
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
81

28
--

FR
+E

N
G

RESEARCH
REPORT
N° 8128
November 2012

Project-Teams EXMO and WAM

A Benchmark for
Semantic Web Query
Containment,
Equivalence and
Satisfiability
Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès,
Nabil Layaïda

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

http://hal.inria.fr/hal-00749286
http://hal.archives-ouvertes.fr

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

A Benchmark for Semantic Web Query
Containment, Equivalence and Satisfiability

Melisachew Wudage Chekol∗, Jérôme Euzenat∗, Pierre
Genevès†,

Nabil Layaïda∗

Project-Teams EXMO and WAM

Research Report n° 8128 — November 2012 — 17 pages

Abstract: The problem of SPARQL query containment has recently attracted a lot of atten-
tion due to its fundamental purpose in query optimization and information integration. New
approaches to this problem have been put forth, that can be implemented in practice. However,
these approaches suffer from various limitations: coverage (size and type of queries), response time
(how long it takes to determine containment), and the technique applied to encode the problem. In
order to experimentally assess implementation limitations, we designed a benchmark suite offering
different experimental settings depending on the type of queries, projection and reasoning (RDFS).
We have applied this benchmark to three available systems using different techniques highlighting
the strengths and weaknesses of such systems.

Key-words: Reasoning, semantic web, SPARQL queries, RDFS, containment, equivalence,
satisfiability, benchmark.

∗ INRIA & LIG
† CNRS

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

Un benchmark pour l’inclusion, l’équivalence et la
satifaisabilité des requêtes du web sémantique

Résumé : Le problème de l’inclusion des requêtes SPARQL a récemment pris de l’importance
à cause de son rôle fondamental dans l’optimisation de requêtes et l’intégration d’informations.
De nouvelles approches de ce problème ont été proposées qui peuvent être mises en œuvre en
pratique. Ces approches souffrent cependant de plusieurs limitations : couverture (taille et type
des requêtes), temps de réponse (temps nécessaire à la détermination de l’inclusion), techniques
utilisées pour coder le problème. Pour pouvoir déterminer expérimentalement les limites des
implémentations, nous avons conçu un benchmark qui offre différentes possibilités expérimentales
selon le type de requêtes, de projection et de raisonnement (RDFS). Nous avons appliqué ce
benchmark à trois systèmes disponibles en utilisant différentes techniques qui mettent en avant
les forces et les faiblesses de tels systèmes.

Mots-clés : Raisonnement, web sémantique, requêtes SPARQL, RDFS, inclusion, équivalence,
satisfaisabilité, référentiel de test

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

A Benchmark for Semantic Web Query Containment, Equivalence and Satisfiability 3

1 Introduction

Since its recommendation by W3C, SPARQL has come to widespread prominence in the semantic
web world. Broad and diverse studies are being conducted in order to improve and extend
this language. To this end, recently, static analysis of the language has attracted reasonable
attention, due to its foundational advantages in query optimization, satisfiability and information
integration. This problem has long been observed and extensively studied for relational database
query languages. On the other side, in the semantic web, where data is stored sporadically, large
datasets are being made available due to the rapid emergence of linked data, queries are executed
at remote endpoints, it is obvious that static analysis of SPARQL queries is relevant. Beyond this,
in SPARQL 1.1 federated queries are introduced, these are queries that are evaluated at several
remote endpoints and the final result is merged at the sender’s premises. Thus, checking the
satisfiability of these queries before sending them to the remote endpoint saves communication
time. Furthermore, often queries are embedded in programs (Java, C++, and other programming
languages), static analysis is useful to avoid runtime errors in these settings.

Static analysis covers containment, equivalence and satisfiability. Several studies of these
problems have been carried out for different query languages: from conjunctive queries in re-
lational databases, conjunctive queries in description logic, to SPARQL queries most recently.
These studies are often supported by sound mathematical theorems and complexity results. How-
ever, a shortcoming of these studies is that they have little or no experimental evaluation. To
overcome this shortcoming, we test the containment and equivalence of tree-structured SPARQL
queries using a prototype implementation.

In general, a query is referred to as cyclic if the graph structure induced from the query is
cyclic. It has been long noted that cyclic queries contribute to a further jump in the complexity
of containment and equivalence problems. Most notably, Chandra and Merlin 1977 [1] proved
that containment and equivalence of relational conjunctive queries is NP-complete. However, this
complexity reduces to P if the queries are acyclic [2, 3]. Further, the study in [4] demonstrated
that containment of DLR (description logics with n-ary relations) conjunctive queries is double
exponential but this complexity bound reduces to exponential if the query on the right-hand
side of the containment has a tree structure. In other words, cycles among the non-distinguished
variables contribute to a further jump in containment and equivalence complexity. Meanwhile,
we observed that most of the queries currently used are acyclic. Hence, considering acyclic query
containment is relevant.

The overall purpose of this paper is designing a benchmark tailored for tree-structured queries
and evaluating the performance of the current state-of-the-art using this benchmark. In previous
work [5] and [6], we developed techniques for encoding queries and schema axioms into the
µ-calculus [7] in order to determine the containment of SPARQL queries in the presence of
schema axioms. As such, we have proved a double exponential upper bound for containment
and equivalence problems. Interestingly, this bound reduces to exponential if the right-hand
side query has a tree-structure. Using this encoding scheme and exponential time satisfiability
solvers from [8] and [9], we conduct an experiment to test the containment and equivalence of
tree-structured SPARQL queries. In doing so, we modify the encoding in [5, 6] in order to use
the solver from [9]. We compare the performance of these two satisfiability solvers, [8] and [9].
Moreover, we also evaluate the performance of the subsumption and equivalence solver from [10].
However, as it is not an exponential time solver like the other two ([8] and [9]), we judge its
performance on its own.

Outline: after presenting the foundations of RDF(S) and SPARQL (§2), we provide an in
depth analysis of the structure of benchmark (§3), followed by a description of the current state-

RR n° 8128

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

4 Chekol, Euzenat, Genevès, Layaïda

of-the-art of query containment systems (§4), using these systems we conduct experiments and
explain the results (§5). We finalize this study with a summary concluding remarks (§7).

2 Preliminaries

We present the foundations of RDF, schema language SHI, and Tree-structured SPARQL
queries.

2.1 RDF

Resource Description Framework (RDF) is a W3C standard language to create machine-readable
content in the semantic web. RDF describes resources using a directed graph with a subject node
connected to an object node and is labelled by a predicate. The subject, predicate and object
make up a triple and a set of triples form a graph.

Example 1 An RDF graph that models a university domain.

Jerome a Professor.

SemanticWeb a Course.

Jerome givesCourse SemanticWeb.

Manuel memberOf (Hadas Exmo).

Asan a Student.

Professor subClassOf Person.

Asan knows Manuel.

givesCourse domain Person.

2.1.1 RDFS

RDF has a simple schema language called RDF Schema (RDFS) that enables to express concept
and property hierarchies as well as typing restrictions. In this work, we consider a benchmark
setting containing the containment problem under the presence of core RDFS axioms namely
subclass (sc), subproperty (sp), domain (dom), and range (range). Nonetheless, RDFS lacks
some useful constructs (negation, inverse properties, existential concept and so on) in order to
be a complete schema language. Since a description logic fragment of RDFS is a subset of SHI,
we consider it for this study.

2.2 SHI
RDF has a simple schema language called RDF Schema (RDFS) that allows to express concept
and property hierarchies as well as typing restrictions. Nonetheless, RDFS lacks some useful
constructs (negation, inverse properties, existential concept and so on) in order to be a complete
schema language. Since a description logic fragment of RDFS is a subset of SHI, we consider it
for this study.

Example 2 An SHI schema modeling a university domain is shown in Example 1.

Inria

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

A Benchmark for Semantic Web Query Containment, Equivalence and Satisfiability 5

PostgradStudent v Student UndergradStudent v Student
Department v Faculty Faculty v University

Staff u Student v ⊥
Professor v Person Student v Person

Chair ≡ Person u ∃headOf.Department
Student ≡ Person u ∃takesCourse.Course

Professor ≡ Person u ∃givesCourse.Course
∃headOf.> v Professor takesCourse ≡ givesCourse−

Staff v AdministrativeStaff t Professor

2.3 SPARQL
SPARQL is W3C recommended query language based on simple graph patterns. It allows vari-
ables to be bound to components in the input RDF graph. In addition, operators akin to
relational joins, unions, left outer joins, selections, and projections can be combined to build
more expressive queries. Queries are formed from query patterns which in turn are defined in-
ductively from triple patterns: a tuple t ∈ UBV×UV×UBLV, with V a set of variables disjoint
from UBL (URIs, Blank nodes and Literals), is called a triple pattern. Triple patterns grouped
together using operators AND (.) and UNION form query patterns. We do not consider OPTIONAL
and FILTER query patterns because containment over the full SPARQL is undecidable. We use
an abstract syntax that can be easily translated into the µ-calculus.

Definition 1 A query pattern q is inductively defined as follows :

q ::= UBV ×UV ×UBLV | q1 . q2 | {q1} UNION {q2}
| q1 OPTIONAL {q2}

Example 3 illustrates this. We refer the readers to [11] for a formal presentation and semantics
of SPARQL.

Example 3 Consider the following queries, taken from the benchmark, that retrieve students’
information from the university dataset in Example 1.

Select all students’ information.

SELECT ?x ?y ?z ?t ?ssn
?a ?sex ?e ?d ?c
WHERE { Q7a

?x a :Student . ?x :name ?y .
?x :nickName ?z . ?x :telephone ?t .
?x :ssn ?ssn . ?x :age ?a .
?x :sex ?sex . ?x :emailAddress ?e .
?x :memberOf ?d . ?x :takesCourse ?c .

}

Select master students’ information.

SELECT ?x ?y ?z ?t ?ssn ?a ?sex ?e ?d ?c
WHERE { Q7b

?x a :Student . ?x :name ?y .
?x :nickName ?z . ?x :telephone ?t .
?x :ssn ?ssn . ?x :age ?a .
?x :sex ?sex . ?x :emailAddress ?e .
?x :memberOf ?d . ?x :takesCourse ?c .
?x :masterDegreeFrom ?master .

}

Definition 2 (Containment) Given a set of RDFS axioms S and queries Q1 and Q2 with the
same arity, Q1 is contained in Q2 with respect to S, denoted Q1 vC Q2, if and only if the answers
of Q1 are included in the answers of Q2 for every graph G satisfying S.

Example 4 From the queries in Example 3, Q7b v Q7a and Q7a 6v Q7b.

RR n° 8128

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

6 Chekol, Euzenat, Genevès, Layaïda

In order to benchmark and assess the current state-of-the-are, for this study, we have identified
a class of SPARQL queries called tree-structured queries. These are queries that have a tree
structure when seen as a graph. The following section introduces this notion.

2.3.1 Tree-structured SPARQL Queries

In relational databases, Bernstein and Chiu [2] classified queries into two types: tree (is an undi-
rected graph in which any two vertices are connected by exactly one simple path) and cyclic
queries. An algorithm to decide whether a query is cyclic or not was presented in their pa-
per. This algorithm is based on the idea of representing queries as hypergraphs. Infact, queries
have often been considered as hypergraphs (see [12, 2] for instance). It is possible to represent
queries as hypergraphs where the nodes of the hypergraph are the variables and constants in
the query. There is one hyperedge corresponding to each query subgoal that includes the vari-
ables and constants occurring in that subgoal. These studies proved that (Boolean) conjunctive
query evaluation, while NP-hard in general, is polynomial in case of acyclic queries, i.e., queries
whose associated hypergraphs are acyclic [3]. This distinction of queries as tree and cyclic has
its advantages: for example, the evaluation of acyclic (Boolean) conjunctive queries is highly
parallelizable [13].

Borrowing the same notion from databases, we propose to view SPARQL queries as graphs.
More specifically, a SPARQL query is represented as a bipartite graph, with two kinds of nodes:
triple nodes and terms nodes (are URIs, blank nodes, and literals). Using this graph, one is able
to determine whether a query is cyclic or not, a formal definition is given below.

Definition 3 (Cyclic Query) A SPARQL query is referred to as cyclic if and only if a graph
constructed from the query patterns is cyclic and acyclic otherwise.

Example 5 The query shown graphically in Figure 1 is a cyclic query.

SELECT ?x WHERE {
?x :married ?y . ?y :knows ?z .
?z :knows ?r . ?r :knows ?y .

}

x

y

married

z

knows

r

Figure 1: Cyclic query

To the best of our knowledge, no experimental work has been conducted to verify how many
of real world queries are acyclic or cyclic. To answer this question, we analysed the DBpedia
(http://dbpedia.org) query log and obtained 378530 real world queries, out of which 15.8%
were syntactically incorrect. Using the remaining 74.2%, we tested the cyclicness and acyclicness
of queries and found out that: more than 87% of semantic web queries, as visible through
DBpedia logs, are acyclic, i.e., a graph constructed from query elements is acyclic, and the
remaining 13% are cyclic. This lays the foundation that acyclic queries make up a major part of
the real world queries, thus, their separate study is fundamental. Detailed results on the analysis
of the structure of queries (tree, directed acyclic graph (DAG), and cyclic) are presented in Table
2.3.1.

Beyond the cyclic and acyclic tests, we checked how many of the queries have projection, i.e.,
not all variables in the graph pattern are distinguished, or not. In this setting, we found out

Inria

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

http://dbpedia.org

A Benchmark for Semantic Web Query Containment, Equivalence and Satisfiability 7

Query graph # of queries

Acyclic Tree 150145
DAG 146077

Cyclic 22591
Incorrect syntax 59717

Query graph Query type # of queries

DAG UCQs 50355
Other 95722

Tree UCQs 100001
Other 50144

Table 1: Cycle detection

that 63.4% of the queries have projection and 36.6% of the queries have no projection. Further,
all of the cyclic queries have projection and out of the tree-structured ones, 65% of the queries
have projection and the rest have no projection. These results motivate the design principles for
the benchmark.

3 Benchmark

In this section, we present the query containment setup, structure of the benchmark suite and
the benchmark description.

3.1 Query Containment Setup

Query containment is the problem of determining if the result of one query is included in the
result of another for any RDF graph. Its advantages are broad: query optimizations, information
integration, satisfiability for instance. A test case for containment comprises two queries Q1 and
Q2, and an optional schema S. The query containment solver (QC solver) produces yes or no
answers, i.e., yes if Q1 is contained in Q2 and no otherwise. A general workflow diagram designed
for this purpose is illustrated in Figure 2.

Q1 Q2 S

QC Solver

Q1 vS Q2 ?

Figure 2: General workflow of query containment test

3.2 Structure of the Benchmark

The four key requirements of a benchmark laid out by the benchmark handbook [14] are: under-
standability i.e., the queries and hence axioms should be understandable, scalability, portability
i.e., being able to run on different platforms, and finally relevance i.e., testing typical operations
such as joins, disjunctions, and typing restrictions. Thus, we designed the benchmark following
these principles.

Benchmark queries are chosen according to the following criteria: projection (or no projec-
tion), operator nesting, number of connectives (joins and disjunctions), and requiring RDFS

RR n° 8128

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

8 Chekol, Euzenat, Genevès, Layaïda

reasoning. Our queries also vary in general characteristics like selectivity, query size, and differ-
ent types of joins. One thing that should be noted is that, the benchmark criteria are selected in
line with the capacity of the current state-of-the-art. The benchmark contains three test suites:

- Union of Conjunctive Queries with Projection (UCQProj) this setting comprises 28 queries
which have variables in the SELECT clause (aka distinguished variables) hence the name
projection. In addition to the projection, the queries are chosen according to selectivity,
number of conjunction and unions, and size (in terms of the number of connectives). For
instance, consider the queries in Example 3 which contain 9 (Q7a) and 10 (Q7b) conjunc-
tions respectively. This test suite assesses containment solvers that support projection and
union of conjunctive queries.

- Conjunctive Queries with No Projection (CQNoProj) this suite is designed to address the
containment of basic graph patterns (conjunctive queries). It contains 20 queries differing
in the number of conjunctions and variables they contain. This test suite is developed for
containment solvers that do not support projection of variables in queries. Also, in this
test suite, disjunctive (union) queries are not allowed.

- Union of Conjunctive Queries under RDFS reasoning (UCQrdfs) this test suite, as its name
implies, is designed for containment of queries that require RDFS reasoning. Thus, a set of
RDFS schemas are selected in order to be able to test containment in the presence of these
constraining schemas. The four schemas cover concept and property hierarchies, and typing
(domain and range) restriction axioms. Along with the schemas, the test suite contains
18 queries differing in the: number of operators, number of distinguished variables, and
having projection (or no projection).

3.3 Benchmark Description

We have identified three test suites: UCQProj, CQNoProj, and UCQrdfs, for containment of tree-
structured union of conjunctive SPARQL queries under RDFS axioms. In this section, we detail
each of these test suites. The benchmark is available on line at http://sparql-qc-bench.
inrialpes.fr/.

3.3.1 UCQProj

In this test suit, there are 28 test cases (p1 – p28 shown in Table 2). Each test case comprises two
tree-structured union of conjunctive queries. The test cases differ in the number of distinguished
variables (Dvars) and connectives (conjunction or union). To this end, in the table, the size of
the queries measured in terms of the number of connectives is depicted. Tests are carried out
using this benchmark with the solvers AFMU and TreeSolver.

3.3.2 CQNoProj

as discussed in Section 3.2, this test suite contains conjunctive queries with no projection (denoted
as nop followed by case number, shown in Table 3) is designed for containment of basic graph
patterns. For this case, we have identified 20 different test cases (nop1 – nop20), each case
represents containment between two queries. All the test cases in this setting are shown in Table
3, along with the number of connectives and variables in the queries.

Inria

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

http://sparql-qc-bench.inrialpes.fr/
http://sparql-qc-bench.inrialpes.fr/

A Benchmark for Semantic Web Query Containment, Equivalence and Satisfiability 9

A
N
D

U
N
IO

N

D
va
rs

p1 Q1a v Q1b
1 0 0 0 1

p2 Q1b v Q1a
p3 Q2a v Q2b

5 5 0 0 3
p4 Q2b v Q2a
p5 Q3a v Q3b

2 1 0 0 2
p6 Q3b v Q3a
p7 Q4c v Q4b

3 5 0 0 1
p8 Q4b v Q4c
p9 Q5a v Q5b

0 0 0 0 2
p10 Q5b v Q5a
p11 Q6a v Q6b

2 2 0 0 1
p12 Q6b v Q6a
p13 Q6a v Q6c

2 1 0 0 1
p14 Q6c v Q6a

A
N
D

U
N
IO

N

D
va
rs

p15 Q7a v Q7b
9 10 0 0 10

p16 Q7b v Q7a
p17 Q8a v Q8b

3 2 0 0 4
p18 Q8b v Q8a
p19 Q9a v Q9b

4 4 0 0 2
p20 Q9b v Q9a
p21 Q9c v Q9b

4 4 0 0 2
p22 Q9b v Q9c
p23 Q10a v Q10b

2 9 7 1 10
p24 Q10b v Q10a
p25 Q11a v Q11b

6 7 2 0 2
p26 Q11b v Q11a
p27 Q12a v Q12b

3 3 1 1 2
p28 Q12b v Q12a

Table 2: UCQProj

A
N
D

V
ar
s

nop1 Q1a v Q1b
1 0 1

nop2 Q1b v Q1a
nop3 Q2a v Q2b

5 5 3
nop4 Q2b v Q2a
nop5 Q3a v Q3b

2 1 2
nop6 Q3b v Q3a
nop7 Q4c v Q4b

3 5 3
nop8 Q4b v Q4c
nop9 Q6a v Q6b

2 2 3
nop10 Q6b v Q6a

A
N
D

V
ar
s

nop11 Q6a v Q6c
2 1 3

nop12 Q6c v Q6a
nop13 Q6b v Q6c

2 1 3
nop14 Q6c v Q6b
nop15 Q7a v Q7b

9 10 10
nop16 Q7b v Q7a
nop17 Q8a v Q8b

3 2 4
nop18 Q8b v Q8a
nop19 Q9a v Q9b

4 4 3
nop20 Q9b v Q9a

Table 3: CQNoProj

3.3.3 UCQrdfs

in this test suite, there are 4 different schemas, C1–C4 in Table 4. The table also shows that the
type and number of axioms used in each schema.

In query containment under RDFS reasoning, there are 28 test cases (rdfs1 – rdfs28 of Table
5). In comparison to the test cases in UCQProj and CQNoProj setting, the query sizes are small.
Each test case is composed of two tree-structured UCQs and a schema.

RR n° 8128

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

10 Chekol, Euzenat, Genevès, Layaïda

Schema Axiom types
C1 subclass (2)
C2 domain (1) and range (1)
C3 subproperty (2), subclass (1) and domain (1)
C4 subclass (1)

Table 4: Axiom types for each of the four schemas.

A
xi
om

A
N
D

U
N
IO

N

D
va
rs

rdfs1 C1 Q9a v Q9c
0 0 0 1 1

rdfs2 C1 Q9c v Q9a
rdfs3 C1 Q9a v Q9b

0 0 0 0 1
rdfs4 C1 Q9b v Q9a
rdfs5 C1 Q9b v Q9c

0 0 0 1 1
rdfs6 C1 Q9c v Q9b
rdfs7 C1 Q9d v Q9e

4 4 0 0 1
rdfs8 C1 Q9e v Q9d

rdfs9 C2 Q10b v Q10d
0 0 0 0 1

rdfs10 C2 Q10d v Q10b
rdfs11 C2 Q10e v Q10b

1 0 0 0 1
rdfs12 C2 Q10b v Q10e

rdfs13 C3 Q11b v Q11c
0 0 0 0 1

rdfs14 C3 Q11c v Q11b

A
xi
om

A
N
D

U
N
IO

N

D
va
rs

rdfs15 C3 Q11b v Q11d
0 0 0 0 1

rdfs16 C3 Q11d v Q11b
rdfs17 C3 Q11c v Q11d

0 0 0 0 1
rdfs18 C3 Q11d v Q11c
rdfs19 C3 Q11b v Q11a

0 0 0 0 1
rdfs20 C3 Q11a v Q11b
rdfs21 C3 Q11e v Q11a

0 0 1 0 1
rdfs22 C3 Q11a v Q11e

rdfs23 C4 Q13a v Q13b
3 1 3 1 2

rdfs24 C4 Q13b v Q13a
rdfs25 C4 Q13a v Q13c

3 1 3 1 2
rdfs26 C4 Q13c v Q13a
rdfs27 C4 Q13b v Q13c

3 1 3 1 2
rdfs28 C4 Q13c v Q13b

Table 5: UCQrdfs

4 Tested Query Containment Solvers

In this section, we present three state-of-the-art query containment solvers. These systems are
tested using the benchmark suite.

4.1 AFMU

AFMU, stands for Alternation Free two-way MU-calculus [8], is a satisfiability (SAT) solver for
the alternation fragment of µ-calculus. It is a prototype implementation which determines the
satisfiability of a µ-calculus formula by producing a yes or no answer.

4.2 TreeSolver

TreeSolver: the XML tree logic solver1 performs static analysis of XPath queries which comprises
containment, equivalence and satisfiability. To perform these tasks, the solver translates XPath
queries into µ-calculus formulas and then it tests the unsatisfiability of the formula. Unlike the

1http://wam.inrialpes.fr/websolver/

Inria

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

http://wam.inrialpes.fr/websolver/

A Benchmark for Semantic Web Query Containment, Equivalence and Satisfiability 11

No projection Projection Reasoning

CQ AFMU, TreeSolver, AFMU, TreeSolver AFMU, TreeSolver
SPARQL-algebra

UCQ AFMU, TreeSolver AFMU, TreeSolver AFMU, TreeSolver

OPTIONAL SPARQL-algebra - -

Blank nodes AFMU, TreeSolver AFMU, TreeSolver AFMU, TreeSolver

Table 6: A comparison of features supported by current systems

AFMU solver, the unsatisfiability test is performed in a time of 2O(n) whereas it is 2O(n logn) for
AFMU, where n is the size of the formula. The SAT solver component of this system is taken
for our purpose.

Around the SAT solvers, AFMU and TreeSolver, we have implemented a wrapper, depicted in
Figure 3, used for experimentation. This wrapper, together with the solvers, is used to determine
query containment.

4.3 SPARQL-algebra

SPARQL-algebra is an implementation of SPARQL query subsumption and equivalence based
on the theoretical results in [10]. This implementation supports AND and OPTIONAL queries
with no projection. An on line version of the solver is available at http://db.ing.puc.cl/
sparql-algebra/.

A summary of the features supported by state-of-the-art of query containment solvers is
presented in Table 6.

Out of the three systems used in the experiments, AFMU and TreeSolver are µ-calculus
satisfiability solvers that need an intermediate system that translates queries into formulas (based
on previous works) to determine containment whereas SPARQL-algebra is self contained.

Using the containment solvers we designed an experimental setup that comprises several
software components. This setup is illustrated in Figure 4, it is mainly based on the theoretical
results developed in our previous works [5, 6, 15]. The components of the architecture are detailed
as follows:

◦ Jena SPARQL parser2 - Jena is an open source semantic web framework for Java. It
provides an API, ARQ, for parsing and evaluating SPARQL queries. We used this API to
parse queries and create µ-calculus formulas.

◦ Mu-calculus Encoder - this component consists of a package for graph construction, cycle
detection, and formula creation from queries and axioms (η(S)∧A(Q1)∧¬A(Q2)). It has
two parts, the first component produces the formulas for the solver AFMU and the second
one computes the formulas for the TreeSolver.

◦ SAT solvers - once the formulas are created, satisfiability solvers are used to determine
the unsatisfiability of the formula and hence containment. Presently, for tree-structured
queries, two SAT solvers, AFMU and TreeSolver, are available.

Next, experimental results produced using the benchmark are explained.

2http://jena.sourceforge.net/documentation.html

RR n° 8128

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

http://db.ing.puc.cl/sparql-algebra/
http://db.ing.puc.cl/sparql-algebra/
http://jena.sourceforge.net/documentation.html

12 Chekol, Euzenat, Genevès, Layaïda

Q1 Q2 S

ARQ Parser ARQ Parser

µ-calculus Encoder

η(S)∧A(Q1)∧
¬A(Q2)

Jena parser

SAT solver

Yes No

Figure 3: Query containment wrapper around SAT solvers

5 Experimentation

All the experiments were conducted in a MacBook Pro V10.6.8, Intel Core i7, 2GHz processor
speed, and 4GB memory. We carried out two sets of experiments. The first one involves cycle
detection – this is done in order to assess the relevance and the percentage of tree-structured
real world queries thereby underlining the purpose of the study. The second one involves three
experiments on the containment of tree-structured UCQs. The details are explained in the
following sections. It is beyond the scope of this paper to provide an in-depth comparison of
existing solvers. Rather, we want to give first insights into the state-of-the art and highlight
deficiencies of engines based on the benchmark outcome.

Q1 Q2 S

ARQ Parser

SPARQL-
algebra

µ-calculus
Encoder 1

µ-calculus
Encoder 2

Jena parser

AFMU TreeSolver

Yes No

Figure 4: Experimental setup for query containment test

Inria

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

A Benchmark for Semantic Web Query Containment, Equivalence and Satisfiability 13

We conducted tests to compare the performances of the containment solvers AFMU, Tree-
Solver and SPARQL-algebra.

5.1 1st Experimental setting: UCQProj

The test suite used for this experiment is UCQProj (see Section 3.3.1). We compared two
systems: TreeSolver and AFMU. As can be seen in Figure 5, the TreeSolver outperforms AFMU
in all of the benchmark test cases. Further, in one of the cases (p16), where the queries have more
than 9 joins, AFMU was not responsive after running 1.5 hours. This behaviour is not unique to
AFMU, as whenever there are more than 10 joins in the query, the same situation is observed in
the TreeSolver. For instance, for the test case p16, the TreeSolver was non-responding in some
runs and in some others it eventually runs out of space.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p1
0

p1
1

p1
2

p1
3

p1
4

p1
5

p1
6

p1
7

p1
8

p1
9

p2
0

p2
1

p2
2

102

103

104

m
ill
is
ec
on

ds

TreeSolver AFMU

Figure 5: Results for UCQProj test suite (logarithmic scale)

5.2 2nd Experimental setting: CQNoProj

In the benchmark, the test suite used for this experiment is CQNoProj (see Section 3.3.2). In
light of the fact that, SPARQL-algebra supports only CQs with no projection, we deemed it
as necessary to evaluate its performance against TreeSolver and AFMU. The results of this
comparison are depicted in Figure 6. From the graph, it can be seen that the performance
of SPARQL-algebra is much faster than that of AFMU or TreeSolver. In fact, this comes as
no surprise, due to the reason that the latter are exponential time solvers whereas the first is
polynomial time solver. Note also that, whenever containment is determined between queries that
contain more than 10 joins, Tree Solver and AFMU become non-responsive (do not terminate).

5.3 3rd Experimental setting: UCQrdfs

The test suite used for this experiment is UCQrdfs (cf. Section 3.3.3). In this experiment, the
containment of tree-structured UCQs under RDFS reasoning is tested. Three approaches that
are used to encode the containment problem under RDFS axioms is presented in [5]. For this
task, we have chosen the schema encoding approach – amounts to encoding the schema axioms
as µ-calculus formulas [5].

The results presented in Figure 7 show that except for one case (rdfs13) the TreeSolver out
performs AFMU. In fact, like the other two experimental settings, when the query size gets
larger both solvers either take a substantial amount of time or run out of space or become
non-responsive.

RR n° 8128

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

14 Chekol, Euzenat, Genevès, Layaïda

no
p1

no
p2

no
p3

no
p4

no
p5

no
p6

no
p7

no
p8

no
p9

no
p1
0

no
p1
1

no
p1
2

no
p1
3

no
p1
4

no
p1
5

no
p1
6

no
p1
7

no
p1
8

no
p1
9

no
p2
0

100

102

104

m
ill
is
ec
on

ds

SPARQL-algebra TreeSolver AFMU

Figure 6: Results for CQNoProj test suite (logarithmic scale)

rd
fs
1

rd
fs
2

rd
fs
3

rd
fs
4

rd
fs
5

rd
fs
6

rd
fs
7

rd
fs
8

rd
fs
9

rd
fs
10

rd
fs
11

rd
fs
12

rd
fs
13

rd
fs
14

rd
fs
15

rd
fs
16

rd
fs
17

rd
fs
18

200

400

m
ill
is
ec
on

ds

TreeSolver AFMU

Figure 7: Results for UCQrdfs test suite

In summary, all the solvers under all of the experimental settings responded positively i.e.,
they all determined containment correctly except for SPARQL-algebra. It responded negatively,
in test cases nop7 and nop8 cf. Table 3, when blank nodes are used in the queries.

5.4 Discussion

As it can be observed in the experiments, a lot needs to be done in order to alleviate the
shortcomings of the current systems. Here, we discuss the pros and cons of these systems.

5.4.1 AFMU

In terms of capacity AFMU, is able determine containment of acyclic UCQs under ontological
axioms. Specially, for queries of reasonable size, the solver determined their containment cor-
rectly. The problem is that when queries have large size (for instance, more than 8 joins), the
solver takes more than 1/2 hour or becomes non-responsive. This is shown in the result graph in
Figure 5 for test cases p15 and p16, also in Figure 6 for test cases fnop15 and nop16. However,
the implementation of this solver is very poor, even the authors had documented that it can be
improved so as to have faster response times. In fact, this is reflected in the experiments that it
has the worst performance out of the three. Therefore, reimplementing or improving the solver
should be noted as a perspective.

Inria

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

A Benchmark for Semantic Web Query Containment, Equivalence and Satisfiability 15

In another note, to be able to determine containment of general UCQs (beyond the tree-
structured ones), an extension of the solver is compulsory.

5.4.2 TreeSolver

this solver works well with tree-structured queries and RDFS reasoning if the queries have rea-
sonable size, it has an on line version, and it also supports static analysis of XPath queries among
others. Its limitations are similar to that of AFMU: no support for cyclic queries, and queries of
large size (for example, nop16 and p16).

5.4.3 SPARQL-algebra

the advantages of this solver compared to the others are that, it supports subsumption of OP-
TIONAL query patterns and also cyclic CQs. Its limitations include: no support for distin-
guished variables, i.e., no projection, UNION, and reasoning. Moreover, basic graph patterns
(AND queries) with blank nodes are not supported, in fact, this is reflected in the experiment
cf. section 5.2 test cases nop7 and nop8 in Figure 6.

In this paper, we have first studied the profile of real-world queries with respect to theoretical
characterisation and found that (1) a large part of these queries are acyclic, and (2) those parts
that either contain projections (effective SELECT) or not, are significant. From this, we have
designed a containment benchmark made of three first query containment test suites testing
projection, no projection and RDFS reasoning.

We have applied these to existing containment solvers (AFMU, TreeSolver and SPARQL-
algebra). Obviously, current µ-calculus solvers are not optimised for conjunctive queries without
projection which are better dealt with by SPARQL-algebra. Hence, so far the best strategy is to
use one solver when queries are conjunctive and do not have projection and another when they
have projection, union and axioms.

These analyses confirm that our benchmarks are well-suited for pinpointing the theoretical
shortcomings of containment solvers. These experimental results show that the current state-of-
the-art is at its early stage and requires improvement and new ways to determine containment
and equivalence of queries, in order to become a useful tool for query optimizers. In the future,
we plan to work towards this direction.

Additionally, we will improve and extend this benchmark, e.g., adding other test suites de-
signed for containment of queries under expressive description logic axioms such as OWL2.

6 Related Works

Recently, static analysis and optimization of SPARQL queries has attracted widespread attention,
notably [5, 6, 15, 10] for static analysis and [16, 17, 18, 10] for optimization. These studies have
grounded the theoretical aspects of these fundamental problems. However, to the best of our
knowledge, there is only one implementation from [10] and it supports only conjunction and
OPTIONAL queries with no projection.

On the other hand, in databases, containment of union conjunctive queries (UCQs) is well
studied and has a well know NP-complete complexity. The importance of the study of this prob-
lem goes beyond the field of databases, it has its fair share from the description logic community.
Many of the works, from description logics, concentrated on the problem of query answering as
containment follows from it. These works, have sound theoretical proofs, algorithms, mathe-
matical explanations, and so on. However, they lack an implementation (or experimentation) of
their approaches.

RR n° 8128

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

16 Chekol, Euzenat, Genevès, Layaïda

In line with CQs in databases and description logic worlds, we have regular path queries—
languages that are used to query arbitrary length paths in graph databases — in semi structured
data. Like CQs, they have been used and studied widely. They are different from CQs in that,
they allow recursion by using regular expression patterns. The problem of containment has
been addressed for extensions of this language. In this regard, a prominent language used in
semi-structured data is XPath. This language has been studied extensively over the last decade.
These studies are all round, from extending or limiting to static analysis. Static analysis of
XPath queries has been studied in [9], encompassing containment, equivalence, coverage, and
satisfiability of XPath queries. This work is motivated by [9] in that the approach to study these
problems using a graph logic and providing an implementation which has been put to practice.

Finally, various SPARQL query evaluation performance benchmarks have been proposed
[19, 20, 21], but no SPARQL query containment benchmark to our knowledge.

7 Conclusion

In this paper, we have first studied the profile of real-world queries with respect to theoretical
characterisation and found that (1) a large part of these queries are acyclic, and (2) those parts
that either contain projections (effective SELECT) or not, are significant. From this, we have
designed a containment benchmark made of three first query containment test suites testing
projection, no projection and RDFS reasoning.

We have applied these to existing containment solvers (AFMU, TreeSolver and SPARQL-
algebra). Obviously, current µ-calculus solvers are not optimised for conjunctive queries without
projection which are better dealt with by SPARQL-algebra. Hence, so far the best strategy is to
use one solver when queries are conjunctive and do not have projection and another when they
have projection, union and axioms.

These analyses confirm that our benchmarks are well-suited for pinpointing the theoretical
shortcomings of containment solvers. These experimental results show that the current state-of-
the-art is at its early stage and requires improvement and new ways to determine containment
and equivalence of queries, in order to become a useful tool for query optimizers. In the future,
we plan to work towards this direction.

Additionally, we will improve and extend this benchmark, e.g., adding other test suites de-
signed for containment of queries under expressive description logic axioms such as OWL2.

References

[1] A. K. Chandra and P. M. Merlin, “Optimal Implementation of Conjunctive Queries in
Relational Data Bases,” in Proceedings of the ninth annual ACM symposium on Theory of
computing. ACM, 1977, pp. 77–90.

[2] P. Bernstein and D. Chiu, “Using semi-joins to solve relational queries,” Journal of the ACM
(JACM), vol. 28, no. 1, pp. 25–40, 1981.

[3] M. Yannakakis, “Algorithms for acyclic database schemes,” in VLDB’81, vol. 7, 1981, pp.
82–94.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini, “Conjunctive Query Containment and
Answering under Description Logics Constraints,” ACM Trans. on Computational Logic,
vol. 9, no. 3, pp. 22.1–22.31, 2008.

Inria

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

A Benchmark for Semantic Web Query Containment, Equivalence and Satisfiability 17

[5] M. W. Chekol, J. Euzenat, P. Genevès, and N. Layaïda, “SPARQL query containment under
RDFS entailment regime,” in IJCAR’12. Springer, 2012, pp. 134–148.

[6] ——, “SPARQL query containment under SHI axioms,” in AAAI’12, vol. 1, 2012, pp. 10–16.

[7] D. Kozen, “Results on the propositional µ-calculus,” Theor. Comp. Sci., vol. 27, pp. 333–354,
1983.

[8] Y. Tanabe, K. Takahashi, M. Yamamoto, A. Tozawa, and M. Hagiya, “A Decision Procedure
for the Alternation-Free Two-Way Modal µ-calculus,” in TABLEAUX, 2005, pp. 277–291.

[9] P. Genevès, N. Layaïda, and A. Schmitt, “Efficient Static Analysis of XML Paths and
Types,” in PLDI ’07. New York, NY, USA: ACM, 2007, pp. 342–351.

[10] A. Letelier, J. Pérez, R. Pichler, and S. Skritek, “Static analysis and optimization of semantic
web queries,” in PODS’12. ACM, 2012, pp. 89–100.

[11] E. Prud’hommeaux and A. Seaborne, “SPARQL query language for RDF,” W3C Rec., 2008.

[12] C. Chekuri and A. Rajaraman, “Conjunctive query containment revisited,” Database
Theory–ICDT’97, pp. 56–70, 1997.

[13] G. Gottlob, N. Leone, and F. Scarcello, “The complexity of acyclic conjunctive queries,”
Journal of the ACM (JACM), vol. 48, no. 3, pp. 431–498, 2001.

[14] J. Gray, Benchmark handbook: for database and transaction processing systems. Morgan
Kaufmann Publishers Inc., 1992.

[15] M. W. Chekol, J. Euzenat, P. Genevès, and N. Layaïda, “PSPARQL query containment,”
in DBPL’11, Aug. 2011.

[16] J. Groppe, S. Groppe, and J. Kolbaum, “Optimization of SPARQL by using coreSPARQL,”
in ICEIS (1), 2009, pp. 107–112.

[17] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds, “SPARQL Basic Graph
Pattern Optimization Using Selectivity Estimation,” in Proceeding of the 17th international
conference on World Wide Web, ser. WWW ’08. New York, NY, USA: ACM, 2008, pp.
595–604.

[18] M. Schmidt, M. Meier, and G. Lausen, “Foundations of SPARQL Query Optimization,” in
ICDT ’10. New York, NY, USA: ACM, 2010, pp. 4–33.

[19] C. Bizer and A. Schultz, “Benchmarking the performance of storage systems that expose
SPARQL endpoints,” in Proc. 4 th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS), 2008.

[20] ——, “The Berlin SPARQL benchmark,” International Journal on Semantic Web and In-
formation Systems (IJSWIS), vol. 5, no. 2, pp. 1–24, 2009.

[21] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “SPˆ 2Bench: a SPARQL performance
benchmark,” in ICDE’09. Ieee, 2009, pp. 222–233.

RR n° 8128

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

ha
l-0

07
49

28
6,

 v
er

si
on

 2
 -

12
 N

ov
 2

01
2

	Introduction
	Preliminaries
	RDF
	RDFS

	SHI
	SPARQL
	Tree-structured SPARQL Queries

	Benchmark
	Query Containment Setup
	Structure of the Benchmark
	Benchmark Description
	UCQProj
	CQNoProj
	UCQrdfs

	Tested Query Containment Solvers
	AFMU
	TreeSolver
	SPARQL-algebra

	Experimentation
	1st Experimental setting: UCQProj
	2nd Experimental setting: CQNoProj
	3rd Experimental setting: UCQrdfs
	Discussion
	AFMU
	TreeSolver
	SPARQL-algebra

	Related Works
	Conclusion

