:
PREFIX xsd:

v1

<http://www.w3.0rg/1999/02/22-rdf -syntax -ns#>
<http://purl.org/dc/terms/>
<http://www.w3.org/2001/XMLSchema#>

PREFIX sealsvl: <http://www.seals-project.eu/ontologies/SEALSMetadata.owl#>

PREFIX omt:

v2

<http: WWW.seals-project.eu/ontologies valuations.ow >
http:// ls-proj / logies/OMTEval i 1#

PREFIX sealsv2: <http://www.seals-project.eu/ontologies/SEALSOntologies.owl#>
PREFIX c: <http://www.seals-project.eu/ConformanceOMT#>

CONSTRUCT {

RawResultType

c:ConformanceRawResultType a sealsv2:ResultType ;

dc:title "Conformance Raw Result"

dc:description "Type for conformance raw results"

sealsv2:hasComponent c:RRComponentl ,
c:RRComponent2 ,
c:RRComponent3

c:RRComponentl a sealsv2:SuiteTypeComponent ;

c:Alignment

sealsv2:requiresType c:Alignment

a sealsv2:FileType ;
dc:title "Alignment"
dc:description "The alignment obtained"

c:RRComponent2 a sealsv2:SuiteTypeComponent ;

sealsv2:requiresType c:ExecutionProblemInTool

c:ExecutionProblemInTool a sealsv2:RawType ;

dc:title "ExecutionProblemInTool" ;

dc:description "Whether there was any execution problem in
the tool" ;

sealsv2:haslLexicalRepresentation xsd:boolean

c:RRComponent3 a sealsv2:SuiteTypeComponent ;

sealsv2:requiresType c:ExecutionProblemInPlatform

c:ExecutionProblemInPlatform a sealsv2:RawType ;

RawResult
?suite
?suite
?suite
?suite

Suiteltem

dc:title "ExecutionProblemInPlatform"

dc:description "Whether there was any execution problem
in the platform"

sealsv2:haslLexicalRepresentation xsd:boolean

rdf :type sealsv2:Suite

rdf :type sealsv2:RawResult
sealsv2:hasSuiteltem 7suiteltem
sealsv2:isTypedBy c:ConformanceRawResultType

?suiteltem rdf:type sealsv2:Suiteltem
?7suiteltem sealsv2:belongsToSuite 7?7suite

29 of

FP7 — 238975
Deliverable 12.5

?suiteltem dc:identifier 7sid

?suiteltem sealsv2:hasData [rdf:type sealsv2:RawValue ;
sealsv2:isTypedBy c:ExecutionProblemInTool ;
sealsv2:hasValue 7executionProblemInTool H
sealsv2:hasPosition "1"

]

?suiteltem sealsv2:hasData [rdf:type sealsv2:RawValue ;
sealsv2:isTypedBy c:ExecutionProblemInPlatform ;
sealsv2:hasValue 7executionProblemInPlatform ;
sealsv2:hasPosition "2"

1.

?suiteltem sealsv2:hasData [rdf:type sealsv2:File ;

dc:identifier 7did ;
sealsv2:isTypedBy c:Alignment ;
sealsv2:isLocatedAt 7locatedAt ;
sealsv2:hasPosition "3"
]
}

WHERE {

?suite rdf:type sealsvl:Suite
?suite rdf:type omt:RawResultSuite
?suite sealsvl:hasSuiteltem 7suiteltem

?suiteltem dc:identifier ?7sid

?suiteltem omt:executionProblemInTool 7executionProblemInTool
?suiteltem omt:executionProblemInPlatform 7executionProblemInPlatform
?suiteltem sealsvl:hasDataltem 7dataltem

?dataltem dc:identifier 7did
7?7dataltem sealsvl:isLocatedAt 7locatedAt.

A.2 Transformation of Interpretations

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf -syntax -ns#>
PREFIX dc: <http://purl.org/dc/terms/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

vl
PREFIX sealsvl: <http://www.seals-project.eu/ontologies/SEALSMetadata.owl#>
PREFIX omt: <http://www.seals-project.eu/ontologies/OMTEvaluations.owl#>
v2

PREFIX sealsv2: <http://www.seals-project.eu/ontologies/SEALSOntologies.owl#>
PREFIX c: <http://www.seals-project.eu/ConformanceOMT#>

CONSTRUCT {
RawResultType

c:ConformancelnterpretationType a sealsv2:ResultType ;
dc:title "Conformance Interpretation" ;
dc:description "Type for conformance interpretations"
sealsv2:hasComponent c:IRComponentl ,
c:IRComponent2 ,
c:IRComponent3d ,
c:IRComponent4

c:IRComponentl a sealsv2:SuiteTypeComponent ;
sealsv2:requiresType c:Runtime

c:Runtime a sealsv2:RawType ;
dc:title "runtime"

30 of [34]

FP7 — 238975
Deliverable 12.5

dc:description "The runtime measurement for the execution of the
on this alignment"
sealsv2:haslLexicalRepresentation xsd:float

c:IRComponent2 a sealsv2:SuiteTypeComponent ;
sealsv2:requiresType c:Precision

c:Precision a sealsv2:RawType ;
dc:title "precision" ;
dc:description "Precision measure of the alignment"
sealsv2:hasLexicalRepresentation xsd:float

c:IRComponent3 a sealsv2:SuiteTypeComponent ;
sealsv2:requiresType c:Recall

c:Recall a sealsv2:RawType ;
dc:title "recall"
dc:description "Recall measure of the alignment" ;
sealsv2:haslLexicalRepresentation xsd:float

c:IRComponent4 a sealsv2:SuiteTypeComponent ;
sealsv2:requiresType c:FMeasure

c:FMeasure a sealsv2:RawType ;
dc:title "fmeasure"
dc:description "fmeasure of the alignment"
sealsv2:hasLexicalRepresentation xsd:float

Interpretation
?suite rdf:type sealsv2:Suite
?suite rdf:type sealsv2:Interpretation
?suite sealsv2:hasSuiteltem 7suiteltem
?suite sealsv2:isTypedBy c:ConformancelnterpretationType

Suiteltem

?suiteltem rdf:type sealsv2:Suiteltem

?7suiteltem sealsv2:belongsToSuite 7suite

?suiteltem dc:identifier 7sid

?suiteltem sealsv2:hasData [rdf:type sealsv2:RawValue ;
sealsv2:isTypedBy c:Runtime ;
sealsv2:hasValue ?runtimeValue H
sealsv2:hasPosition "1"

1.

?suiteltem sealsv2:hasData [rdf:type sealsv2:RawValue ;
sealsv2:isTypedBy c:Precision ;
sealsv2:hasValue 7precisionValue ;
sealsv2:hasPosition "2"

]

?suiteltem sealsv2:hasData [rdf:type sealsv2:RawValue ;
sealsv2:isTypedBy c:Recall ;
sealsv2:hasValue ?recallValue ;
sealsv2:hasPosition "3"

]

?suiteltem sealsv2:hasData [rdf:type sealsv2:RawValue ;
sealsv2:isTypedBy c:FMeasure ;
sealsv2:hasValue 7?fmeasureValue ;
sealsv2:hasPosition "4"

]
}

WHERE {

?suite rdf:type sealsvl:Suite
?suite rdf:type omt:InterpretationSuite
?suite sealsvl:hasSuiteltem 7suiteltem

?suiteltem dc:identifier ?7sid

?suiteltem omt:hasCriterionItem 7runtimeCriterionItem
?suiteltem omt:hasCriterionltem 7precisionCriterionltem
?suiteltem omt:hasCriterionItem 7recallCriterionItem

31 of

tool

FP7 — 238975
Deliverable 12.5

?suiteltem omt:hasCriterionItem 7fmeasureCriterionItem

?runtimeCriterionItem omt:hasCriterion "runtime"
?runtimeCriterionItem omt:hasValue 7runtimeValue

?precisionCriterionItem omt:hasCriterion "precision"
?precisionCriterionltem omt:hasValue 7precisionValue

?recallCriterionItem omt:hasCriterion "recall"
?recallCriterionItem omt:hasValue 7?recallValue

?fmeasureCriterionlItem omt:hasCriterion "fmeasure"
?fmeasureCriterionItem omt:hasValue 7fmeasureValue

32 of

FP7 — 238975
Deliverable 12.5

B. SEDL document

This section lists the SEDL document that specifies all the requirements needed to
execute an evaluation workflow.

<?xml version="1.0"7>

K== skokskokokokokokokokkkkokokkkkokk ——>
<!-- 0OMT SEDL Document -—>
KU skokokokokok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ——>

<sedl:EvaluationDescription
xmlns:sedl="http://www.seals-project.eu/resources/sedl/v2/"
xmlns:seals="http://www.seals-project.eu/ontologies/SEALSMetadata.owl#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:tdcat="http://www.seals-project.eu/sedl/example/testData"
xmlns:rcat="http://www.seals-project.eu/sedl/example/Result"
name="0MT Evaluation"
creator="Cassia Trojahn"
created="2011-07-18T23:00:00+01:00">

<l-- -—>
<!-- Documentation -->
<lo- wrwmmmmmm s -=>

<sedl:Documentation>0MT evaluation description.</sedl:Documentation>

<l-- -—>
<!-- Execution Contract Part -->
Klo- mwmmmmmmmm S S SSS -=>

<sedl:ExecutionContract>
<sedl:Parameters>
<sedl:Parameter name="testSuite" type="tdcat:0MTTestSuite"
resourceRef="0MTOntology"/>
<sedl:Parameter name="testSuiteVersion" type="tdcat:0MTTestSuiteVersion"
resourceRef="0MTOntology"/>

<sedl:Parameter name="tool" type="seals:0ntologyMappingTool"
resourceRef="0MTOntology"/>
<sedl:Parameter name="toolVersion" type="seals:0ntologyMappingToolVersion"

resourceRef="0MTOntology"/>
</sedl:Parameters>
<sedl:0Outputs>
<sedl:0Output name="rawResult" type="rcat:0MTRawResult" resourceRef="
OMTOntology"/>
</sedl:0Outputs>
</sedl:ExecutionContract >

Klo- wrwmmmmmmm s S S S -=>
<!-- Custom Services Part -->
Kl—- wrmmmmmmmm S S S -->

<sedl:CustomServices>
<sedl:CustomService name="PRFService">
<sedl:Documentation>Service that computes precision, recall and f-measure.</
sedl:Documentation>
<sedl:WSDL portType="service:PRF"
resourceRef="PRFServiceWSDL"
xmlns:service="http://www.seals-project.eu/resources/omt/custom/prf/wsdl/vi"/>

<sedl:Implementation className="eu.sealsproject.domain.omt.custom.prf.vl.
PRFImpl"
resourceRef="CustomServicesJAR"/>
</sedl:CustomService >

<sedl:CustomService name="MetadataGenService">
<sedl:Documentation>Service that generate the required raw result and
interpretation suite metadata.</sedl:Documentation>
<sedl:WSDL portType="service:MetadataGen" resourceRef="MetadataGenServiceWSDL"

33 of [34]

FP7 — 238975
Deliverable 12.5

xmlns:service="http://www.seals-project.eu/resources/omt/custom/
metadataGen/wsdl/v1"/>

<sedl:Implementation className="eu.sealsproject.domain.omt.custom.metadataGen.
vl.MetadataGenImpl"
resourceRef="CustomServicesJAR"/>
</sedl:CustomService >

</sedl:CustomServices>

Kl—= "rmmmmsmm TS S s S -=>

<!-- Evaluation Workflow Part -->

Kl—= "rmmmmmmmss TS -=>

<sedl:EvaluationWorkflow processName="wpl2-evaluation" resourceRef="EvaluationBPEL

ll/>

<l—-= ~rmmmmmmmmm s -=>

<!-- Resources Part -->

<l-=- ~rmmmmmmmmmes -=>

<sedl:Resources>

<sedl:Resource xsi:type="sedl:XMLResourceType"
name="EvaluationBPEL"
xmlType="BPEL"
location="resources/bpel/EvaluationWP12.bpel">
<sedl:Dependency resourceRef="PRFServiceWSDL"/>
<sedl:Dependency resourceRef="MetadataGenServiceWSDL"/>
</sedl:Resource>

<sedl:Resource xsi:type="sedl:XMLResourceType"
name="PRFServiceWSDL"
xmlType="WSDL"
location="resources/wsdl/prf.wsdl"/>

<sedl:Resource xsi:type="sedl:0OntologyResourceType"
name="0MTOntology"
ontologyLanguage="0WL"
location="resources/ontologies/0OMTOntology.owl"/>

<sedl:Resource xsi:type="sedl:XMLResourceType"
name="MetadataGenServiceWSDL"
xmlType="WSDL"
location="resources/wsdl/metadataGen.wsdl"/>

<sedl:Resource xsi:type="sedl:BinaryResourceType"
name="CustomServicesJAR"
location="resources/impl/ed-omt-impl-1.0.0-SNAPSHOT-jar-with-dependencies. jar
II/)

</sedl:Resources>

</sedl:EvaluationDescription>

34 of

	List of figures
	Introduction
	Updating BPEL evaluation to RES 1.2 distribution
	Runtime measurement functionality
	Standardization of Core Tool Service faults
	Comments on the use of new functionality

	Experimenting with the RES 1.2 environment
	Testing the RES 1.2 distribution on a local installation
	Testing the RES 1.2 distribution on the SEALS Platform

	Metadata transformation of WP12 raw results and interpretations
	New version of SEDL bundle
	Extensions for running WP12 campaigns
	Final status of services for the automatic evaluation of matching tools
	Final remarks
	References
	Sparql queries for transformation of raw results and interpretations metadata
	Transformation of Raw Results
	Transformation of Interpretations

	SEDL document

