
SEALS
Semantic Evaluation at Large Scale

FP7 – 238975

D12.5 Iterative implementation of
services for the automatic

evaluation of matching tools
v1.0-beta

Coordinator: Cássia Trojahn dos Santos
With contributions from: Christian Meilicke, Jérôme Euzenat

Quality Controller: Heiner Stuckenschmidt
Quality Assurance Coordinator: Raúl Garćıa Castro

Document Identifier: SEALS/2010/D12.5/V1.0-beta
Class Deliverable: SEALS EU-IST-2009-238975
Version: 1.0-beta
Date: February 25, 2011
State: final
Distribution: public

FP7 – 238975

Deliverable 12.5

Executive Summary

The goal of this deliverable is to report the current status of the service implementation
for the automatic evaluation of matching tools.

For the first evaluation campaign, as reported in [6], we have developed an evalu-
ation service based on the use of a web service interface wrapping the functionality of
a tool to be evaluated. This interface allowed to evaluate the tool without the need
for a runtime environment. Contrary to this, the tools were executed on the machine
of the tool developer. We have followed this approach mainly because some SEALS
components were still under development in that time.

Since the end of the first campaign, several SEALS components have been finished.
This allows to progressively migrate our previous implementation to the SEALS plat-
form. Firstly, we have concentrated our efforts in using the Test Data and Results
Repository by uploading and using test and results data (Chapter 2). Next, we have
wrapped some tools in order to fulfill the requirements for deploying a tool into the
SEALS platform (Chapter 3). Then, we have extended our BPEL workflow in order
to use the new web service interfaces for accessing the repositories and invoking the
tools (Chapter 4). In order to run integration tests, an express version of the SEALS
Runtime Evaluation Service has been delivered. This express version allows to deploy
locally some tools and to run a complete evaluation experiment (Chapter 5).

For the next development iteration (Chapter 6), we plan to improve the specifica-
tion of our current raw results metadata. Further, we will modify the interpreter for
generating interpretations to be integrated as custom services in the platform. Finally,
we plan to extend the BPEL workflow in order to take into account fault handling.

2 of 21

FP7 – 238975

Deliverable 12.5

Document Information

IST Project
Number

FP7 – 238975 Acronym SEALS

Full Title Semantic Evaluation at Large Scale
Project URL http://www.seals-project.eu/
Document URL
EU Project Officer Carmela Asero

Deliverable Number 12.5 Title
Iterative implementation of services for the au-
tomatic evaluation of matching tools v1.0-beta

Work Package Number 12 Title Matching Tools

Date of Delivery Contractual M21 Actual 28-02-2011
Status 1.0-beta final �
Nature prototype � report � dissemination �
Dissemination level public � consortium �

Authors (Partner)
Jérôme Euzenat (INRIA), Cássia Trojahn dos Santos (INRIA), Heiner
Stuckenschmidt (University Mannheim), Christian Meilicke (University
Mannheim)

Resp. Author
Name Cássia Trojahn dos

Santos
E-mail cassia.trojahn@inrialpes.fr

Partner INRIA Phone +33 (476) 615 476

Abstract
(for dissemination)

The implementation of the automatic services for evaluating matching
tools follows an iterative model. The aim is to provide a way for con-
tinuously analysing and improving these services. In this deliverable, we
report the first iteration of this process, i.e., current implementation sta-
tus of the services. In this first iteration, we have extended our previous
implementation in order to migrate our own services to the SEALS com-
ponents, which have been finished since the end of the first evaluation
campaign.

Keywords
ontology matching, ontology alignment, evaluation, benchmarks, effi-
ciency measure

Version Log
Issue Date Rev No. Author Change
14/02/2011 1 Cássia Trojahn dos

Santos
Set up document structure.

15/02/2011 2 Cássia Trojahn dos
Santos

Filled the chapters.

16/02/2011 3 Christian Meilicke Added Section 2.3 and revised document.
21/02/2011 4 Christian Meilicke Addressed point 1 and 2 of reviewer.

3 of 21

FP7 – 238975

Deliverable 12.5

Project Consortium Information

Participant’s name Partner Contact
Universidad Politécnica de Madrid Asunción Gómez-Pérez

Email: asun@fi.upm.es

University of Sheffield Fabio Ciravegna
Email: fabio@dcs.shef.ac.uk

Forschungszentrum Informatik Rudi Studer
Email: studer@aifb.uni-karlsruhe.de

University of Innsbruck Barry Norton
Email: barry.norton@sti2.at

Institut National de Recherche en Informa-
tique et en Automatique

Jérôme Euzenat
Email: Jerome.Euzenat@inrialpes.fr

University of Mannheim Heiner Stuckenschmidt
Email: heiner@informatik.uni-mannheim.de

University of Zurich Abraham Bernstein
Email: bernstein@ifi.uzh.ch

Open University John Domingue
Email: j.b.domingue@open.ac.uk

Semantic Technology Institute International Alexander Wahler
Email: alexander.wahler@sti2.org

University of Oxford Ian Horrocks
Email: ian.horrocks@comlab.oxford.ac.uk

4 of 21

FP7 – 238975

Deliverable 12.5

Table of Contents

List of figures 6

1 Introduction 7

2 SEALS Repositories 8
2.1 Test Data Repository . 8
2.2 Results Repository . 9
2.3 Tools and Evaluation Description Repositories 10

3 Tool Wrappers 12

4 Evaluation Workflow 15

5 Integration test 17

6 Conclusion and Future Work 18

References 18

A SOAP-UI Test Suite 20

5 of 21

FP7 – 238975

Deliverable 12.5

List of Figures

4.1 BPEL workflow. 16
4.2 Iteration over a test suite. 16

6 of 21

FP7 – 238975

Deliverable 12.5

1. Introduction

The main aim of SEALS is to provide a platform for supporting automatic evaluations.
It plans to go beyond current evaluation software by providing a continuous evaluation
platform that allows people to test their tools at any time and publish the results that
they want to be recorded.

For the first evaluation campaign, due the complexity of the SEALS platform,
required SEALS components (e.g., Runtime Evaluation Service) were under develop-
ment. For that reason, we have implemented an evaluation service that bypasses one
of the main sources of complexity, i.e., the deployment of a tool. Our approach was
based on the idea of executing the tool on the machine of the tool vendor itself. In
this scenario, the functionality of the tool is made available via a web service, which is
accessed by the evaluation service during the execution of an evaluation workflow. We
have developed a set of services for running a complete evaluation experiment, i.e., for
iterating the test suites, invoking a tool, interpreting raw results and storing results
into a relational database.

For the second stage of the project, where the focus is the second evaluation cam-
paign, we aim at extending our previous implementation to integrate the SEALS
components that have been released since the first evaluation campaign. This de-
liverable reports the first iteration of this migration process. The first step was to
replace our own test suite web service iterator by the service accessing the SEALS
Test Data Repository. It involved to require the development of a finegrained access
to the repository. Once this functionality had been implemented, we specified the test
suite metadata for each of our test suites and uploaded them into the repository. This
repository can now also be accessed via a web service interface implementation pro-
vided by the platform. We have also worked with the interface and its implementation
for uploading raw results into the SEALS Results Repository.

Regarding tools, in order to deploy them into the SEALS platform, developers must
extend an interface and wrap its implementation in a ZIP file that includes a bridge as
well all required libraries for running the tool. We have tested the required structure
of the ZIP file by using some of the tools that have participated in the first evaluation
campaign. Furthermore, a web service interface has been defined for invoking the
deployed tools from evaluation descriptions. We have also tested this interface.

For running a complete evaluation experiment, an express version of the SEALS
Runtime Evaluation Service has been delivered, which allows for invoking the web
service implementations for accessing the SEALS Test Data and Results repositories
and invoking the deployed tools. This whole environment must be deployed locally in
a test machine and allows researchers to run integration tests.

The remainder of this deliverable is structured as follows. In Chapter 2, we dis-
cuss the usage of the SEALS repositories. Chapter 3 presents the required packaging
format for deploying a tool into the platform. In Chapter 4, we present our extended
evaluation workflow. Some notes about running an integration test are presented in
Chapter 5. Finally, Chapter 6 concludes the deliverable and presents the perspectives
for the next development iteration.

7 of 21

FP7 – 238975

Deliverable 12.5

2. SEALS Repositories

2.1 Test Data Repository

In order to upload a test suite into the SEALS Test Data Repository, one must en-
capsulate the suite in a ZIP file and specify a test suite metadata, which describes a
Suite and its SuiteItem(s) and DataItem(s). The ZIP file can be organized in an
arbitrary way and contains the metadata encoded in a RDF file at the top level of the
ZIP. For Work Package 12, a test suite is composed by a set of pairs of ontologies and
their reference alignments:

Metadata.rdf
ont/

101. rdf
102. rdf
103. rdf

ref/
101 -102. rdf
101 -103. rdf

For our evaluation workflows it was important to retrieve the DataItems in a fine-
grained way. We participated in the specification of a Suite metadata definition that
supports this finegrained access. At the same time we took into account that the
approach has to be generic enough to be usable by the other research workpackages.
According to this approach, a test suite is then described using the following metadata:

<rdf:RDF
xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:seals="http: //www.seals -project.eu/ontologies/

SEALSMetadata.owl#"
xmlns:owl="http: //www.w3.org /2002/07/ owl#"
xmlns:dc="http: //purl.org/dc/terms/"
xmlns:xsd="http: //www.w3.org /2001/ XMLSchema#"
xmlns:rdfs="http: //www.w3.org /2000/01/ rdf -schema#">

<seals:Suite rdf:about="http://www.seals -project.eu/alignment/
benchmark#BenchmarkSuite">

<seals:hasSuiteItem rdf:resource="http://www.seals -project.eu/
alignment/benchmark #101" />

<seals:hasSuiteItem rdf:resource="http://www.seals -project.eu/
alignment/benchmark #102" />

<seals:hasSuiteItem rdf:resource="http://www.seals -project.eu/
alignment/benchmark #103" />

</seals:Suite >

<seals:SuiteItem rdf:about="http://www.seals -project.eu/alignment/
benchmark #102">
<seals:hasDataItem rdf:resource="http://www.seals -project.eu/

alignment/benchmark #101- source" />

8 of 21

FP7 – 238975

Deliverable 12.5

<seals:hasDataItem rdf:resource="http://www.seals -project.eu/
alignment/benchmark #102- target" />

<seals:hasDataItem rdf:resource="http://www.seals -project.eu/
alignment/benchmark#ref101to102 -ref" />

<dc:identifier >102</dc:identifier >
</seals:SuiteItem >

<seals:DataItem rdf:about="http://www.seals -project.eu/alignment/
benchmark #101- source">
<seals:isLocatedAt >./ont /101. rdf</seals:isLocatedAt >
<seals:hasComponentType >source </seals:hasComponentType >
<dc:identifier >101- source </dc:identifier >

</seals:DataItem >

<seals:DataItem rdf:about="http://www.seals -project.eu/alignment/
benchmark #102- target">
<seals:isLocatedAt >./ont /102. rdf</seals:isLocatedAt >
<seals:hasComponentType >target </seals:hasComponentType >
<dc:identifier >102- target </dc:identifier >

</seals:DataItem >

<seals:DataItem rdf:about="http://www.seals -project.eu/alignment/
benchmark#ref101to102 -ref">
<seals:isLocatedAt >./ref /101 -102. rdf</seals:isLocatedAt >
<seals:hasComponentType >reference </seals:hasComponentType >
<dc:identifier >ref101to102 -ref</dc:identifier >

</seals:DataItem >

</rdf:RDF >

We have uploaded three test suites into the SEALS repository, which correspond
to the data sets used in the first evaluation campaign: Anatomy1, Benchmark2 and
Conference3.

2.2 Results Repository

The results repository stores raw results (i.e., alignments in Work Package 12) and
interpretations of these results (i.e., precision and recall). In this deliverable, we
focus on uploading raw results because custom interpreters, which are generating the
interpretations, are not yet integrated into the express runtime version of the SEALS
platform. For uploading raw results, metadata must be specified that describes the
stored results.

In a similar way of what is done for a test suite, raw results are encapsulated in a
ZIP file, together with the suite metadata file.

1http://seals.sti2.at/tdrs-web/testdata/persistent/Anatomy+Testsuite/2010/suite/
2http://seals.sti2.at/tdrs-web/testdata/persistent/Benchmark+Testsuite/2010/

suite
3http://seals.sti2.at/tdrs-web/testdata/persistent/Conference+Testsuite/2010/

suite/

9 of 21

FP7 – 238975

Deliverable 12.5

Metadata.rdf
results/

align102.rdf
align103.rdf
align104.rdf

In the current implementation, we have used the results composer service provided
by the platform and a minimal version of the suite metadata. This service bundles the
raw result of each test iteration (i.e., each resulting alignment) and encapsulates all
the results in the ZIP file.

A minimal suite metadata4 has been specified for describing the raw results:

<?xml version ="1.0" encoding ="UTF -8"?>
<rdf:RDF

xmlns:rdfs="http ://www.w3.org /2000/01/ rdf -schema #"
xmlns:seals="http ://www.seals -project.eu/ontologies/SEALSMetadata.

owl#"
xmlns:rdf="http ://www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:dcterms ="http :// purl.org/dc/terms/">

<seals:RawResult rdf:about="http :// www.seals -project.eu/metadata/
a n y U R I /">

<seals:hasName rdf:datatype ="http:/www.w3.org/XMLSchema#string">
Benchmark -Aroma -Raw -Results </ seals:hasName >

</seals:RawResult >
</rdf:RDF >

For the next iteration, we have to extend the required metadata in order to fulfill
the specifications in [5]. Furthermore, as we have reported below, at the time of
writing this deliverable, the details about how to include interpreters in the current
version of the Runtime Evaluation Service have not been provided. As discussed in
the last Seals plenary meeting5, each WP will be responsible for defining their own
interpreters (as WSDL interfaces) and integrating them into the platform. We have
already defined an interface for measuring precision and recall and are waiting for
guidelines for integrating it into the platform in a way that it will be available for
access from the BPEL workflow (as a partner link).

2.3 Tools and Evaluation Description Repositories

Currently we do not use the other two repositories, because they are only partially
integrated into the platform. In particular, the following reasons prevent us from using
the services of these repositories.

• The SEALS Tools Repository is to our knowledge currently not connected to
the upload functionality of the web portal. Even more important is the problem

4One of our uploaded raw results can be found at http://seals.sti2.at/rrs-web/results/
Benchmark-Aroma+raw+results/

5Sheffield, 31/01/2011–03/02/2011

10 of 21

FP7 – 238975

Deliverable 12.5

that there is no connection between storing a tool in the repository and executing
it on the platform. Currently tools have to be deployed manually in order to
evaluate them. There is no automatism that retrieves a tool from the repository
and deploys and executes it automatically.

• The situation of the SEALS Evaluation Description Repository is similar. Cur-
rently only the core element of the evaluation description – the BPEL itself –
is required to run an evaluation. This BPEL workflow has to be deployed and
executed manually. There exists no automatism that retrieves an evaluation
description and executes it automatically.

To benefit from the functionality of the SEALS Tools Repository, it is first of all
required to continue with the development of the automatic tool deployment. Cur-
rently it is not supported that a tool is deployed automatically. Thus, it is unclear
why tool developers should upload a tool to the platform that cannot be deployed and
executed. For that reason it is highly problematic that this functionality is currently
set to the status unplanned according to the relevant Redmine issues.6

The use of the SEALS Evaluation Description Repository depends on the availabil-
ity of the functionality to execute a SEDL document (or at least to execute the BPEL
encapsulated in the SEDL document). To enable this, a tight collaboration between
the developer of the SEDL specification and the people responsible for providing the
execution environment of the BPEL workflow is required.

6See http://www.development.seals-project.eu/redmine/issues/344.

11 of 21

FP7 – 238975

Deliverable 12.5

3. Tool Wrappers

In order to deploy a tool into the SEALS platform, developers must implement a
tool interface (i.e., IOntologyMatchingToolBridge in the case of Work Package 12).
This interface specifies the methods that will be called for invoking the tool from
the platform. The interface implementation must be encapsulated together with all
required libraries and additional files in a ZIP file, following the structure presented
in the following example.

bin/
lib/

demomatcher.jar
owlapi.jar
simmetrics.jar

demomatcher -bridge.jar
deploy.bat (or *.sh on linux)
start.bat
stop.bat
undeploy.bat

conf/
(empty)

lib/
(empty)

descriptor.xml

The folder bin/lib/ contains all required libraries for executing the tool. In the
specific example, demomatcher-bridge.jar contains the implementation of the tool
interface. Besides the required libraries, some additional files and few empty folders
can be found. The empty folders can contain additional resources that are not required
with respect to our simple example. The four files deploy.bat, start.bat, stop.bat,
and undeploy.bat have to be part of the package. They are currently not used,
but will be used in the next version of the platform to automatically prepare the
environment required by the tools.

One important component in this package is the descriptor.xml file, which pro-
vides the description of the tool, the list of required libraries and the specification of
the class implementing the tool interface:

<ns:package
xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xmlns:ns="http ://www.seals -project.eu/resources/res/tools/bundle/v1
"

id=" DemoMatcher"
version ="1.0" >
<ns:description >DemoMatcher is a matching tool developed for

testpurpose .</ns:description >
<ns:endorsement >

<ns:copyright >Copyright information </ns:copyright >
<ns:license >Specification of license </ns:license >

</ns:endorsement >
<ns:wrapper >

12 of 21

FP7 – 238975

Deliverable 12.5

<ns:management >
<ns:deploy >

<ns:executable xsi:type="ns:ShellScript">
<ns:script >deploy.bat </ns:script >
<ns:error -log >deploy -error.log </ns:error -log >

</ns:executable >
</ns:deploy >
<ns:start >

<ns:executable xsi:type="ns:ShellScript">
<ns:script >start.bat </ns:script >
<ns:error -log >start -error.log </ns:error -log >

</ns:executable >
</ns:start >
<ns:stop >

<ns:executable xsi:type="ns:ShellScript">
<ns:script >stop.bat </ns:script >
<ns:error -log >stop -error.log </ns:error -log >

</ns:executable >
</ns:stop >
<ns:undeploy >

<ns:executable xsi:type="ns:ShellScript">
<ns:script >undeploy.bat </ns:script >
<ns:error -log >undeploy -error.log </ns:error -log >

</ns:executable >
</ns:undeploy >

</ns:management >
<ns:bridge >

<ns:class >de.unima.ki.demomatcher.seals.MatcherBridge </ns:class
>

<ns:jar >demomatcher -bridge.jar </ns:jar >
<ns:dependencies >

<ns:lib >lib/demomatcher.jar </ns:lib >
<ns:lib >lib/owlapi.jar </ns:lib >
<ns:lib >lib/simmetrics.jar </ns:lib >

</ns:dependencies >
</ns:bridge >

</ns:wrapper >
</ns:package >

We have contacted several tool developers to check if the wrapping works with real
tools. For some of these tools we used the version that is available via the official
webpage of the tool, while for other we contacted the developer to retrieve access
to the tool. The tools we have tried to wrap so far are the tools AnchorFlood [7],
Aroma [2], Eff2Match [1], Falcon-AO [4], Lily [8], and Taxomap [3]. While doing this
we noticed that many tools specify internally a relative path from the current working
directory to a required configuration file (or a similar kind of resource). We have to
clarify if this results in a problem or requires some additional agreements regarding
tool deployment and execution. In parallel we are writing a tutorial that allows the
tool developer to wrap the tool on his own.

Our first experiences indicate that some problems relevant in the deployment pro-
cess can only be solved by the use of manual work-arounds. Even more, it is not

13 of 21

FP7 – 238975

Deliverable 12.5

clear whether such an approach will always be applicable given a high number of
participants. This is also related to the fact that the automized deployment is not
yet available. In particular, is is currently not the case that the start, stop, deploy,
and undeploy-scripts are executed by the platform, nor it is planned to make this
functionality available in near future.1

1See for example http://www.development.seals-project.eu/redmine/issues/344.

14 of 21

FP7 – 238975

Deliverable 12.5

4. Evaluation Workflow

We have modified the BPEL workflow described in [6] in order to replace our previous
partner link definitions (external web services) by the new SEALS services:

• test repository service: provides access to the Test Data Repository, in order to
retrieve a test suite and its test items to iterate over the test suite;
• results repository service: provides access to the Results Repository, in order to

add a raw result and its interpretations;
• results composer service: a utility service that provides operations for bundling

the raw results generated during the evaluation execution in a ZIP file;
• tool service: provides access to a deployed tool;
• evaluation service: describes the common service interface for the workflow entry

point and the callback service interface (asynchronous process).

In the current implementation, the workflow iterates over a test suite and invokes
a tool that generates an alignment between the source and target ontologies for each
test item of a test suite. As custom interpreters are not yet integrated in the express
version of the Runtime Evaluation Service, we can not generate interpretations for the
raw results.

Basically, the BPEL workflow (Figure 4.1) interacts with the services through part-
ner links, which encapsulate the corresponding web service interfaces. The “evalua-
tion” process starts by receiving from the client process two input parameters: the test
suite name and version. Due to an internal platform requirement, some information
(e.g., ExecutionRequestId) is passed to the BPEL process in the header part of each
message exchanged with partner links. One assigns activity (setHeaderForInvocations)
is used to initialize the header part of all messages.

As we reported in §2.2, for uploading results into the Results Repository one must
specify their metadata. In our workflow, we firstly initialize the metadata for the re-
sults composer (activities assignMetadata and addMetadaResults). This metadata
will be encapsulated later, by the results composer service, into the ZIP file con-
taining all raw results. Next, the parameters for loading a test suite are initialized
(setParamsToLoadTestSuite) and the suite is loaded (loadTestSuite). Figure 4.2
shows the iteration over a test suite. For each test case in the test suite, the ontol-
ogy source (getOntoSource) and the ontology target (getOntoTarget) are retrieved
from the Test Data Repository. These two elements are then used as input parameter
(setParamsAlign) for invoking the tool (align). The output of this invoke is the URL
of the file containing the generated alignment. This URL is then sent to the results
composer (addDataItem), which uses this information later for generating the ZIP file
containing all generated raw results.

After iterating over all test cases, the ZIP file, containing all raw results (alignment
files) and the corresponding metadata, is generated by the results composer service
(createBundle). Next, this bundle is submitted to the Results Repository by invoking
the addRawResults method of the results repository service.

The workflow is asynchronous, i.e., the client does not wait for the complete exe-
cution of the evaluation. For that reason a notification must be sent when the process
finishes (callbackClient).

15 of 21

FP7 – 238975

Deliverable 12.5

Figure 4.1: BPEL workflow. Figure 4.2: Iteration over a test suite.

The full BPEL code can be found at https://svn.seals-project.eu/seals/

tags/deliverables/D12.5/M21/software/evals.

16 of 21

FP7 – 238975

Deliverable 12.5

5. Integration test

For running an integration test, i.e., executing a BPEL workflow that accesses reposi-
tory services and deployed tools, an express version of the SEALS Runtime Evaluation
Service has been delivered for local deployment. This version is composed of two main
sub-modules:

• res-core-sa: takes care of the complete orchestration of the activities involved
in the evaluation of a tool. From this module, an evaluation description (BPEL
workflow) is executed;
• res-worker-sa: is responsible for the launching of tools. From this sub-module,

tools are deployed, started and executed.

These two modules are deployed locally in different instances of a servicemix con-
tainer. The BPEL workflow must be deployed in the same instance as res-core-sa,
while the path for the tool package (ZIP file presented in §3) must be configured in
the same instance as res-worker-sa. Both of these modules communicate with each
other and share service endpoints. This allows to execute an integrated test.

We have successfully deployed res-core-sa, res-worker-sa, the BPEL workflow
and one tool. Based on this we could successfully execute an integration test. In our in-
tegration test we have used the tool Anchor-Flood [7], which is – wrapped in the appro-
priate way – available at https://svn.seals-project.eu/seals-dev/omt/tools/

aflood. For invoking the deployed BPEL we have used an EvaluationBinding test
suite, created using the SOAP-UI tool. In Appendix A, the code for the test suite can
be found.

17 of 21

FP7 – 238975

Deliverable 12.5

6. Conclusion and Future Work

This deliverable has reported the current implementation status of Work Package 12.
We have migrated our previous implementation in order to take into account the
new delivered SEALS components. We have successfully wrapped some tools and
started to write a tutorial to help tool developers. We successfully achieved to run an
integration test which involves the execution of a BPEL workflow that accesses the
SEALS repositories and invokes a deployed tool.

For the next iteration, we plan to extend the definitions of metadata for raw re-
sults, in order to fulfill the requirements specified in [5]. We already implemented
the most important interpreters, however, we need to integrate them as custom inter-
preter services into the express version of the SEALS Runtime Evaluation Service in
the next step. We plan as well to extend the BPEL workflow in order to take into
account fault handling. Further, we have to gain more experiences in wrapping tools,
to anticipate possible problems in running a fully automized evaluation on top of the
SEALS platform.

18 of 21

FP7 – 238975

Deliverable 12.5

References

[1] Watson Wei Khong Chua and Jung-Jae Kim. Eff2Match results for OAEI 2010. In
Proceedings of the ISWC 2010 Workshop on Ontology Matching, Shanghai, China,
2010.

[2] Jérôme David. AROMA results for OAEI 2009. In Proceedings of the ISWC 2009
Workshop on Ontology Matching, Washington DC, USA, 2009.

[3] Faycal Hamdi, Brigitte Safar, Nobal B. Niraula, and Chantal Reynaud. TaxoMap
alignment and refinement modules: Results for OAEI 2010. In Proceedings of the
ISWC 2010 Workshop on Ontology Matching, Shanghai, China, 2010.

[4] Wei Hu and Yuzhong Qu. Falcon-AO: A practical ontology matching system.
Journal of Web Semantics, 6:237–239, 2008.

[5] Adrian Marte and Daniel Winkler. Iterative evaluation and implementation of
the results repository service v1.1-beta. Technical Report D7.4, SEALS Project,
November 2010.

[6] Christian Meilicke, Cássia Trojahn, Jérôme Euzenat, and Heiner Stuckenschmidt.
Services for the automatic evaluation of matching tools. Technical Report D12.2,
SEALS Project, July 2010.

[7] Md. Hanif Seddiqui and Masaki Aono. Anchor-Flood: results for OAEI 2009. In
Proceedings of the ISWC 2009 Workshop on Ontology Matching, Washington DC,
USA, 2009.

[8] Peng Wang and Baowen Xu. Lily: ontology alignment results for OAEI 2009. In
Proceedings of the ISWC 2009 Workshop on Ontology Matching, Washington DC,
USA, 2009.

19 of 21

FP7 – 238975

Deliverable 12.5

A. SOAP-UI Test Suite

This section lists the xml file of the SOAP-UI project. It corresponds to a test suite
for invoking the BPEL workflow.

<?xml version ="1.0" encoding ="UTF -8"?>

<con:testSuite xmlns:con="http :// eviware.com/soapui/config" name="BPEL -TestSuite">

<con:settings/>

<con:runType >SEQUENTIAL </con:runType >

<con:testCase failOnError ="true" failTestCaseOnErrors ="true" keepSession ="false"

maxResults ="0" name=" evaluationBinding TestSuite" searchProperties ="true" id="4

fd1db7e -8ddd -4665 -913a-604 e01e3c010">

<con:settings/>

<con:testStep type=" properties" name=" Initializing">

<con:settings/>

<con:config xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:type="con

:PropertiesStep" saveFirst ="true">

<con:properties >

<con:property >

<con:name >header.destination.httpURI </con:name >

<con:value >http :// localhost </con:value >

</con:property >

<con:property >

<con:name >header.destination.executionRequestId </con:name >

<con:value >urn:erq:6ba7b810 -9dad -11d1 -80b4 -00 c04fd430c8 </con:value >

</con:property >

</con:properties >

</con:config >

</con:testStep >

<con:testStep type=" transfer" name=" Transfer variables">

<con:settings/>

<con:config xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:type="con

:PropertyTransfersStep">

<con:transfers setNullOnMissingSource ="true" transferTextContent ="true"

failOnError ="true" ignoreEmpty ="false" transferToAll ="false" useXQuery ="

false" entitize ="false" transferChildNodes ="false">

<con:name >ToHttpURI </con:name >

<con:sourceType >header.destination.httpURI </con:sourceType >

<con:sourceStep >Initializing </con:sourceStep >

<con:targetType >Request </con:targetType >

<con:targetStep >evaluation </con:targetStep >

<con:targetPath >//*[local -name()=’HttpURI ’]</con:targetPath >

</con:transfers >

<con:transfers setNullOnMissingSource ="true" transferTextContent ="true"

failOnError ="true" transferChildNodes =" false">

<con:name >ToExecutionRequest </con:name >

<con:sourceType >header.destination.executionRequestId </con:sourceType >

<con:sourceStep >Initializing </con:sourceStep >

<con:targetType >Request </con:targetType >

<con:targetStep >evaluation </con:targetStep >

<con:targetPath >//*[local -name()=’ExecutionRequestId ’]</con:targetPath >

</con:transfers >

</con:config >

</con:testStep >

<con:testStep type=" request" name=" evaluation">

<con:settings/>

<con:config xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:type="con

:RequestStep">

<con:interface >evaluationBinding </con:interface >

<con:operation >initiate </con:operation >

<con:request name=" evaluation">

<con:settings >

<con:setting id="com.eviware.soapui.impl.wsdl.WsdlRequest@request -headers

"><xml -fragment /></con:setting >

</con:settings >

<con:encoding >UTF -8</con:encoding >

<con:endpoint >http :// localhost :8092/ evaluation </con:endpoint >

20 of 21

FP7 – 238975

Deliverable 12.5

<con:request ><![CDATA[<soapenv:Envelope xmlns:soapenv ="http :// schemas.

xmlsoap.org/soap/envelope /" xmlns:v1="http :// www.seals -project.eu/

resources/res/common/header/xsd/v1" xmlns:v11="http ://www.seals -project

.eu/resources/res/engine/evaluation/wsdl/v1" xmlns:v12="http ://www.

seals -project.eu/resources/res/common/types/xsd/v1">

<soapenv:Header >

<v1:Header >

<!--Optional:-->

<v1:Destination >

<v1:HttpURI >http :// localhost </v1:HttpURI >

</v1:Destination >

<v1:ExecutionRequestId >urn:erq:6ba7b810 -9dad -11d1 -80b4 -00 c04fd430c8 </v1:

ExecutionRequestId >

</v1:Header >

</soapenv:Header >

<soapenv:Body >

<v11:initiate >

<v11:argument >

<v12:name >Testsuite </v12:name >

<v12:value >Benchmark+Testsuite </v12:value >

</v11:argument >

<v11:argument >

<v12:name >Version </v12:name >

<v12:value >2010 </ v12:value >

</v11:argument >

</v11:initiate >

</soapenv:Body >

</soapenv:Envelope >]]></con:request >

<con:jmsConfig JMSDeliveryMode =" PERSISTENT "/>

<con:jmsPropertyConfig/>

<con:wsaConfig mustUnderstand ="NONE" version ="200508"/ >

<con:wsrmConfig version ="1.2"/ >

</con:request >

</con:config >

</con:testStep >

<con:testStep type=" mockresponse" name=" evaluationCallback">

<con:settings/>

<con:config xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:type="con

:MockResponseStep">

<con:interface >evaluationCallbackBinding </con:interface >

<con:operation >onResult </con:operation >

<con:path >/ evaluation/callback </con:path >

<con:port >8088 </ con:port >

<con:response >

<con:settings/>

<con:responseContent xsi:nil="true"/>

<con:wsaConfig mustUnderstand ="NONE" version ="200508"/ >

</con:response >

</con:config >

</con:testStep >

<con:properties/>

</con:testCase >

<con:properties/>

</con:testSuite >

21 of 21

