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Abstract

In a semantic P2P network, peers use separate ontologies and
rely on alignments between their ontologies for translating
queries. However, alignments may be limited —unsound or
incomplete— and generate flawed translations, and thereby
produce unsatisfactory answers. In this paper we propose a
trust mechanism that can assist peers to select those in the
network that are better suited to answer their queries. The
trust that a peer has towards another peer is subject to a spe-
cific query and approximates the probability that the latter
peer will provide a satisfactory answer. In order to compute
trust, we exploit the information provided by peers’ ontolo-
gies and alignments, along with the information that comes
from peers’ experience. Trust values are refined over time as
more queries are sent and answers received, and we prove that
these approximations converge.

Introduction

Recently, P2P systems have received considerable attention
because their underlying infrastructure is appropriate to scal-
able and flexible distributed applications over Internet. In
P2P systems, there is no centralized control or hierarchical
organization: each peer is equivalent in functionality and co-
operates with other peers in order to solve a collective task.
P2P systems have evolved from simple keyword-based file
sharing systems like Napster and Gnutella to semantic data
management systems like EDUTELLA (Nejdl et al. 2002),
PIAZZA (Halevy et al. 2003), or SOMEWHERE (Adjiman et
al. 2006).

In this paper, by semantic P2P networks we refer to
fully decentralized overlay networks of people or machines
(called peers) sharing and searching various resources (doc-
uments, videos, photos, data, services) based on their seman-
tic annotations using ontologies. In semantic P2P systems,
each peer freely organizes its local resources as instances
of classes of its own ontology serving as query interface
for other peers. Alignments between ontologies make pos-
sible to reformulate queries from one local peer vocabulary
to another. The result of a query is a set of resources (e.g.,
documents) that are instances of some classes correspond-
ing, possibly through subsumption or alignment, to the ini-
tial query posed to a specific peer.

Trust is widely acknowledged as an important factor when
considering networks of autonomous interacting entities and

notably in the context of the Semantic Web. When referring
to the notion of trust, T. Berners-Lee advocates for a user
to be able to check for reasons why she could be confident
with a returned answer (Berners-Lee 1997). Trust is helpful
to select, from a given set of peers, the ones that will answer
with most satisfactory instances. Peers may use this informa-
tion for broadcasting their queries to a reduced set of peers
and to have an approximation of the reliability of provided
answers. In addition, peers may preventively send selected
queries in order to improve the trust they have in another
peer. Finally, by identifying “weak correspondences”, peers
may signal faulty alignments and trigger new matching of
the ontologies.

Several proposals have already been made that do not all
share the same meaning for trust (Sabater and Sierra 2005;
Artz and Gil 2007). Many of them are user/agent/peer cen-
tered and rely on the assumption that all peers share similar
implicit goals. Trust is then closely related to the notion of
reputation in a community.

In the context of semantic P2P systems, peers may corre-
spond to different points of view. For this reason, we rather
promote the computation of subjective trust values based on
direct experiences between peers. We also argue for a finer
grained (or context sensitive) approach to trust in order to
take into account the fact that, for answers provided by a
same peer, the trust into these answers may vary according
to which class they are instance of within the peer ontology.

We propose a probabilistic model to handle trust in a P2P
setting. The trust of a peer P towards another peer P ′ re-
garding a class C (belonging to the ontology of P ) approxi-
mates the probability that an instance returned by P ′ (possi-
bly through a path of alignments) as an answer to the query
asking for instances of C is satisfactory for P . In order to
compute trust, we exploit the information provided by peers’
ontologies and alignments, along with the information that
comes from direct experience. Trust values are refined over
time as more queries are sent and received, and we prove
that these approximations converge.

The paper is organized as follows. We first present the
background of our work. Then we introduce our probabilis-
tic definition of trust of a peer into another regarding a query.
We show how it is possible to estimate it by means of the
Bayesian approach to statistics, which consists in taking into
account feedbacks on past experiences. Finally we compare



our approach with related work on handling trust in P2P or
ad-hoc networks, and give some perspectives.

Preliminaries

In this section we define the components of a semantic P2P
network: ontologies, alignments and acquaintance graphs.
The kind of queries that peers will pose is also described.

Ontologies and Populated Ontologies

We draw a distinction between the ontological structure and
the instances used to populate it. We deal with lightweight
ontologies: classes linked by means of a less-general-than
relationship and a disjointness relationship.

Definition 1 An ontology is a tuple O = ⟨C,!,⊥⟩ where
C is a non-empty finite set of classes; ! is a partial order
on C; ⊥ is an irreflexive and symmetric relation on C; and
for all c, c′, d, d′ ∈ C,

if c ⊥ d, c′ ! c and d′ ! d then c′ ⊥ d′.

A populated ontology is the result of adding instances to
an ontology in accordance to the intended meaning of the
two ontological relationships.

Definition 2 A populated ontology O is a tuple ⟨O, I, ext⟩,
where O is an ontology, I is a set of instances, and ext is a
function that maps each class c of O with a subset ext(c) of I
called the extension of c in such a way that the family of class
extensions covers I , and for all classes c, d the following
properties hold:

1. if c ! d then ext(c) ⊆ ext(d), and

2. if c ⊥ d then ext(c) ∩ ext(d) = ∅.

Alignments

In an open and dynamic environment as a P2P network, the
assumption of all peers sharing the same ontology is not re-
alistic. But if peers fall back on different ontologies, there
must be a way to connect ontologies and translate queries so
that their addressees are able to process them. Typically this
is done by means of alignments —sets of correspondences
between semantically related ontological entities— and the
operation of finding alignments is called ontology matching
(Euzenat and Shvaiko 2007).

A correspondence between two classes c and c′ of two
ontologies O and O′, respectively, is usually defined as a
tuple ⟨c, c′, r⟩ with r ∈ {!,=,"}, and c ! d (or ⟨c, c′,!⟩)
is read “c is less general than d”, c " d is read “c is more
general than d”, and c = d is read “c is equal or equivalent
to d”. Here, however, we deal with a more general notion of
a correspondence inspired from (Euzenat 2008).

Definition 3 Let O and O′ be two ontologies, and let c and
c′ be classes of O and O′, respectively. A correspondence
between c and c′ is a tuple ⟨c, c′, R⟩ with R ∈ 2Γ \ ∅ where
Γ is the set {=, >,<, #,⊥}. An alignment A between O and
O′ is a set of correspondences between classes of O and O′.

The above definition requires a clarification. Firstly, a
class is not connected to another one via a relation, but a set
of relations, and this set is to be thought of as an exclusive
disjunction. For instance, c{>,<}d (that is, ⟨c, d, {>,<}⟩)
is read “either c is more general than d or less general than
d”. In this way, we can express uncertainty with regard to
the alignment relation. Notice that ‘"’ and ‘!’ can be seen
as abbreviations for {=, >} and {=, <}, respectively. Also
a non-standard symbol ‘#’ is introduced. It reflects the idea
of overlapping: classes the extensions of which share some
instances but no one is equal to or contained into the other.
Finally, cΓ d states total uncertainty on the relation between
the classes c and d.

There exist various ways to compute alignments, e.g.,
manual or automatic matching, composing or inverting other
alignments. This is out of the scope of this paper and readers
are referred to (Euzenat and Shvaiko 2007; Euzenat 2008).

Acquaintance Graphs

We consider a set P = {Pi}ni=1 of peers. In this paper peer
Pi is identified by i. We assume that peer Pi is associated
with one populated ontology denoted by Oi = ⟨Oi, Ii, exti⟩
(where 1 ≤ i ≤ n).

An acquaintance graph stands for peers’ acquaintances (or
neighbors) in the network. An edge between two peers re-
flects the fact that they know the existence of each other and
that there exists at least one alignment between their respec-
tive ontologies.

Definition 4 An acquaintance graph is a labelled directed
graph ⟨P, ACQ⟩ where P = {Pi}ni=1 is the set of vertices
and any edge in ACQ is of the form ⟨i, j⟩ with i ̸= j, and it is
labelled with a non-empty set A(i, j) of alignments between
Oi and Oj . Peer Pj is said to be an acquaintance of peer Pi

provided that ⟨i, j⟩ ∈ ACQ.

We do not impose A(i, j) to be singleton as peers may
resort to different matchers or compute alignments by both
composition and inverse operations. In a semantic P2P net-
work, peers’ links continually appear and disappear: ac-
quaintance graphs are under constant change.

If two peers Pi and Pj know the existence of each other
and they share an ontology Oi = Oj , ⟨i, j⟩ can be labelled
with the identity alignment (the one that is made up of all
correspondences ⟨c, c,=⟩ with c ∈ Ci = Cj). Note, though,
that the populated ontologies Oi and Oj may be different.

Queries and Query Translations

Peers pose queries to obtain information concerning others’
ontologies. In this work we deal with a simple query lan-
guage, as peers can only request class instances: if peer Pj

is an acquaintance of peer Pi, it may be asked

Q = c(X)? (1)

by Pi with c ∈ Oi. Queries may require to be translated
for their recipients to be able to process them. Query trans-
lations are determined by correspondences of the existing
alignments in the network. Specifically, if Pi wants to send
Q to Pj , it will firstly choose a correspondence ⟨c, d,R⟩ (if



there exists one) of an alignment A ∈ A(i, j) and then send
Pj the translation

Q′ = d(X)? (2)

In turn, Pj can forward Q′ or send translations of it to some
of its acquaintances, and so forth.

The answer to (1) through its translation (2), is the set of
instances of d in Pj’s populated ontology. Unlike queries,
we assume that no translation of instances is ever required.
Since alignments may be unsound or incomplete, this an-
swer may contain unsatisfactory instances, i.e., instances
which are not considered instances of c by Pi (even if R
is the equality relation).

A peer cannot foresee whether the answer that another
provides to one of its queries contains satisfactory instances
or not, but this uncertainty can be estimated with the help of
a trust mechanism.

The Trust Mechanism

We look at trust as a means to estimate the proportion of
satisfactory instances in an answer. The idea of satisfactory
instance can be faithfully captured by a populated ontology
O∗

i that gives account of a hypothetical situation in which
peer Pi had classified all instances of the network respecting
its ontology Oi. In this way we can express the fact that Pi

considers an arbitrary instance a as an instance of c ∈ Oi

by means of the more succinct choice a ∈ ext∗i (c). It is
assumed that Oi = O∗

i and exti(c) ⊆ ext∗i (c) for every
class c ∈ Ci.

If peer Pi receives a set B of instances as an answer to the
query (1), the proportion of satisfactory instances is given
by the conditional probability p(ext∗i (c)|B). The probabil-
ity space under consideration is the triple (Ω,A, p(·)) where
Ω is the set of instances of the network (a finite set), A is
the power set of Ω, and p(·) is Laplace’s definition of prob-
ability. Our approach for trust aims at approximating these
conditional probabilities. Trust values can be used by peers
to select from a set of potential addresses those which are
expected to answer a query with most satisfactory instances.

Before the definition of trust, we introduce the notion of a
probabilistic populated ontology.

Probabilistic Populated Ontologies

Once an answer is received, it is added to the extension of
the queried class. In order to capture the evolvement of class
extensions in the network, we consider a discrete time vari-
able t ∈ N, and we write Ot

i to denote peer Pi’s populated
ontology at instant t, beginning with Oi = O0

i :

Oi = O0
i ,O

1
i , . . . ,O

t
i , . . . (3)

It is assumed that the underlying ontology does not change
ever, that is, Oi = Ot

i for all t ∈ N, and that {extti(c)}t∈N is
a non-decreasing sequence for all c ∈ Ci.

However, since we deal with approximations of probabil-
ities, new instances may not be 100% satisfactory. For this
reason, at time t, Pi is associated with a probabilistic popu-
lated ontology.

Peer Pi’s probabilistic populated ontology at time t is a
triple

Õt
i = ⟨Oi, I

t
i , ẽxt

t

i⟩

such that Iti is a set of instances and ẽxt
t

i is a function that
maps each class c of Oi with its probabilistic extension

ẽxt
t

i(c) = ⟨A∗,∆⟩

where

• A∗ is a (possibly empty) subset of ext∗i (c), i.e., a set of
instances that are certainly instances of the class c, and

• ∆ is empty or a collection {⟨Ak, Uk⟩}mk=1 where all Ak

are pairwise disjoint subsets of Iti which are also disjoint
from A∗, and all Uk are different real intervals of the form
[pk, pk] or [pk, 1], where pk ∈ (0, 1] is an approximation
or an approximated lower bound of the probability for Ak

to be a set of instances of the class c:

p(ext∗i (c)|A
k) ≈ pk if Uk = [pk, pk]

pk $ p(ext∗i (c)|A
k) ≤ 1 if Uk = [pk, 1]

Further, if we define the extension extti(c) = A∗+
⊎m

k=1 A
k,

the tuple Ot
i = ⟨Oi, I

t
i , ext

t
i⟩ must be a (classical) populated

ontology (in the sense that the axioms that relate classes with
their extensions are fulfilled).

The use of real intervals instead of real numbers follows
Lukasiewicz’s notation for conditional constraints in proba-
bilistic knowledge bases (Lukasiewicz and Straccia 2008).

Remark 1 Every peer populated ontology Oi can be seen

as a probabilistic populated ontology Õi = ⟨Oi, Ii, ẽxti⟩
where ẽxti(c) = {⟨exti(c), ∅⟩} for all c ∈ C.

Peers build probabilistic populated ontologies as more
queries are sent and answered, starting with the “probabilis-
tic version” of Oi:

Õi = Õ0
i , Õ

1
i , . . . , Õ

t
i , . . . (4)

And what was said about (3) at the beginning of this section
holds for the underlying populated ontologies of (4).

Definition of Trust

With the new terminology, peer Pj’s answer to the query (1)
through its translation (2) is the probabilistic extension

B̃ = ẽxt
t

j(d)

and if exttj(d) is denoted by B, an arbitrary instance a ∈ B

is qualified as a satisfactory instance providing a ∈ ext∗i (c).
The proportion of satisfactory instances in B is given by the
conditional probability p(ext∗i (c)|B). Peer Pi trusts peer Pj

as much as this value is high.

Definition 5 Let us consider two peers Pi and Pj (i ̸= j)
and let ⟨c, d,R⟩ be a correspondence of an alignment of
A(i, j). The trust that peer Pi has towards Pj at time t with
regard to the correspondence ⟨c, d,R⟩ will be denoted by

trust t(Pi, Pj , ⟨c, d,R⟩)

and approximates the probability

p(ext∗i (c)|ext
∗

j (d), ext
t
j(d))



Notice that ext∗j (d) has been included in the “given” part.
In this way, Pi can benefit from peer Pj’s confidence on its
own instances. This leads us to the notion of self-confidence.

Definition 6 The self-confidence of peer Pi with regard to
a class c ∈ Ci at time t will be denoted by self t(Pi, c) and
approximates the probability p(ext∗i (c)|ext

t
i(c)).

Both definitions are incomplete as we do not specify how
the probabilities are approximated. This comes below where
we explain the computation of trust.

Computation of Trust

Without loss of generality, we assume that no class extension
in any peer ontology Oi is empty. The following theorem is
the basis for completing Definition 6.

Theorem 1 Assume that ẽxt
t

i(c) = ⟨A∗, {⟨Ak, Uk⟩}mk=1⟩.
Let N = |extti(c)|, N

∗ = |A∗|, Nk = |Ak| for each k, and

s =
1

N

(
N∗ +

m∑

k=1

pkN
k
)

If there exists at least a k0 with Uk0 = [pk0 , 1] and pk0 ̸= 1,
s $ p(ext∗i (c)|ext

t
i(c)) ≤ 1, if not, p(ext∗i (c)|ext

t
i(c)) ≈ s.

Proof: it all boils down to the fact that p(ext∗i (c)|A
∗) = 1,

and hence we have p(ext∗i (c)|ext
t
i(c)) = p(A∗|extti(c)) +∑m

k=1 p(ext
∗
i (c)|A

k)p(Ak|extti(c)).

Peer Pi’s self-confidence is defined as s or the midpoint
of the interval [s, 1]:

self t(Pi, c) =def

{
1
2
(1 + s) if there exists a such k0

s otherwise

Notice that, as one would expect, self 0(Pi, c) = 1 for all
c of Pi’s ontology.

Regarding Definition 5, two kinds of information will be
considered when computing trust: the information provided
by alignments —gathered in a single trust value referred to
as alignment-based trust and denoted by trusta— and peers’
direct experience —or direct trust denoted by trust td. Trust
is then defined as a convex combination of these two values
(⟨Pi, Pj , ⟨c, d,R⟩⟩ is omitted for the sake of simpliticy):

trust t =def λt
a · trusta + λt

d · trust
t
d (5)

where λt
a and λt

d are the reliabilities on trusta and trusttd
at time t, respectively. In what follows we introduce all
these elements. Before, we present some helpful results from
probability theory the proofs of which are straightforward.

Lemma 1 Let (Ω,A, p) be a probability space. Let A, B
and C be three events with p(A,B) > 0. Then

p(C|A)+p(B|A)−1 ≤ p(C|A,B) ≤ p(C|A)−p(B|A)+1

Lemma 2 Let (Ω,A, p) be a probability space. Let A, B
and C be three events with p(A \B) > 0. Then

p(C|A \B) ≥ p(C|A)− p(B|A)

Alignment-based trust. If there is no past experience at
all, neither from Pi nor from its aquaintances, Pi can only
rely on the information provided by the alignments. If these
were correct then

c{=}d iff ext∗i (c) = ext∗j (d)

c{>}d iff ext∗i (c) ⊃ ext∗j (d)

c{<}d iff ext∗i (c) ⊂ ext∗j (d)

c{ # }d iff ext∗i (c) ∩ ext∗j (d) ̸= ∅

c{⊥}d iff ext∗i (c) ∩ ext∗j (d) = ∅

Now, recall that

p(ext∗i (c)|ext
∗

j (d), ext
t
j(d)) =

p(ext∗i (c), ext
∗
j (d), ext

t
j(d))

p(ext∗j (d), ext
t
j(d))

Therefore

if c{=}d or c{>}d then p(ext∗i (c)|ext
∗

j (d), ext
t
j(d)) = 1

if c{<}d or c{ # }d then p(ext∗i (c)|ext
∗

j (d), ext
t
j(d)) ∈ [0, 1]

if c{⊥}d then p(ext∗i (c)|ext
∗

j (d), ext
t
j(d)) = 0

Our proposal is:

trusta(Pi, Pj , ⟨c, d,R⟩) =def
1

|R|

∑

r∈R

t(r)

such that:

t(r) =

⎧
⎨

⎩

1 if r is ‘=’ or ‘>’
1
2

if r is ‘<’ or ‘#’

0 if r is ‘⊥’

Notice that if r is ‘<’ or ‘#’ then t(r) = 1
2

, which is the
mean of a uniform distribution in the interval [0, 1]. Also,
since there is no information at all, we consider all relations
in R to be equiprobable.

Since alignment trust is constant over time, we write
trusta instead of trustta in (5).

Direct trust. The more queries are sent and received, the
more the alignment-based trust can be contrasted. Direct
trust relies on peers’ direct experience so as to estimate the
proportion of satisfactory instances in an answer. Moreover,
it exploits the information included in peers’ probabilistic
populated ontologies. Let us explain how this is done.

First of all, by Lemma 1,

pt1 ≤ p(ext∗i (c)|ext
∗

j (d), ext
t
j(d)) ≤ pt2

where pt1 = p(ext∗i (c)|ext
t
j(d)) + p(ext∗j (d)|ext

t
j(d)) − 1,

pt2 = p(ext∗i (c)|ext
t
j(d)) − p(ext∗j (d)|ext

t
j(d)) + 1. And

with the help of Theorem 1, we can find an approximated
lower bound st for p(ext∗j (d)|ext

t
j(d)). Our goal is to find

two real numbers such that

qt1 $ p(ext∗i (c)|ext
t
j(d)) $ qt2

In this way, p̃t1 $ p(ext∗i (c)|ext
∗
j (d), ext

t
j(d)) $ p̃t2, where

p̃t1 = qt1 + st − 1 and p̃t2 = qt2 − st + 1.



We define trust td as the midpoint of the interval [p̃t1, p̃
t
2]:

trust td(Pi, Pj , ⟨c, d,R⟩) =def
p̃t1 + p̃t2

2

In order to compute qt1 and qt2 we proceed by induction
on t. For the lack of space we omit the basis and go straight
to the inductive step: qt1 and qt2 are given and qt+1

1 and qt+1
2

are to be computed. The following lemma, which is a direct
consequence of Theorem 1 and Lemma 1, will be helpful in
this regard.

Lemma 3 Let B be an arbitrary set of instances. Then

p $ p(ext∗i (c)|ext
t
i(c), B) $ q

where:

p = s+
|B ∩ extti(c)|

|extti(c)|
− 1 q = s−

|B ∩ extti(c)|

|extti(c)|
+ 1

and s is given by Theorem 1.

Without loss of generality we assume there is B ̸= ∅ with
extt+1

j (d) = exttj(d) +B. Thus p(ext∗i (c)|ext
t+1
j (d)) =

p(ext∗i (c)|ext
t
j(d))p(ext

t
j(d)|ext

t+1
j (d))

+ p(ext∗i (c)|B)p(B|extt+1
j (d))

Now, the set B can be partitioned into three subsets:

I
+
aut = {a ∈ B : a ∈ extti(c)} = extti(c) ∩B

I
−

aut = {a ∈ B : there exists c′ ∈ Oi

with a ∈ extti(c
′) and c ⊥ d}

Iaut = B \ (I+aut + I
−

aut)

and since B = I
+
aut + I

−

aut + Iaut, then p(ext∗i (c)|B) =

p(ext∗i (c)|I
+
aut)p(I

+
aut|B)

+ p(ext∗i (c)|I
−

aut)p(I
−

aut|B) + p(ext∗i (c)|Iaut)p(Iaut|B)

The sets I+aut and I
−

aut contain the instances of B that can
be processed automatically: those that already belong to the
extension of the query and the ones that are in extensions of
classes that are disjoint from the query. In order to estimate
p(ext∗i (c)|I

+
aut) and p(ext∗i (c)|I

−

aut) we resort to Lemma 3.

There exists two numbers p+aut and q+aut such that

p+aut $ p(ext∗i (c)|I
+
aut) $ q+aut

Regarding p(ext∗i (c)|I
−

aut), we partition I
−

aut into subsets
{Dk}rk=1 such that for each k, Dk ⊆ extti(c

k), where ck is
a maximal superclass that is disjoint from c. Therefore we
have ext∗i (c

k) ∩ ext∗i (c) = ∅ for all k and

p(ext∗i (c)|I
−

aut) = 1− p(ext∗i (c)|I
−

aut)

≤ 1− p(
r⋃

k=1

ext∗i (c
k)|I−aut)

= 1−
r∑

l=1

p(
r⋃

k=1

ext∗i (c
k)|Dl)p(Dl|I−aut)

≤ 1−
r∑

k=1

p(ext∗i (c
k)|Dk)p(Dk|I−aut)

By Lemma 3 we can find a real numbers {pk}rk=1 such that

pk $ p(ext∗i (c
k)|Dk)

for each k ∈ [1..r]. Then p(ext∗i (c)|I
−

aut) $ q−aut where

q−aut = 1−
1

|I−aut|

r∑

k=1

pk|Dk|

The set Iaut contains instances that cannot automatically
processed. To estimate the probability p = p(ext∗i (c)|Iaut)
peer Pi is assumed to perform a sampling with replacement
over the set Iaut and to decide the number of satisfactory
instances with the help of an oracle. If g > 0 is the size of the
sample G and h (0 ≤ h ≤ g) is the number of satisfactory
instances then

p(ext∗i (c)|Iaut) ≈ paut =
h+ 1

g + 2

This value is the first moment of a beta distribution, as it is
often used in Bayesian inference to describe the unknown
parameter of a binomial distribution.

Finally, qnew1 $ p(ext∗i (c)|B) $ qnew2 with

qnew1 =
1

|B|
(p+aut · n

+
aut + paut · naut)

qnew2 =
1

|B|
(q+aut · n

+
aut + q−aut · n

−

aut + paut · naut)

where n+
aut = |I+aut|, n

−

aut = |I−aut| and naut = |Iaut|. And

then qt+1
1 $ p(ext∗i (c)|ext

t+1
j (d)) $ qt+1

2 where

qt+1
1 =

1

|extt+1
j (d)|

(qt1 · |ext
t
j(d)|+ qnew1 · |B|)

qt+1
2 =

1

|extt+1
j (d)|

(qt2 · |ext
t
j(d)|+ qnew2 · |B|)

Reliabilities of Trust As already hinted before, as time
goes, we want direct trust to carry more weight in the global
trust value than the alignment-based trust. In other words,
trusta becomes less reliable than trust td as t gets higher.
This is faithfully captured by two non-negative functions λt

a

and λt
d such that λt

a+λt
d = 1, and with limt→∞ λt

a = 0 and
limt→∞ λt

d = 1. As an example:

λt
a =

1

t+ 1
λt
d =

t

t+ 1

In this particular case, λ0
a = 1 and λ0

d = 0.

Updating Probabilistic Populated Ontologies

Notice that Iaut gathers together all new instances in Pj’s
answer. If G+ and G− are the subsets of satisfactory and
unsatisfactory answers in the sample G then B′ = Iaut\G

−

is to be part of the new extension of c. It is straightforward
to see that p(ext∗i (c)|B

′) ≈ q′ where

q′ =
1

|B′|

(
paut · |Iaut \G|+ |G+|

)



If ẽxt
t

i(c) = ⟨A∗, {⟨Ak, Uk⟩}mk=1⟩, ẽxt
t+1

i (c) = ⟨B∗,Θ⟩
where B∗ = A∗+S+ and Θ = ∆+⟨B′, [q′, q′]⟩ unless there
exists k with Uk = [q′, q′], in which case the pair ⟨Ak, Uk⟩
is just replaced with ⟨Ak +B′, [q′, q′]⟩.

In order for Õt+1
i to be a probabilistic populated ontology,

B′ must be also included in the extension of any superclass
of c. Let d be a superclass of c. Recall that I−aut ∩ Iaut = ∅,
so B′ does not contain any instance which belongs to the
extension of a class disjoint from c. Hence it does not contain
any instance that belongs to the extension of a class disjoint
from d either. Actually it is not B′, but B′′ = B′ \ extti(d)
the set to be added, so what we obtain is indeed a partition.

By Lemma 2,

p(ext∗i (d)|B
′′) ≥ p(ext∗i (d)|B

′)− p(extti(d)|B
′)

≥ p(ext∗i (c)|B
′)− p(extti(d)|B

′)

Therefore p(ext∗i (d)|B
′′) % q′′ where

q′′ = q′ −
|B′ ∩ extti(d)|

|B′|

The new probabilistic extension ẽxt
t+1

i (d) is built by adding
⟨B′′, [q′′, 1]⟩ in a similar way as before. It is easy to check

that Õt+1
i is a probabilistic populated ontology.

Convergence of Trust

In order to prove the convergence of trust t, we only need to
check trust td, as trusta is constant and λt

a and λt
d converge

to 0 and 1, respectively, as t approaches ∞.
In a previous section it is described the computation of

trust t+1
d on the basis of trust td and an approximation of the

probability of the new part B to be satisfactory —the interval
[qnew1 , qnew2 ]. This has a counter part snew regarding Pj’s
self-confidences at time t+ 1 and t. The following is direct.

Lemma 4 Suppose that st ≤ snew. Then

1. if qt1 ≤ qnew1 then p̃t1 ≤ p̃t+1
1 , and

2. if qnew2 ≤ qt2 then p̃t+1
2 ≤ p̃t2.

Theorem 2 Assume that any time t we have st ≤ snew, and
qt1 ≤ qnew1 and qnew2 ≤ qt2. Then {trust td}t∈N converges.

Proof: under these hypotheses the collection {[pt1, p
t
2]}t∈N is

a system of nested intervals, and by Cantor’s theorem
⋂

t∈N

[pt1, p
t
2] ̸= ∅

The above intersection is an interval which may be a single
point or not, but in any case the sequence of midpoints, that
is, {trust td}t∈N converges.

Conclusions and Future Work
We have proposed a trust measure in semantic P2P systems
which is based on an estimation of the probability that peers
return satisfactory answers. It exploits the information that
is included in peers’ ontologies and alignments, along with
the information that comes from peers’ experience.

We presented the computation of this trust measure as
more queries are sent and answers received and we have
proven the convergence of this computation.

Many probabilistic approaches for trust exist in the field
of multiagent systems (Sabater and Sierra 2005). The one
of (Mui et al. 2001) also uses a Bayesian approximation but
relies on ratings instead of ontology content. One significant
difference between these approaches and ours is that we do
not assume any malicious behavior: unsatisfactory answers
are the result of peers’ incapacity to understand each other.

EigenTrust (Kamvar, Schlosser, and Garcia-Molina 2003)
is a peer-to-peer algorithm which, like ours, has a direct trust
computation. However, it is global in two distinct ways: (a)
it computes a unique reputation for each peer, and (b) this
value applies to any query while we remain query depen-
dent. Moreover, our direct trust is estimated from the content
of local ontologies unlike EigenTrust.

As future work we want to look into oracles, i.e., external
ways to evaluate the validity of a answer. We also would like
to investigate the trade-offs among ontology, alignment, and
query language expressiveness and the constraints that we
put on the ontology updating. The combination of trust and
information gain will be taken into consideration too.
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