
D1.2.2 Semantic Web Framework
Requirements Analysis

Coordinator: Wolf Siberski (L3S)

Jérôme Euzenat (INRIA), Jens Hartmann (UKARL), Alain Léger (FT),
Diana Maynard (USFD), Jeff Pan (VUM),

Maria del Carmen Suárez-Figueroa (UPM)

with contributions from:
Maud Cahuzac (FT), John Domingue (OU), Rafael González-Cabero (UPM),

Shishir Garg (FT), Asunción Gómez-Pérez (UPM), Manuel Lama (Universidade de
Santiago de Compostela), Angel López-Cima (UPM),

Miguel Rodrı́guez-Hernández (UPM), Dumitru Roman (DERI Ireland),
Pavel Shvaiko (UniTn), Michael Stollberg (DERI Ireland),

Farouk Toumani (LIMOS-University of Clermont-Ferrand)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D1.2.2 (WP1.2)
This document reports on requirements for the Semantic Web Framework from industry usage
point of view. The framework is split into components for which requirements, characteristics
and available solutions are described.
Keyword list: Semantic Web Framework, Semantic Web Components

Copyright c© 2005 The contributors

Document Identifier KWEB/2005/D1.2.2/v1.3
Project KWEB EU-IST-2004-507482
Version v1.3
Date June 30, 2005
State draft
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants
The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
École Polytechnique Fédérale de Lausanne
France Telecom
Free University of Bozen-Bolzano
Freie Universität Berlin
Institut National de Recherche en Informatique et en Automatique
Learning Lab Lower Saxony
National University of Ireland Galway
The Open University
Universidad Politécnica de Madrid
University of Innsbruck
University of Karlsruhe
University of Liverpool
University of Manchester
University of Sheffield
University of Trento
Vrije Universiteit Amsterdam
Vrije Universiteit Brussel

Changes

Version Date Author Changes
0.1 2004-09-25 Wolf Siberski creation
0.2 2004-10-18 Wolf Siberski changed according to results of Sep 29

meeting
0.3 2004-11-15 Wolf Siberski integrated partner contributions
0.4 2004-11-21 Wolf Siberski modified according to Berlin meeting

(Nov, 17-19)
0.5 2004-12-01 Wolf Siberski added contributions from FT, UPM,

USFD
0.6 2004-12-08 Wolf Siberski added contributions from INRIA
0.7 2004-12-23 Wolf Siberski completed, except conclusion
1.0 2005-01-21 Wolf Siberski changed according to feedback, added

conclusion
1.1 2005-05-31 Wolf Siberski updated introduction, added updates from

USFD and INRIA
1.2 2005-06-28 Wolf Siberski added updates from FT, UKARL and

VUM, updated conclusion
1.3 2005-06-30 Wolf Siberski minor corrections and additions

Executive Summary

To foster the use of Semantic Web Technology within commercial software projects, so-
lutions covering all aspects of semantic applications have to be provided. Of course all
of these solutions have to fit together, thus forming a framework for application devel-
opment and deployment. This deliverable describes requirements for the most important
ontology-based tools and components. The collected requirements will serve as input
for the definition of the Semantic Web Framework, and can also be used as source for
evaluation criteria. This work builds on the results of the use-case analysis conducted in
WP1.3 which yielded a list of high-level knowledge-processing tasks and components.
All primary tasks identified in deliverable D1.1.3 ”‘Knowledge Processing Requirements
Analysis”’ are covered in this document.

Requirements for the the following tools and components are collected:

• Ontology Development

– Ontology Editor

– Ontology Integration

– Ontology Transformation

– Ontology Extraction/Mining

• Data Layer Components

– Semantic Query Processor

– Reasoner

– Wrappers to existing Information Sources

• Interface Layer Components

– Annotation and Instance Editor

– Semantic Web Service Infrastructure

The main characteristics and requirements for each of these potential framework compo-
nents are presented. For illustrative purposes, some existing approaches, solutions and
systems which realize these components are also described.

Contents

1 Introduction (by L3S) 1
1.1 Knowledge Processing Tasks and Components according to Use Case

Analysis . 2
1.2 Three-Tier Architecture for Information Systems 5
1.3 Ontoweb Ontology Tool Survey . 6
1.4 High-level Tools and Components . 6

2 Ontology Development 9
2.1 Ontology Editor (by UKARL) . 9

2.1.1 Expected Functionality . 9
2.1.2 Requirements . 10
2.1.3 Existing Applications . 12

2.2 Ontology Integration (by INRIA) . 17
2.2.1 Expected Functionality . 17
2.2.2 Requirements . 19
2.2.3 Existing systems . 21

2.3 Ontology Transformation (by INRIA) 21
2.3.1 Expected Functionality . 21
2.3.2 Requirements . 22
2.3.3 Existing systems . 24

2.4 Ontology Extraction/Mining (by USFD) 26
2.4.1 Expected Functionality . 26
2.4.2 Requirements . 27
2.4.3 Existing systems . 28

3 Data Layer Components 33
3.1 Semantic Query Processor (by VUM) 33

3.1.1 Expected Functionality . 33
3.1.2 Requirements . 33
3.1.3 Existing Systems . 34

3.2 Reasoner (by VUM) . 35
3.2.1 Expected Functionality . 35
3.2.2 Requirements . 35

iii

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

3.2.3 Existing Systems . 37
3.3 Wrapper to existing Information Sources - Instance Mining (by UKARL) 38

3.3.1 Expected Functionality . 38
3.3.2 Requirements . 39
3.3.3 Existing solutions . 40

4 Interface Layer Components 43
4.1 Annotation and Instance Editor (by L3S/USFD) 43

4.1.1 Expected Functionality . 43
4.1.2 Requirements . 44
4.1.3 Existing Solutions . 44

4.2 Semantic Web Service Infrastructure (by FT) 47
4.2.1 Introduction . 47
4.2.2 Service Directory . 49
4.2.3 Service Discovery . 52
4.2.4 Service Composition . 55
4.2.5 SemanticWeb Service Frameworks 56
4.2.6 ODESWS Framework . 61
4.2.7 OWL-S Framework . 64
4.2.8 WSDL-S Framework . 68

5 Portals as Example for a Modularized Application (by UPM) 75
5.1 Ontology Development Components . 75
5.2 Data Layer Components . 76
5.3 Interface Layer Components . 76

6 Conclusion 79

iv June 30, 2005 KWEB/2005/D1.2.2/v1.3

Chapter 1

Introduction (by L3S)

A crucial factor for industry acceptance of a new IT technology is the availability of stable
and interoperable tools and components for application development. The goal of task
1.2.2 is to identify these components and describe their functionality and requirements.
We describe our findings here. The component identification and structuring is based on
three sources:

• A use-case analysis conducted in work package 1.3 (see 1.1)

• The application of the common three-tier application architecture (see 1.2).

• The survey of ontology-based tools and components conducted in the OntoWeb
project (see 1.3

We chose a uniform pattern for component/tool description, consisting of three sub-
sections:

• Expected Functionality lists all functions this component needs to offer

• Requirements describes the specific requirements this component has to fulfill

• Existing Solutions contains descriptions of some existing component implementa-
tions for illustrative purposes.

To show how this modularization can be applied to an application, we describe how a
semantic portal is assembled of the components listed (chapter 5).

In chapter 6 we summarize our findings and present some conclusions.

1

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

1.1 Knowledge Processing Tasks and Components ac-
cording to Use Case Analysis

WP 1.3 collected and analyzed several use-cases of knowledge-processing applications.
In deliverable D1.1.3, for each such use case the knowledge processing tasks it requires
were identified. They are structured as primary and secondary tasks according to their
influence on the architecture of a system. The following knowledge processing tasks were
derived from the use cases (the descriptions were adapted here to remove dependencies
to use case specifics):

• Data translation is a task of translating data from different information sources into
RDF exploiting methods which are able to preserve semantics of an information
source. In 2.3.4.1, this term is used to denote the transformation of the data to a
global schema. But that task should be defined separately as Ontology mapping

• Ontology management is a task of maintaining the ontologies used in the applica-
tion. called ’Global schema management’ in 2.3.4.1

• Matching is the task of discovering ”correspondences” between different semantic
informations (encoded as RDF grphs), e.g. between vacancies and jobseekers in a
recruiting system.

• Ranking matching results is a task of ordering matching results according to a
desired criterion.

• Content annotation is the task of supporting the user in adding/editing semantic
information for a resource.

• Reasoning is the task of evaluating a formalized semantic query based on available
ontology and instance information.

• Semantic query processing the translation of a user query (specified in an end-
user-friendly way to a formal query relating to concepts of the underlying ontolo-
gies.

• Intelligent search and retrieval is the combination of semantic search and and
text/multi-media based retrieval methods to identify most relevant resources.

• Planning of web services the process of constructing ad hoc a composite service
based on user request, rules and available (atomic) services.

• Mapping rules definition the task of determining semantic relations between dif-
ferent ontologies.

• Result reconciliation is the process of merging results from different sources to a
consistent unified result which can be presented to the end-user.

2 June 30, 2005 KWEB/2005/D1.2.2/v1.3

1. INTRODUCTION (BY L3S)

• Metadata generation is the automatic creation of semantic information about a
resource based on its content (e.g. keywords)

• Searching for content providers the identification of relevant information
providers from a query and provider self-descriptions.

• Content provider’s directory management A provider directory for management
of providers. This is not a task description, but a component description.

• Schema/Ontology Merging is a task of integrating other ontologies into an existing
ontology. This task can be considered as an ontology management subtask.

• Producing explanations. This is the task of creating a human-readable explanation
how a search result was determined to be relevant.

• Personalization and media adaptation Adaptation of resource presentation ac-
cording to user’s profile and context (e.g. used device).

It is clear that some of these tasks are highly use-case specific. In chapter 3 of D1.1.3,
they were joined to ten general knowledge processing tasks . For each task group, one re-
sponsible component was defined. To avoid a bloated requirements analysis, we focus on
the following list of primary high level taks and components and omit the rather specific
secondary tasks and components for this deliverable (descriptions are directly cited from
D1.1.3):

• Data Translation and Wrapper This task and component are in charge of translat-
ing/exchanging instances between heterogeneous information sources storing their
data in different formats (e.g., RDF, SQL DDL).

• Ontology Management, Schema/Ontology Matching, Merging and Ontology
Manager These tasks and component are in charge of ontology maintenance with
respect to (evolving) business case requirements.

• Matching, Matching Results Analysis, Producing Explanations and Match
Manager These tasks and component are in charge of determining mappings be-
tween the entities of multiple schemas/ontologies. The mappings might be ordered
according to some criteria. In addition, explanations of the mappings might be also
produced.

• Content Annotation and Annotation Manager This task and component are in
charge of automatic production of content metadata.

• Reasoning and Reasoner This task and component are in charge of logical reason-
ing.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 3

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Tasks Components

• Data Translation

Reasoning

Wrapper

Planner

Results
Reconciler

Ontology
Manager

Profiler

Match Manager

Annotation
Manager

Query
Processor

• Ontology Management
• Schema/Ontology Merging

• Composition of services

• Content Annotation

• Results Reconciliation

• Matching
• Matching Results Analysis
• Producing Explanations

• Content Annotation

• Semantic Query Processing

• Reasoning

Directory
Manager

• Directory Management

Figure 1.1: Tasks and associated high-level components

• Semantic Query Processing and Query Processor This task and component are
in charge of interpreting (rewriting) a query by using terms which are explicitly
specified in a model of the domain.

• Composition of Web Services and Planner This task and component are in charge
of automated composition of web services into executable processes.

• Results Reconciliation and Results Reconciler This task and component are in
charge of determining an optimal solution, in terms of contents (no information
duplication, etc.), for returning results from the queried information sources.

The use-case analysis presented here didn’t take any architectural considerations into
account, because they were out of scope for that work. However, as this document serves
as basis for a framework specification, architectural design issues are essential. Therefore
it isn’t sufficient to just adopt the componentization described above.

4 June 30, 2005 KWEB/2005/D1.2.2/v1.3

1. INTRODUCTION (BY L3S)

1.2 Three-Tier Architecture for Information Systems

System Border

External Client
Applications

Users

Application
Components

Information Storage

User
Interfaces

External Information
Sources

Wrappers
Offered Services

Interface Layer Functional Layer Data Layer

Figure 1.2: Three-tier application

Information systems often are structured according to the common three-tier architec-
ture (e.g. [Züllighoven, 2005]) which consists of the following three layers:

• Interface Layer This layer contains all interfaces to the system, user as well as ser-
vice interfaces. It is introduced to decouple application logic from interaction logic
with the system. In case of end-user interfaces, the presentation logic is built using
generic user-interface frameworks, e.g. GUI frameworks. In case of interfaces for
other applications the modern approach is to provide services, which are built based
on a generic service framework (like Web Services).

• Functional Layer The application logic layer comprises of domain-specific mod-
els and processes. It is the layer with most application-specific code. In case of
server-based applications this code is written so that it can be executed within an
application server. However, the use of generic components is rather limited in this
layer.

• Data Layer This layer is responsible for storage and retrieval of the
data/information hold within the application. Typically, one or several generic com-
ponents are used to provide storage and querying functionality. This may be a re-
lational database, an instance store or a repository specialized for some kind of
resources like documents. In complex systems, we often find a combination of sev-
eral such stores. The data layer also may contain wrappers to external information

KWEB/2005/D1.2.2/v1.3 June 30, 2005 5

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

sources which translate requests from the functional layer to the form required by
the external systems.

When applying this architecture to ontology-based applications, some modifications
are in order. In this case, a large part of the application logic is not programmed in an
imperative language, but specified within the used ontologies (and optionally additional
rules). Therefore the distinction between functional and data layer becomes blurred. This
blur manifests particularly in the fact that a reasoner component is necessary for applica-
tion logic (functional layer) as well as for query processing (data layer).

1.3 Ontoweb Ontology Tool Survey

In the Ontoweb deliverable D1.3 [Gómez-Pérez, 2004b], the following types of tools have
been identified:

• Ontology development tools Tools for creating and maintaining ontologies

• Ontology merge and integration tools Often, the need arises to combine ontolo-
gies or to translate between them. These tools support such activities.

• Ontology evaluation tools help in assesing the quality and suitability of an ontol-
ogy.

• Ontology-based annotation tools applications and components which allow end-
users to create ontology instances.

• Ontology storage and querying tools generic components for storage and query-
ing of ontologies and ontology instances.

A similar classification is found in [Gómez-Pérez, 2004a].

1.4 High-level Tools and Components

Not all taks identified in D1.1.3 are responsibilities of the application system. Some,
like ontology maintenance or ontology mapping are rather done at development time,
using development tools. Therefore we split our component list in tool components for
development and application components for deployment.

For the modularization of development tool components, we follow the existing pat-
tern documented in the Ontoweb tool collection and split into the following components:

• Ontology Editor

6 June 30, 2005 KWEB/2005/D1.2.2/v1.3

1. INTRODUCTION (BY L3S)

Tasks from D1.1.3Components

Semantic Query
Processor

Ontology Editor

Semantic
Web Services

Wrapper

Ontology
Integration

Annotation and
Instance Editor

Ontology
Transformation

Ontology
Extraction

Resoner

• Schema/ontology merging

• Semantic query processing
• Intelligent Search and Retrieval

• Searching for services
• Planning of services

• Content Annotation

• Data translation
• Mediation

• Reasoning

• Ontology management

• Schema/ontology matching

-

Figure 1.3: Components and their responsibilities

• Ontology Integration

• Ontology Transformation

• Ontology Extraction/Mining 1

For the identification and classification of application components, we take the use-
case analysis results and the architectural considerations presented in 1.2 into account.
When comparing the components listed in 1.1 with the architecture described in 1.2, we
notice that all of these components belong either to the interface or data layer. We split
into the following components (some Components are renamed in compared to D1.1.3,
as indicated below):

• Data layer components

– Semantic Query Processor

– Reasoner 2

– Wrapper

• Interface layer components

1not identified in D1.1.3
2could have been in the functional layer as well

KWEB/2005/D1.2.2/v1.3 June 30, 2005 7

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

– Annotation and Instance Editor

– Semantic Web Service Infrastructure 3

∗ Service Directory
∗ Service Discovery
∗ Service Composition

Fig. 1.3 shows how the primary tasks identified in D1.1.3 and the components identi-
fied here are related.

3only service composition has been identified in D1.1.3 (as ’Planner’), but this doesn’t work without
directory and discovery components.

8 June 30, 2005 KWEB/2005/D1.2.2/v1.3

Chapter 2

Ontology Development

2.1 Ontology Editor (by UKARL)

2.1.1 Expected Functionality

Ontology Editors are applied by engineers modelling a specific domain. Therefore several
functionalities are expected from an engineering environment which allows for inspecting,
browsing, codifying and modifying ontologies.

Modelling ontologies means modelling at a conceptual level, viz. (i) as much as possi-
ble independent of a concrete representation language, (ii) using graphical user interfaces
(GUI) to represent views on conceptual structures conceptual structures, i.e. concepts
ordered in a concept hierarchy, relations with domain and range, instances and axioms,
rather than codifying conceptual structures in ASCII.

Main functionalities which an ontology editor should provide are as follows:

Create (new) Ontology

Obviously, an ontology editor should provide methods for creating new ontologies. For
doing so an ontology editor should provide this functionality in an intuitive and easy way
for its users. Optional, additional help is given or even a wizard guides new users through
the creation process asking necessary parameters.

Modify Ontology Entities

Working on ontolgies means modifying its structure (concepts, properties, instances and
axioms) for which standard editing methods are needed, e.g. add, delete and edit.

9

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Visualization

Engineering should be provided within a Graphical-User-Interface based on a visualisa-
tion technique for ontologies. One important aspect is to handle large ontologies. Their
visual representation needs special attention, since a simple graph-based visualisation
might be difficult, e.g. when browsing thousands of concepts.

Search and Query

For large engineering processes functionalities like searching and querying the ontologi-
cal models are expected.

Undo / Redo Functionality

There are various circumstances under which it may be desirable to reverse the effects of
ontology engineering, e.g.

• The ontology engineer may fail to understand the actual effects of his/her changes
and may approve a change that actually should not have been performed.

• Sometimes it is helpful to change the ontology for experimental purposes.

• When working collaboratively on an ontology, several ontology engineers may have
different ideas on how the ontology ought to evolve.

It is obvious that for each elementary change there is exactly one inverse change that,
when applied, reverses the effect of the original change. Based on the infrastructure
described in the previous section, it is not hard to realize the requirement for reversibility
of ontology engineering actions and to provide an appropriate undo/redo functionality:
To reverse the effect of some extended sequence of changes, a new sequence of inverse
changes in reverse order needs to be created and applied.

In other words, reversibility means undoing all effects of some change, which is in
general not the same as requesting an inverse change manually.

2.1.2 Requirements

Scalability

When speaking about working with an ontology, it is important to emphasize that the
ontology may be stored in different ways depending on the intended application or usage
scenario. If a really huge ontology with lots of concepts and instances shall be created,
the usage of a database for ontologies is advisable, since it employs functionalities like

10 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

a relational database system to store all entities involved. Hence supporting storage of
ontologies in main memory and in large databases is a requirement for an ontology editor.

Extensibility and Evolution

Industrial and academic environments are very dynamic, inducing changes to applica-
tion requirements. Using an ontology-based system, often the underlying ontology must
be evolved in order to adapt to those changes. As ontologies grow in size, the com-
plexity of change management increases, thus requiring a well-structured ontology evo-
lution process. It employs so-called evolution strategies that encapsulate certain poli-
cies for evolution with respect to the user’s demands (see [Stojanovic et al., 2002a] and
[Stojanovic et al., 2002b]).

Interoperability

An ontology editor should be able to import and export different representation languages
of ontologies, e.g. RDF(S) or OWL. It is obvoius that an editor has to support existing
standards and ontology languages as many as possible.

Metadata Generation

An ontology editor should support metadata standards for sharing and re-use of ontolo-
gies. So that users are able to specify manuallay or semi-automatically metadata about
their modeled ontologies. As far as possible most of the attributes should be filled auto-
matically by an editor itself (e.g. editor name, creation date, etc.). The generated metadata
can be inserted into the modeled ontology itself or be submitted to an ontology metadata
repository, like Onthology1.

Consistency

Necessary, modeling ontologies requires consitency of all operations.

Internationalization

Ontologies are shared across the World within different countries and different cultural
groups. Dealing with different languages and character-encondings is a strong require-
ment.

1see Onthology at http://www.onthology.org

KWEB/2005/D1.2.2/v1.3 June 30, 2005 11

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Usability

Usability aspects from an end-user point of view is essential for acceptence and usage.
Indeed, usability often decides about wether an application is used or not. Hence, an
editor should be designed carefully considering usability aspects while the complete de-
velopment process of a particular editor and while a productive life-time as well.

Collaboration

Ontologies are generally developed by a group of users (maybe distributed among the
world) collaborating together. This aspect has to be reflected and supported by an editor
in such as it allows several users transparently working on an ontology over time.

Reusability

Ontology editors are required to be re-usable to be applied on different ontologies and
ontology languages by different users.

2.1.3 Existing Applications

Ontology Editor OI-Modeler

OI-Modeler is KAON’s tool for ontology creation and ontology maintenance2. The OI-
Modeler’s main goal is to allow scalability for editing large ontologies and to incorporate
some basic usability issues related to ontology management and evolution.

The goal of this section is to introduce the reader to the OI-Modeler’s main features.
For further details on how to work with the OI-Modeler we refer to “OI-Modeler User’s
Guide” [Karlsruhe, 2002].

Create New OI-Model After having launched the KAON Workbench the user may
work with the OI-Modeler, KAON’s ontology editor.

As illustrated in Figure 2.1, the OI-Modeler provides different views on the Ontology
and allows to inspect its components (concepts, instances, properties and lexicon).

Graph The graph in the upper section of the window shows the ontology entities and the
connections between them. The graph layout algorithms in OI-Modeler are based
on an open-source TouchGraph3 library.

2The “OI” here refers to “Ontology Instance”. Hence, in the following we refer by the term “OI-Model”
to an instance of an ontology.

3http://www.touchgraph.com

12 June 30, 2005 KWEB/2005/D1.2.2/v1.3

http://www.touchgraph.com

2. ONTOLOGY DEVELOPMENT

Graph

Inspector

Included OI-models

Search
and Query

Clipboard

Figure 2.1: Main Window of the OI-Modeler

Each graph node features up to six little arrows (see Figure 2.2). By clicking on
those arrows related entities can be expanded, so that the user can successively
browse through the ontology. For example, for a concept the user may expand that
concept’s sub- and super-concepts, properties to and from this concept, the con-
cept’s instances as well as its spanning instances. Regarding the notion of spanning
instances please refer to [Maedche et al., 2002].

Expand
Subconcepts

Expand
Superconcepts

Expand
Spanning
Instance

Expand
Properties to
this Concept

Expand
Properties from

this Concept

Expand
Instances

of this Concept

Figure 2.2: Characteristics of Nodes in OI-Modeler’s Graph Visualization

Inspector In the inspector you can find all information about the ontology entity that
is currently selected in the graph. Thus, the inspector’s appearance adapts to the
type of entity (concept, property, or instance) currently selected. If, for example, a

KWEB/2005/D1.2.2/v1.3 June 30, 2005 13

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

concept is selected information about that concepts and its super- and subconcepts
are displayed, also the properties to and from the concept and the concept instances.
Furthermore, the inspector may be used to directly create new (sub-)concepts (see
below).

Included OI-Models The OI-Modeler allows for including ontologies. This means that
the user is able to combine two (or more) ontologies to one ontology. An OI-
Model always consists of two basic or system ontologies: The kaon-root and
the kaon-lexical. To include an OI-Model one can choose “Open and include
OI-Model” in the “Edit” menu. Then, a new window opens and the source of the
OI-Model to be included can be selected.

Search and Query With the search function, one can easily find different named nodes.
It is possible to search for concepts, instances, and properties and to perform a
keyword-based search for any matching item.

Furthermore, KAON provides a query language KAON Query suited for posing
queries to the ontology..

Exemplary: Add New Concept OI-Modeler provides three ways to create a concept.
You can add new concepts by

1. using the “Edit” menu and choosing “New Concept...”,

2. opening the context-menu (right mouse-button) in the graph window and choosing
“New Concept...”,

3. using the Inspector and opening the context-menu there.

Figure 2.3 illustrates the first of the three above-mentioned ways.

Figure 2.3: Adding a Single Concept Person

14 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

Sub-concepts are thematic refinements of concepts. When intending to add a sub-
concept cs to an existing concept c, first concept c has to be selected – as a consequence,
details regarding that concept are displayed in the Inspector. Now, the sub-concept can be
added to c with one of the three possible ways mentioned before. In Figure 2.4 the third
alternative (using the context menu in the Inspector) is shown.

new subconcept
of Person

Figure 2.4: Adding Sub-Concept Researcher to Concept Person

To summarize, OI-Modelerhas been applied successfully in several research and in-
dustry projects and can be freely downloaded from kaon.semanticweb.org.

WebODE

WebODE is an ontological engineering workbench developed by the Ontology Engineer-
ing Group at Universidad Politécnica de Madrid (UPM) [Gómez-Pérez, 2004a]. The cur-
rent version is 2.0. WebODE is the offspring of the ontology design environment ODE, a
standalone ontology tool based on tables and graphs, which allowed users to customize the
knowledge model used for conceptualizing their ontologies according to their KR needs.
Both ODE and WebODE give support to the ontology building methodology METHON-
TOLOGY. Currently, WebODE contains an ontology editor, which integrates most of
the ontology services offered by the workbench, an ontology-based knowledge man-
agement system (ODEKM), an automatic Semantic Web portal generator (ODESeW),
a Web resources annotation tool (ODEAnnotate), and a Semantic Web services editing
tool (ODESWS).

Architecture WebODE has been built as a scalable, extensible, integrated workbench
that covers and gives support to most of the activities involved in the ontology develop-
ment process (conceptualization, reasoning, exchange, etc.) and supplies a comprehensive
set of ontology related services that permit interoperation with other information systems.
WebODE is platform-independent as it is completely implemented in Java. To allow scal-
ability and easy extensibility, it is supported by an application server so that services can

KWEB/2005/D1.2.2/v1.3 June 30, 2005 15

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

be easily created and integrated in the workbench by means of a management console.
One important advantage of using this application server is that we can decide which
users or user groups may access each of the services of the workbench.

The core of the WebODEs ontology development services are: the cache, consistency
and axiom services, and the ontology access service (ODE API), which defines an API
for accessing WebODE ontologies. One of the main advantages of this architecture is that
these services can be accessed remotely from any other application or any other instance
of the workbench. WebODE ontologies are stored in a relational database so they can
manage huge ontologies quite efficiently. WebODE also provides backup management
functions for the ontologies stored in the server. The interoperability services import
ontologies from XML, XCARIN, RDF(S), DAML+OIL, and OWL; and export ontologies
to XML, FLogic, XCARIN, RDF(S), OIL, DAML+OIL, and OWL. Ontologies are also
exported to languages that are not specifically created for defining ontologies such as
Prolog, Jess 4, and Java. For instance, the Prolog export service is used as a basis of the
WebODEs inference engine.

Knowledge model Ontologies in WebODE are conceptualized with a very expressive
knowledge model. This knowledge model is based on the reference set of intermediate
representations of the METHONTOLOGY methodology. Therefore, the following on-
tology components are included in the WebODEs knowledge model: concepts and their
local attributes (both instance and class attributes); concept groups, which represent sets
of disjoint concepts; concept taxonomies, and disjoint and exhaustive class partitions;
ad-hoc binary relations between concepts, which may be characterized by relation prop-
erties (symmetry, transitiveness, etc.); constants; formal axioms, expressed in first order
logic; rules; and instances of concepts and relations. In addition to the previous compo-
nents, bibliographic references, synonyms, and abbreviations can be attached to any of
the aforementioned.

The WebODEs knowledge model allows referring to ontology terms defined
in other ontologies by means of imported terms. Imported terms are identified
with URIs and these are of two types: those available in another WebODE on-
tology, either in the same or in a different WebODE server (referred to as we-
bode://WebODE host/ontologies/ontology#name), and those identified by a different type
of URI. WebODE instances are defined inside instance sets. Thus, we can create different
instantiations for the same ontology, which are independent from each other. For instance,
we can instantiate our travel ontology in different instance sets, one for each travel agency
using the ontology.

Ontology editor The WebODE ontology editor is a Web application built on top of
the ontology access service (ODE API). The ontology editor integrates several ontol-
ogy building services from the workbench: ontology edition, navigation, documentation,

4http://herzberg.ca.sandia.gov/jess/index.shtml

16 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

merge, reasoning, etc. Three user interfaces are combined in this ontology editor: an
HTML form-based editor for editing all ontology terms except axioms and rules; a graph-
ical user interface, called OntoDesigner, for editing concept taxonomies and relations
graphically; and WAB (WebODE Axiom Builder), for editing formal axioms and rules.
Other ontology building services integrated in the ontology editor are: the documentation
service, ODEMerge, the OKBC-based Prolog inference engine, and ODEClean.

WebODE includes an inference engine that consists of a Prolog implementation of
a subset of the OKBC protocol primitives. Since WebODE ontologies can be translated
into Prolog, the inference engine obtains an ontology in Prolog from the Prolog export
service and loads it into the Prolog interpreter. With this process, the implemented OKBC
primitives can build more complex Prolog programs for being executed in the Prolog
interpreter for any purpose. As the rest of WebODE services, the inference engine can be
executed not only from the user interface of the ontology editor but also by means of its
Java API.

Interoperability There are several ways of using WebODE ontologies inside ontology-
based applications. First, they can be accessed from its Java API via a local service or
application running on the same computer where the ontology server is installed. This
API avoids accessing directly the relational database where ontologies are stored and it
includes cache functions to accelerate the access to ontology terms. WebODE ontologies
can be accessed not only from inside the local server but also remotely with RMI (Re-
mote Method Invocation) and Web services. Second, ontology export services available
in the workbench permit generating WebODE ontologies in XML and in several other
ontology languages such as: RDF(S), OIL, DAML+OIL, OWL, XCARIN and FLogic.
Translations into Prolog can be used similarly. Third, ontologies can be transformed into
Protégé-2000. So we can use them inside the Protégé-2000 ontology editor or use the
interoperability capabilities provided this tool. Finally, WebODE ontologies can be trans-
formed into Java. In this process, concepts are transformed into Java beans, attributes into
class variables, ad-hoc relations into associations between classes, etc., with their corre-
sponding constructors and methods to access and update class variables, etc. This Java
code can be used to create other Java applications, uploaded in rule systems like Jess, etc.

2.2 Ontology Integration (by INRIA)

2.2.1 Expected Functionality

Ontology integration consists in solving interoperability problems by using ontologies in
a joint environment. This can be achieved by either merging the ontologies into one new
ontology, ”bridging” the new ontologies by using axioms for expressing the relationships
between element in both ontologies. In both cases, the correspondences between the two

KWEB/2005/D1.2.2/v1.3 June 30, 2005 17

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

ontologies must have been found. This work is considered in depth in Knowledge web
work package 2.2.

Merging ontologies can be used at design time when editing a new ontology as well
as at run-time when data expressed under some ontology is to be used in another environ-
ment. Bridges can be used within another ontology or in mediators which will dispatch
queries and answer to various resources. In this last case, the bridge is used as a transfor-
mation (see below).

Ontology integration can, as well cover the alignment process (finding the correspon-
dences between the ontologies).

Main functionalities which ontology integration may provide are described below.
These functionality are :

Matching ontologies

Matching ontologies consists in finding the correspondences between two ontologies. The
result of matching (the alignment) can be exploited in a further step for merging, bridging
or transforming ontologies. The specification of this operation is given in deliverable
D2.2.1.

Current systems however are usually targeted towards one operation (merging, trans-
forming, translating, etc.). They thus do not identify any specific matching step.

In order to be interoperable and plugable, it is necessary that the matching step pro-
vides the alignment in some standard format (e.g., the alignment API [Euzenat, 2004])
and that the other operations are able to take these as input. The Alignment API already
provides many different generators that can be used in this further step.

The matching step is certainly the one that is the most difficult to perform automati-
cally, for that purpose, it is often implemented as an interactive process by which the user
is presented with one or several possible candidate alignments that the user can alter and
ask the system to improve the resulting alignment.

Merging ontologies

Merging consists in taking two ontology and providing as input an ontology which merges
both of these ontologies. Usually, this results consists in the import of the two previous
ontologies and a set of bridge axioms expressing the alignment discovered in the previous
step.

18 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

Transforming ontologies

Transforming ontologies take two ontologies and transform one of then in an ontology that
is expressed in function of the other. This operation is more often used when ontologies
are written in different ontology representation languages. However, it can also be used
for replacing terms and identifiers of one ontology by those of another ontology. This can
be helpful when adopting a newly standardised ontology or before merging the ontologies
(in the last event, no bridge axiom would be needed).

Ontology transformation is moreover the topic of setion 2.3.

Translating statements

Translating statements consists in taking some assertions written in function of one ontol-
ogy and rewriting them in function of the other ontology. This translation is based on the
alignment which provides the rules for the translation program.

Generating mediators

Generating mediators and most often query mediators consists in generating two transla-
tion functions, the first one allows to translate queries from one ontology to another and
the other to translate answers from the other to the first one.

2.2.2 Requirements

Scalability

Ontology integration should be able to support large ontologies. This is especially a
problem when the ontologies are actually merged for providing a new ontology. However,
this can reveal difficult as well when the use of bridging axioms leads to longer access time
due to indirections (this can even be worse depending on the complexity of the axioms).

Scalability can also affect the alignment process itself where alignment algorithms
working on toy problems do not scale real world one.

Distribution

The choice of merging ontologies can be wise when connectivity is not guarantee. In this
case, it is better to upload the ontologies and merge them. On the contrary, axiom or medi-
ator approaches have been especially designed for dealing with distributed systems: they
leave the ontologies on the servers and only store the information for taking dynamically
advantage of distributed ontologies.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 19

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Version/Configuration Management

Once an alignment has been found between two ontologies, and independently of whether
it is used in merging or bridging ontologies, if one of the ontology is modified, then the
alignment and its concrete form must be updated in order to reflect the new version of the
ontology. This incremental service should be provided by ontology integration tools.

Consistency

Usually merging ontologies or generating bridge axioms from alignment is something rel-
atively easy and most of the systems should comply some specification of these actions.
Most difficult is the definition of the result of the alignment process. No particular con-
sensus exists on how to formally specify the result of the alignment process which is very
often controlled by a human user5.

Interoperability

The ontology integration component should be able to interoperate with the other com-
ponents. Fortunately the only requirements that comes to mind here is that they are able
to communicate ontologies to each other. The best way to achieve this would be to be
based on a common API (the worse would be to to use syntactic form and share the same
parser).

It would be useful that the integration component be able to accept plug-ins so that
new alignment components could be added to the system and that the system be able to
accept externally made alignments. For that purpose a common alignment format have to
be defined. Again, the aliready cited Alignment API has been designed for that purpose.

Reusability

The goal of alignments and their instanciation as merged ontologies and bridges is to be
used many times. So these systems must not build bridges for answering one query or
merge ontologies for just composing two web services.

This is the purpose of the Alignment API [Euzenat, 2004] to be able to reify, publish
and reuse alignments in many different contexts.

5Knowledge web work package 2.2 is investigating these problems.

20 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

2.2.3 Existing systems

OntoMerge

In OntoMerge [Dou et al., 2003], the merge of two ontologies is obtained by taking the
union of the axioms defining them, using XML namespaces to avoid name clashes, and
adding bridging axioms that relate the terms in one ontology to the terms in the other. In-
ferences can be conducted in this merged ontology in either a demand-driven (backward-
chaining) or data-driven (forword chaining) way. The ontologies in OntoMerge are de-
scribed in either DAML+OIL or RDFS. OntoMerge is developed on top of PDDAML
(PDDL-DAML Translator) and OntoEngine (inference engine). These are built using
Jena (from HP Research) and JTP (from SRI/KSL). OntoMerge does not provide any
clue for alignment.

Alignment software

There are many alignment algorithms available, and quite a few tools among which
Protégé and it Diff suite can be singled out. Please refer to deliverable 2.2.3 for more
information about these tools.

2.3 Ontology Transformation (by INRIA)

2.3.1 Expected Functionality

Ontology transformation consists of transcribing an ontology from one form to another.
This can be in a different ontology language, a reformulation in a restriction of a language
(e.g., expressing automatically some non necessary OWL-Full ontology into OWL-DL)
or with regard to a different vocabulary. Ontology transformation is useful for solving
heterogeneity problems, when one wants to take advantage, in a particular context of an
ontology that have been developed in another context (i.e., using a different language).
There are various such situations: for interoperating systems developed under different
ontologies like web services, peer-to-peer systems, etc.

Ontology transformation can be produced by tools requiring various power. Some of
them can be mere lexical translator, there can be syntactic translators, but most of them
will require the power of processing the ontology (i.e., inferring) in order to transform it.
It is thus necessary to use the right tool.

The additional function of an ontology transformation system can be described by
properties which depends on what is expected from the transformed ontology. Among
these properties, one can cite the following:

• subsumption preservation

KWEB/2005/D1.2.2/v1.3 June 30, 2005 21

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

• consequence preservation

• round tripping

There is various work dedicated to this.

Ontology transformation can be processed as a one-shot pass (for instance when some-
one wants to import an ontology into her editing environment) or as a routine which can be
used as a sub system (for instance in a system which dynamically compose web services).

Ontology transformation

The only function of ontology transformation is ontology transformation! It requires one
ontology (written in a particular form) and a specification of a targeted form, and will
generate the ontology under the specified form. The form specification can be as simple
as the name of a language and as complicated as the set of transformation rules (with
several intermediate steps).

It generally operates automatically. User intervention can be needed when identifier
generation is involved.

2.3.2 Requirements

Scalability

The transformation systems must be able to cope with arbitrarily large amount of data.
This is most often the case for simple systems (syntactical transformation or not very
complicated semantic transformations). However, some system or some transformation
might require arbitrary inference to be drawn. In such a case, scalability is not guarantee
anymore.

In general, scalability is a property of the transformation to be implemented rather
than that of the system itself. Any system should be expected to scale easily on a simple
transformation.

Distribution

The ability of the system to run on a network of computers. In this context, the most
important aspect is the ability to integrate information which is distributed in a network.
Part of this requirement is the ability to localize relevant information in the network.

22 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

Version Management

Transformation systems are not version managers. However, transformations can be used
for udgrading/downgrading an ontology (or data expressed with regard to an ontology)

Consistency

Consistency, is one of the most important features of transformation systems and trans-
formations. Consistency can be measured with regard to properties that they must satisfy.
We mentioned several such possible properties above. They are important in several re-
spects: because the user must know what to expect when performing a transformation,
and also because it allows to compose transformations

Another type of consistency for transformations is type-safety. The fact that an ontol-
ogy translated from language A to language B is indeed an ontology of language B.

Internationalization

Internationalization affects transformation systems to the extent that they must be able to
deal with as many character encodings as possible.

Usability

The degree of efficiency with which end-users can do their tasks with the product, and
their overall satisfaction with that process. As usability is evaluated from an end-users
point of view, user interface design and implementation are major factors.

Interoperability/Standard-Conformance

So far, transformation systems are tools for helping interoperability. There are no partic-
ular standard on that topics6, so no real conformance to be expected. It should be very
useful however, to use some common API allowing to compose transformations. This is
espectially true when it is necessary to compose a syntactic language transformation with
a semantic transformation provided as an alignment result.

In order to interoperate with other components, the ontology transformation compo-
nent must be able to deal with the input and output ontologies. Again, the best way to
achieve this would be to be based on a common API (the worse would be to to use syn-
tactic form and share the same parser).

6However, Knowledge web work package 2.2 is working towards a format for expressing alignment that
should be useful for the whole semantic web community and could become a standard

KWEB/2005/D1.2.2/v1.3 June 30, 2005 23

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

It would be useful that the transformation component be able to accept plug-ins so
that new transformation opportunities are offered. For that purpose, the form specification
must be clearly defined as well as a way to declare the capabilities of plug ins. No such
standard exists so far, but defining one reasonable specification would be useful.

Reusability

It is expected that transformation are reusable. This is the case when they are expressed
in a transformation language. Most of the tools starts from such a language.

2.3.3 Existing systems

There are few systems strictly devoted to ontologies. We give example of such systems
below and their characteristics, particularly with regard to the capability to express se-
mantic transformations and how these are articulated with semantics.

RDFT

The main goal of RDFT is to represent mappings that can be executed and imported in a
transformation process [Omelayenko, 2002]. These mappings correspond to sets of pairs
between simple entities (RDFS classes and properties) with a qualification of the relation
holding. The ontology is expressed in DAML+OIL. Surprisingly, if the correspondences
are generated by Bayes techniques no strength is retained. This format is aimed at using
the mapping but no hints are given for adding alignment algorithms or extending the
format.

MAFRA

MAFRA provides an explicit notion of semantic bridges modelled in a DAML+OIL on-
tology [Mädche et al., 2002]. The MAFRA Semantic bridges share a lot with the mapping
format presented here: they can be produced, serialised, manipulated and communicated
through the web. Moreover, the semantic bridges are relatively independent from the
mapped languages (though they can map only classes, attributes and relations). They
have, however, been built for being used with the MAFRA system, not to be open to ex-
ternal uses, so the classes of the ontology are rather fixed and cannot easily be extended
towards new relations or new kinds of mappings. This format is also tailored to the pro-
cessing architecture used (with non declarative primitives in the transformations).

24 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

Transmorpher

Transmorpher [Euzenat and Tardif, 2002] is a software tool for defining and processing
complex transformations of XML documents. It can accept external transformations (e.g.,
XSLT stylesheet) and provide a simple transformation language offering unit transforma-
tions (suppression, renaming, regular expression substitutions and query facilities). In
addition to generating, transforming and serializing XML documents, it features construc-
tors like merging, dispatching, querying, iterating, and composing transformations. These
transformations can have several input and output streams. New implementation of these
constructors can be plugged in Transmorpher. Transmorpher can be used as a compiler, an
interpreter, a Ant task, a Servlet generator or embeded in another program.Transmorpher
is thus not specific to ontology transformation. However, it has been explicitly designed
with property enforcement in mind and preservation of these properties when composing
transformations in its use. This has been exploited in the Family of languages approach

Family of languages

The ‘family of languages’ approach [Euzenat and Stuckenschmidt, 2003] provides a way
to use a set of different knowledge representation languages and transformation among
them satisfying some properties. The properties considered are mainly semantic proper-
ties.

More precisely the family of languages approach is based ona set of knowledge repre-
sentation languages whose partial orderingdepends on the transformability from one lan-
guage to another bypreserving a particular formal property such as logicalconsequence.
For the same set of languages, there can be severalsuch structures based on the property
selected for structuring thefamily. Properties of different strength allow performingpracti-
cable but well founded transformations. The approach offersthe choice of the language in
which a representation will beimported and the composition of available transformations
betweenthe members of the family.

This approach has been implemented, with a simple family of description logic, on
top of the Transmorpher system (see above).

WebODE

WebODE translation system [Corcho, 2004] is the set of import/export method embed-
ded in the WebODE workbench. It is based on a four layer classification of the kind
of interoperability problems arising in ontology mismatch: lexical, syntactic, semantic
and semiotic. WebODE provides three different languages for expressing the necessary
transformations according to the corresponding layer (semantic and semiotic problems
are considered within the same layer).

ODELex, ODESyntax and ODESem reuses the way Lex and Yacc can be used as

KWEB/2005/D1.2.2/v1.3 June 30, 2005 25

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

transformation system while offering features that are specific to ontology transforma-
tion. A number of actions are described at the level of the representation model (adding
classes). These systems allow the use of various kind of ontology representation lan-
guages (expressed in their textual form).

The WebODE system offers enough power to consider semantically grounded trans-
formations but cannot account for the semantic by itself.

OntoMorph

OntoMorph [Chalupsky, 2000] is a system of syntactic transformation of ontologies with
a syntactic transformation language not very different from XSLT. It however is integrated
with a knowledge representation system (PowerLoom, [Valente et al., 1999]) which pro-
vides the opportunity to have semantically-grounded rules in the transformations. The
system can query assertions for not only being syntactically in the source representa-
tion, but also for being a consequence of this initial representation (as soon as Power-
Loom is semantically complete). This is a generic implementation of what is proposed
in [Stuckenschmidt and Wache, 2000]. Of course, this option requires to use PowerLoom
as an initial pivot language and the problem of translation arises when transforming from
the source representation to the PowerLoom representation.

Since OntoMorph is able to take advantage of the inference power of PowerLoom, it
can implement semantic transformations. These are implemented in an ad hoc manner
where the transformation rules have to satisfy the semantic properties (however, these are
expressed at a higher level than, say, Transmorpher).

2.4 Ontology Extraction/Mining (by USFD)

2.4.1 Expected Functionality

Systems for ontology extraction / mining should take a corpus of text and (optionally) an
existing ontology and should be able to create semantic metadata, either by populating the
texts with instances from the ontology or by modifying the ontology with instances from
the text. In some cases they may also modify the existing ontology structure or content,
for example by adding new concepts or reassigning instances. They tend to rely heavily
on Information Extraction techniques.

Traditional IE is not, however, completely suitable for metadata creation, because se-
mantic tags need to mapped to instances of concepts, attributes or relations, and this is
not always a straightforward process. Also most IE systems based on Machine Learning
methods, e.g Amilcare [Ciravegna and Wilks, 2003] do not deal well with relations. al-
though they are very good at finding entities (which can be mapped to instances in the
ontology). On the other hand, there have been few knowledge engineering approaches

26 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

(which use rule-based systems, e.g. GATE [Cunningham et al., 2002] that deal success-
fully with relations except in very restricted domains, and these require a substantial
amount of time and effort to develop. GATE has been modified to use a combination
of learning and rule-based methods, and allows a combination of IE and IR, so that for
example, an IR engine can be used to find the relevant texts, before annotation is per-
formed.

2.4.2 Requirements

Interoperability

Interoperability is concerned with how well the tool interacts with other tools and systems.
Annotation is a task that is often combined with other applications, such as browsing,
search and retrieval, indexing, etc., so it is important that annotation tools can easily
interact with other systems. This is best achieved by conformance to existing standards.

Metadata is created through semantic tagging, and can be represented as inline or
standoff annotation. Inline annotation means that the original document is augmented
with metadata information, i.e. the text is actually modified. Standoff annotation, on the
other hand, means that the metadata is stored separately from the original document, with
some kind of pointers to the location of the corresponding text in the document. This
can be either in the form of a database or as e.g. an XML file. For ontology creation or
enhancement, standoff annotation method is generally much better, because the text itself
is unimportant, rather it is the information gleaned from the text that is interesting.

Both methods are acceptable from the point of view of interoperability; however,
standoff annotation is generally preferable, for the reasons mentioned above, as long as a
standard form is used, such as TIPSTER format, or provided that a means of export to a
recognised format is provided. This is the problem with inline annotation, because it is
difficult to manipulate the annotations once created.

Interoperability evaluation not only covers annotation format, but also issues such as:

• data format: what kinds of text format can be processed, e.g. xml, html, sgml, txt,
etc.;

• annotation schemes: whether annotation schemes can be imported/exported from
other tools;

• plugins: if it is possible to plug in extensions;

• converters: if converters to/from other formats are provided if non-standard formats
are used

KWEB/2005/D1.2.2/v1.3 June 30, 2005 27

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Scalability

Semantic metadata creation can be manual, semi-automatic, or fully automatic. Manual
creation is slow and time-consuming, and is therefore unsuitable for large-scale annota-
tion. Semi-automatic methods save time and money, and, like manual methods, are very
reliable, but they suffer from the drawback that they represent only one view (that of the
user, with respect to a single ontology). They also still require human intervention at
some stage in the process (either to train the system by providing initial manual annota-
tion before the system takes over, and/or to verify and correct the results produced by the
system). There is almost always a tradeoff between the level of automation, the size of
the corpus, and the quality of the final output. Systems which perform well and on large
documents are unlikely to be fully automatic; systems which are fully automatic may be
able to handle large documents but with lower performance.

Reusability

Ideally. systems should be reusable in a wide variety of contexts, i.e. they should work
on different kinds of domains and genres. Semi-automatic systems which rely on some
degree of manual annotation and/or training can usually be adapted to new domains and
ontologies, but will need retraining by the user. This means that they are generally best
suited to annotating large volumes of data within a single domain, and in situations where
the user has an interest in investing some initial time and effort in the application. They
are less suitable for the casual user who wants a ready-made tool to provide instant anno-
tations for his data. Automatic methods, on the other hand, can represent many diferent
views, and they change according to the ontology in qqustion. The IE engine can be
retrained for each ontology, and, furthermore, if the ontology changes, they remain up-to-
date because the metadata can be regenerated dynamically. However, the tradeoff is that
their performance is generally much lower.

2.4.3 Existing systems

KIM

KIM [Popov et al., 2004] offers an end-to-end, extendable system which addresses the
complete cycle of metadata creation, storage, and semantic-based search and includes a
set of front-ends for online use, that offer semantically enhanced browsing. KIM contains
an instance base (KIMO) which has been pre-populated with 200,000 entities.KIM has
a special ontology enrichment stage where new instances found in the text are added to
the ontology. This often involves a disambiguation step, because many instances could be
added in more than one place. For example, ”Paris” could be an instance of the country
France or the state of Texas. The disambiguation process uses an Entity Ranking algo-
rithm, which involves priority ordering of entities with the same label based on corpus

28 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

Figure 2.5: Architecture of KIM

statistics.

The essence of the KIM IE engine is the recognition of named entities with respect
to the KIM ontology, which is achieved using ANNIE [Maynard et al., 2002]. The entity
instances all bear unique identifiers that allow annotations to be linked both to the entity
type and to the exact individual in the instance base. For new (previously unknown)
entities, new identifiers are allocated and assigned; then minimal descriptions are added
to the semantic repository. The annotations are kept separately from the content, and an
API for their management is provided.

The architecture of KIM (shown in Figure 2.5 consists of the KIM ontology, a knowl-
edge base, the KIM server (with an API for remote access, embedding and integration),
and front-ends (a browser plugin for Internet Explorer, the KIM web user interface with
various access methods, and the Knowledge Explorer for navigation of the knowledge
base). KIM relies on GATE, SESAME and Lucene, but all these, as well as the software
platform itself, are domain and task independent.

h-TechSight

The h-TechSight Knowledge Management Platform (KMP) [Maynard et al., 2004]
aims to extract new domain data from free text on the web. It uses GATE
[Cunningham et al., 2002] to power the concrete data-driven analysis of concepts and in-

KWEB/2005/D1.2.2/v1.3 June 30, 2005 29

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Figure 2.6: Architecture of h-TechSight Application Mode

stances in the knowledge management platform, with respect to an ontology and domain.
The GATE IE application enables statistical information to be gathered about the data
collected, and inferences drawn, which in turn leads to the monitoring of trends of new
and existing concepts and instances.

The application uses two main inputs: a web mining application which feeds relevant
URLs to GATE, based on the user’s query, and a domain ontology. The texts are automat-
ically annotated with semantic information based on the concepts in the ontology. When
an instance of a concept is found, it is annotated with semantic metadata. Instances in the
text can not only be visualised (through colour-coding) but are also output in two forms:
into a database for further processing, and in ontological form. On the one hand, this
annotation of semantic metadata enriches the text; on the other hand, the ontology may
be enriched through its population with instances from the text.

h-TechSight performs metadata generation and ontology population (by adding new
instances to the ontology), but also by enabling the process of ontology evolution. By this
we mean that the IE application serves not only to populate the ontology with instances,
but also to modify and improve the ontology itself on the conceptual level. Statistical
analysis of the data generated can be used to determine how and where this should take
place. For example, a set of instances will be linked to a concept in the ontology, but this
concept may be too general. A clustering algorithm can be used to group such instances
into more fine-grained sets, and thereby lead to the addition of new subconcepts in the
hierarchy. hTechSight is also unique in performing monitoring of the data over time,

30 June 30, 2005 KWEB/2005/D1.2.2/v1.3

2. ONTOLOGY DEVELOPMENT

which can also lead to suggested changes in the ontology.

The architecture of the KMP consists of two modes: the generic search mode and
the application (targeted search) mode. Here we are only concerned with the application
mode. This is comprised of 3 independent but related modules: GATE, Toolbox and the
Mapping Service. The GATE module is a web service that takes as input a URL and a
set of annotation types specified by the user, and outputs an HTML page with highlighted
results. It also stores the results in a database which are then used by another submodule
for statistical analysis. The Toolbox and Mapping Service are independent of the GATE
module, but interoperate with each other. Sibilo extracts terms from the ontology and
URL, and passes these to the Mapping Service which associates these with the concepts
in the ontology and provides recommendations for updating the ontology. Essentially,
these 2 modules perform a similar function to the GATE module, but in a different way.
The GATE module, in which we are most interested here, is therefore fully interoperable
with other systems and architectures, since it is not dependent on the other modules in the
platform.

MnM

MnM [Motta et al., 2002] is an annotation tool which provides both automated and semi-
automated support for annotating web pages with semantic contents. MnM integrates a
web browser with an ontology editor and provides open APIs to link to ontology servers
and for integrating information extraction tools.

The architecture of MnM consists of a set of plugins, all of which implement a generic
interface. Two abstract classes implementing the IEPlugin interface are provided: the
IEEnginePlugin defines the methods required to deal with the IE mechanism, while the
IEOntologyPlugin provides the methods needed to interact with ontologies. Thanks to
these classes, the plugin developer only has to extend them and override the main meth-
ods. Plugins are contained in jar files.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 31

Chapter 3

Data Layer Components

3.1 Semantic Query Processor (by VUM)

3.1.1 Expected Functionality

The data access module should primarily provide functionality that allows

• access to ontologies and knowledge bases, independent of the particular data repre-
sentation, such as RDF;

• access to RDF and OWL data sets;

• support both distinguished and undistinguished variables;

• query answering over RDFS/OWL DL ontologies;

• multiple users to access data simultaneously in a safe and consistent manner.

3.1.2 Requirements

The achieve those functionalities the data access and persistence modules must support

• data modularity, by allowing to compose distributed data;

• transactional changes, by ensuring the commonly-known ACID properties;

• separation of concerns by realizing separate interfaces for the manipulated entities;

• adhering to formal semantics by being able to ensure that a given data set is valid;

33

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

• adhering to the intention of change by ensuring that changes have the intended
effect;

• change notification by providing mechanisms that notify other users of changes;

• human-readable presentation by providing a lexical layer on top on abstract URIs.

3.1.3 Existing Systems

Jena

The Jena project [McBride, 2001] provides both an ontology API and an RDF API, which
are separate software entities. Jena allows access to RDF and OWL data sets, it passes our
test on query answering over RDFS ontologies. Its API can also rely on an external OWL
DL reasoner (such as Racer) by means of a DIG interface: it sends the whole information
to the reasoner, which will send back to the Jena API the results of the inference.

Sesame

Sesame [Broekstra et al., 2002] allows access to RDF data sets, it also passes our test on
query answering over RDFS ontologies. However, it only has a limited support for OWL,
in particular it currently implements a set of rules that cover the DLP subset of OWL DL.
Support for a more expressive fragment of OWL is already planned, but yet an open issue.

Triple

Triple [Sintek and Decker, 2002] supports both RDFS and DAML+OIL data sets, but not
OWL DL. In terms of query answering, Triple allows only for inference over RDF(S)
taxonomies, but it does not pass our test involving domain/range constraints of properties.

Racer

Racer [Haarslev and Möller, 2003] is a reasoning agent that supports inference over dif-
ferent ontologies, which can be expressed in different languages, including DAML+OIL
and OWL DL. It passes most our tests on query answering over RDFS and OWL DL, ex-
cept queries involving datatypes. It does not support the use of undistinguished variables.

Manchester OWL-QL Server

Manchester OWL-QL Server [Glimm and Horrocks, 2004] supports DAML+OIL and
OWL DL. It passes most our tests on query answering over RDFS and OWL DL, ex-

34 June 30, 2005 KWEB/2005/D1.2.2/v1.3

3. DATA LAYER COMPONENTS

cept queries involving datatypes (because it does not support datatypes yet). It supports
the use of undistinguished variables. It reduces query answering to basic ABox reasoning
services provided by Racer.

Apart from the above query engines, the very new KAON2 also supports query an-
swering in OWL DL, although we haven’t tested it yet.

A more detailed survey of existing Semantic Web querying systems can be found
in D2.5.3 “Report on Implementation and Optimisation Techniques for Ontology Query
Systems”.

3.2 Reasoner (by VUM)

3.2.1 Expected Functionality

The reasoning module should primarily provide functionality that allows

• the support existing Semantic Web standards, such as OWL DL;

• the support of both object and (customised) datatype constraints of ontologies;

• the support of the DIG interface, the general interface for DL reasoners;

• the support of rule extended ontologies;

• clients to identify the working reasoning engine and its capability.

3.2.2 Requirements

Formal semantics

The formal semantics specified by an ontology must be unambiguous and clear.

Flexibility

A reasoning module should enable flexible use of different ontology languages (DLs) and
different datatypes and datatype predicates.

Accessability

A reasoning module should enable loose coupling, allowing access through standard web
protocols, as well as close coupling by embedding it into other applications. This should
be done by offering sophisticated standard APIs.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 35

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Consistency

Consistency of information is a critical requirement of any enterprise reasoning system.
Each update of a consistent ontology must result in an ontology that is also consistent.
In order to achieve that goal, precise rules must be defined for ontology evolution and
components updating ontologies must implement and adhere to these rules. Also, all
updates to the ontology must be done within transactions assuring the common properties
of atomicity, consistency, isolation and durability (ACID).

Concurrency

It must be possible to concurrently access and modify information. This may be achieved
using transactional processing, where objects can be modified at most by one transaction
at the time.

Security

Guaranteeing information security means protecting information against unauthorized
disclosure, transfer, modification, or destruction, whether accidental or intentional. To
realize it, any reasoning services should only be accessible by properly authorized agents.
Proper identity of the agent must be reliably established, by employing authentication
techniques. Finally, reasoning should be based on accessible parts of the target ontolo-
gies.

Mapping

Often, there is a need for handling multiple ontologies. Complete support for handling
multiple ontologies shall be given. This means that the reasoning component should allow
mapping between heterogeneous ontologies and provide sound and complete inference
based on the mapping.

Distribution

We assume that data in the Semantic Web will be distributed. Therefore capabilities for
accessing and aggregation of distributed information is required. Means for detecting
and working with duplicate data sets are required. For example the same data accessible
through with different reasoning services, which may provide distinct and unique services
for that data. A Semantic Web data store should provide means to detect that the same
data set is used. Also means for querying and composition of distributed data should be
provided.

36 June 30, 2005 KWEB/2005/D1.2.2/v1.3

3. DATA LAYER COMPONENTS

3.2.3 Existing Systems

FaCT and FaCT-DG

FaCT [FaCT, 1998] supports efficient TBox reasoning of OWL DL (without nomi-
nals). FaCT [Pan, 2004a] is a datatype group extension of FaCT; it supports customised
datatypes and datatype predicates. New datatype checkers can be easily plugged into the
system, in order to meet the requirements of different applications.

FaCT++

FaCT++ [FaCT++, 2003] is a re-engineering of the FaCT system; it is written in C++.
FaCT++ support efficient TBox reasoning of OWL Lite. It has a very simple support for
datatypes.

Racer

Racer [Racer, 1999] support both relatively efficient TBox and ABox reasoning of OWL
DL (without nominals). It supports concrete domains, but doesn’t support user-defined
datatypes and predicates.

Pellet

Pellet (from University of Maryland) supports TBox and ABox reasoning wit OWL Lite.
It has a simple support for datatypes.

Hoolet

Hoolet (from University of Manchester) support SWRL, the Horn rule extension of OWL
DL.

Many of the exiting DL reasoners (such as FaCT, FaCT++ and Racer) support the DIG
interface, which is the general interface for DL systems. Therefore, applications which
are conforming to DIG can use any DL reasoners that support DIG.

DIG

DIG/1.1 is effectively an XML Schema for the DIG interface along with ask/tell func-
tionality. Applications can take an OWL DL ontology, either in OWL/RDF syntax or

KWEB/2005/D1.2.2/v1.3 June 30, 2005 37

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

in OWL abstract syntax, and use the OWL-API [Bechhofer et al., 2003]1 to translate it
into an ontology in DIG/1.1 syntax. Then the clients (applications) communicate with a
DIG/1.1 server (a Description Logic reasoner) through the use of HTTP POST request,
and the DIG server should return 200 OK, unless there is a low-level error. As DIG/1.1
was designed for DAML+OUL, it does not completely cover OWL DL, let alone OWL-
E [Pan, 2004b] which extends OWL DL with necessary and expressive datatype support.
Accordingly, [Pan, 2004a] extends DIG/1.1 to DIG/OWL-E, so as to cover the full fea-
tures of OWL DL and OWL-E.

Apart from the above reasoning engines, the very new KAON2 also supports DL
reasoning, although we haven’t tested it yet.

3.3 Wrapper to existing Information Sources - Instance
Mining (by UKARL)

As the Semantic Web enhances the first generation of the WWW with formal semantics,
it offers new chances and challenges for Web Mining. The intention of Semantic Web
Mining [Berendt et al., 2002] is to improve the results of Web Mining by exploiting the
new semantic structures in the web. As in traditional Web Mining, one can distinguish
between content, structure, and usage mining. However, in the Semantic Web, content
and structure are strongly interwoven, hence a distinction between Semantic Web Content
Mining and Semantic Web Structure Mining blurs.

In this section we discuss requirements for an instance mining component.

3.3.1 Expected Functionality

A component identifying instances (so called instance mining) on information sources,
e.g. the Web, should provide as a result instances of a given ontology vs. a given set
of concepts as result. Indeed, given an ontology O1 the result is an ontlogy O2 whereby
O1 ⊂ O2 and the number of instances increased for one ore more concepts.

Such component might be able to be combined within a complete knowledge discov-
ery process. Furthermore, a mining component should support a knowledge discovery
(KDD) process, which mainly consists of following steps.

1. Data Collection

2. Data Cleaning

3. Data Integration
1OWL-API can also translate OWL/RDF syntax into OWL abstract syntax, cf. http://owl.man.

ac.uk/api.shtml.

38 June 30, 2005 KWEB/2005/D1.2.2/v1.3

http://owl.man.ac.uk/api.shtml
http://owl.man.ac.uk/api.shtml

3. DATA LAYER COMPONENTS

4. Data Transformation

5. Data Mining

6. Knowledge Representation

Data Collection

Data can be stored on many different sources such as on the Web, accessible by the hyper-
text transfer protocol HTTP, or on a local computer. Therefore specialised access methods
are required or other components are taken into account.

Data Cleaning, Integration and Transformation

Unfortunately, a lot of documents (e.g. on the web) come in less standardized form, partly
containing syntactic errors. Therefore training examples need to be cleaned and tidied up.

In order to identify data patterns and to apply data mining algorithms the collected
data has to be transformed into the representation used by the algorithm.

Data Mining

Essentially, a mining component has to provide data mining algorithms to discover com-
mon patterns or properties in a given data set.

Data Representation

For deployment and use of the patterns, functions for accessing and browsing generated
patterns and identified instances are expected.

3.3.2 Requirements

Following requirements must hold for a Mining Component.

Accessability

Such component must be accessible through standardized application programmer inter-
faces (API´s) providing methods for controlling the component and receiving the results.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 39

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Supervised/automatic mining

Instance Mining can be done semi-automatic or fully automatically. Both mechanisms
must be reflected by such component.

An automatic mining process would take an ontology into account and then start find-
ing new instances in one step. The results are presented in the end. In this case no user
interaction is possible which may lead to unwanted results. However, if the user knows
the ontology well it might be an effective way of adding instances to an ontology without
being involved in the detailed mining process.

On the other hand, in cases where detailed information is missing or the user wants
to control the mining process in a step-by-step manner a semi-automatic mining mech-
anism should be provided. Then the user is asked wether to add instance or not or by
re-configuring settings influencing the mining process.

Scalability

Instance Mining as mining in general is often a resource intensive task. Therefore such
component must take into account issues like scalability and ensure that large mining
processes with thousands of instances can be run on it.

Interoperability

Such component should be able to access several ontology formats or providing at least
one well-known standard from which other formats can be transformed.

Usability

Instance Mining should be applied by end-users which are not necessarily domain experts.
Hence usability apsects become important for the usage of a mining component.

3.3.3 Existing solutions

An existing system for instance mining is the ontology-based web crawler METIS2.
METIS takes an ontology as domain knowledge whereby the user selects desired con-
cepts for which the crawler should identify new instances. Then the crawler automatically
crawls the web based on a detailed configuration. The results can be exported for further
analyses. Normally, an instance mining process is encapsulated within a knowledge dis-
covery process, like it is provided by the workbench ARTEMIS3.

2see http://ontoware.org/projects/metis for details
3see http://ontoware.org/projects/artemis

40 June 30, 2005 KWEB/2005/D1.2.2/v1.3

3. DATA LAYER COMPONENTS

The ARTEMIS Workbench represents a tool for knowledge engineers and industrial
practioneers required to handle large and heterogenous sets of documents whereby it
provides functionalities of well-known knowledge discovery tools to generate semantic
enabled document models to apply them on the Semantic Web.

Figure 3.1: ARTEMIS Architecture

The workbench consists of three main blocks: (i) The ARTEMIS Core System (ACS)
as surrounding technology, (ii) the Workflow Model (WM) providing a knowledge dis-
covery workflow and (iii) the Component Model (CM) instantiates the workflow by
extensible components as presented in figure 3.1.

The ARTEMIS Core System contains the main system functionalities which are subdi-
vided into the kernel and the messaging system. The kernel provides core functionalities
for the workbench like realising storage mechanisms, running a script interpreter and
providing the ARTEMIS ontology for the components.

ARTEMIS applies an expressive architecture in which communication within the work-
bench and its components is based on a script language interpreted by the kernel script
interpreter and handled by the messaging system. Besides, the scripting language allows
a non-graphical usage of the system and provides the ability to users to record macros of
often occuring tasks in the workbench. ARTEMIS handles large amounts of data reflecting
averaged sizes of current knowledge portals which can be stored on databases across the
internet or on a local machine.

The accomplishment of a knowledge discovery process is handled by the Workflow
Model which provides a workflow manager to monitor the flow of data and extracted
information. Further, it assures the application of components depending on the current
process step.

As indicated in Figure 3.2 ARTEMIS provides for each step of the process specialised
components.

Generally, the approach can be used to enhance Web documents with semantic markup

KWEB/2005/D1.2.2/v1.3 June 30, 2005 41

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Figure 3.2: ARTEMIS Workflow

in terms of an assignment to certain ontologies.

42 June 30, 2005 KWEB/2005/D1.2.2/v1.3

Chapter 4

Interface Layer Components

4.1 Annotation and Instance Editor (by L3S/USFD)

4.1.1 Expected Functionality

Nearly all applications need a user interface. For ontology-centric applications, such an
interface needs to support the following areas:

• ontology instance creation and modification

• navigating the ontology

Ontology Instance Creation and Modification

A typical ontology consists of a large number of classes. Manually building a view/edit
dialog for each of these classes would be a tedious process. The user interface component
should be able to build such dialogs for a given ontology. These should then be further
adaptable by the application developer. Such dialogs can also be used to provide query-
by-example based query interfaces.

Ontology Navigation

To find the correct classes and/or instances, a user needs to get an overview of the ontology
in use. This can be a simple tree view, but also much more elaborate interfaces, e.g. cluster
maps [Aduna B.V., 2005].

43

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

4.1.2 Requirements

Internationalization

Internationalization is an essential requirement for many applications. Often ontologies
already come with labels and terms in several languages. The user interface should be
able to display these according to the user’s language preferences.

Accessibility

The generated user interfaces should comply with accessibility regulations, e.g. US Sec-
tion 508 in the United States, or results of the EuroAccessibility initiative 1.

Access Control

The user interface should adapt to the access rights of the current user and must only allow
display and modification of the part of the ontology the user has the corresponding rights
to see and/or change.

Usability

The generated dialogs should conform to the Look&Feel of the target platform. All gen-
erated user interfaces should have the same consistent handling.

Scalability

The user interface should not slow down significantly when handling a huge number of
instances. It must provide means to navigate large ontologies without getting lost.

4.1.3 Existing Solutions

Magpie (by USFD)

Magpie [Domingue et al., 2004] is a suite of tools which supports the interpretation of
webpages and ”collaborative sense-making”, by annotating a text with instances from a
known ontology. These instances can be used as a confidence measure for carrying out
some services. The principle behind it is that it uses an ontology to provide a very specific
and personalised viewpoint of the webpages the user wishes to browse. This is important

1http://www.euroaccessibility.org

44 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

Figure 4.1: Architecture of MAGPIE

because different users often have different degrees of knowledge and/or familiarity with
the information presented, and have different browsing needs and objectives.

The MAGPIE architecture is essentially that of a mediator, consisting of a Service
Provider and a Service Recipient. Here we are interested mainly in the Service Provider
component, which is built around a suite of tools providing access to a library of domain
ontologies, populated knowledge bases, hand-crafted semantic services, and a semantic
log knowledge base. Ontologies can be represented in RDF, DAML+OIl and OCML, and
there is an OWL import/export mechanism. The Service Recipient (client side) compo-
nents consist of a browser extension to Internet Explorer, a Service Dispatcher and Trigger
Service Interfaces. The browser extension is embedded in the browser as a plugin.

OntoMat (by USFD)

OntoMat Annotizer [Handschuh et al., 2002] is a user-friendly interactive annotation tool
for web pages. It supports the user in the task of creating and maintaining ontology-
based OWL markups, i.e. creating instances, attributes and relationships. It includes
an ontology browser for the exploration of the ontology and instances, and an HTML
browser that displays the annotated text. It is Java-based and provides a plugin Interface
for extensions. The intended user is the individual annotator, i.e. somebody who wants to
enrich their web pages with OWL metadata. Instead of manually annotating the page with
a text editor, OntoMat allows the annotator to highlight relevant parts of the web page and
create new instances via drag’n’drop interactions. It supports the metadata creation phase
of the lifecycle, and is used in the OntoAgent project.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 45

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

The OntoMat architecture comprises a plugin structure, which is flexible in terms of
adding or replacing modules. The core OntoMat, which is downloadable, comprises an
Ontology Guidance and Fact browser, a document viewer/editor, and an internal memory
data structure for the ontology and metadata. The full semantic capabilities require a
plugin connection to a corresponding annotation inference server.

SHAME - Standardized Hyper Adaptable Metadata Editor

The SHAME editor framework can be used to create RDF/XML metadata or to present the
existing metadata of a given RDF model [Palmér et al., 2004]. The SHAME Application
Suite contains a standalone metadata editor, an application to create/edit formlets and
a few examples. The standalone editor can be used to edit/create metadata using the
following RDF metadata standards: LOM, Simplified Dublin Core, Dublin Core, PADLR
LOM and some more. The examples show how to create an individual editor GUI using
formlets, because of these formlets the SHAME RDF editor GUI is very flexible and can
handle a lot of RDF metadata standards.

SHAME provides interfaces, so that the RDF editor GUI can be easily integrated
into various applications, it also provides a Java Bean to integrate the RDF editor GUI
into Java Server Pages. So e. g. the editor GUI can be integrated into an existing GUI
application and all functions of the SHAME standalone editor can be used as well, so
it is possible to program a very flexible RDF editor application, because the editor GUI
can be changed easily from one metadata standard to another. Furthermore, because of
the SHAME JB, the RDF editor GUI can be integrated into a system for storing RDF
metadata into a database via a web interface. SHAME supports a lot of RDF metadata
standards (e. g. LOM, DC) and also self defined attributes can be used. After editing the
attributes SHAME parses the attributes, generates a RDF model and creates a RDF/XML
stream. SHAME uses the Jena2 API to generate the RDF model of the given attributes.
The Jena2 package provides methods for manipulating and creating RDF models, it also
includes methods for querying RDF models and storing RDF metadata into a database or
filesystem.

To create the RDF editor GUI, SHAME needs a compound formlet. This formlet refers
to atomic formlets and, if any attribute uses a choice list, also to a RDF/XML ontology
file containing the vocabularies for the choice list. An atomic formlet is a combination
of two files for each attribute, a form file and a query file. In the query file the path to
the attribute in the RDF model is specified. To specify the query path, the RDF Query
Exchange Language (QEL) is used. The form file describes how the attribute is displayed
in the editor GUI. This file includes the name of the attribute, a description, possibly both
in different languages, the kind of the attribute (e. g. choice item), the cardinality of the
attribute and possibly an ontology file which contains the values of the choice item. The
ontology file is also in XML syntax, it contains the values for the choice to be shown in
the editor GUI items and the corresponding values to be written to the RDF model.

46 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

Due to these formlets it is quite easy to create new attributes or to change a compound
formlet. To create a new attribute only a form file which includes the specification of the
attribute and the query file including the QEL query path to the attribute in the RDF model
have to be created. To remove/add an attribute from an existing compound formlet only
the reference in the compound formlet file has to be removed/added.

4.2 Semantic Web Service Infrastructure (by FT)

4.2.1 Introduction

Web Services (WSs) are interfaces that describe a collection of operations that are
network-accessible through standardized Web protocols, and whose features are de-
scribed using a standard XML-based language [Kreger, 2001, Curbera et al., 2001]. Al-
though there are other definitions of what a WS is, (refer to [Alonso et al., 2003] for an
enumeration of them), we believe that this definition captures better what a WS is (and
from where its benefits come from). In few words, ”‘It’s not the components, it’s the
interfaces”’ [Kayne, 2003].

The main web services [Kreger, 2001, Curbera et al., 2001] features are: (1) com-
munication features that describe the protocols required to invoke the service execution;
(2) descriptive features that detail the e-commerce properties; (3) functional features that
specify the capabilities, enabling thus an external invoking agent to determine whether the
service execution can obtain the requested results; and (4) structural features that describe
the internal structure of a composite service, that is, which are its structural components
and how these components are combined among them to execute the service. In this con-
text, the Semantic Web has risen as an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work in cooper-
ation [Berners-Lee et al., 2001]. Following this approach, Web Services in the Semantic
Web, the so-called Semantic Web Services (SWS), will be the mark-up of WS to make
them computer-interpretable, use-apparent and agent-ready [McIlraith et al., 2001]. This
mark-up is the semantic description of the WS and it will facilitate external agents to
understand both the functionality and the internal structure of the services. The moti-
vating tasks of SWS are to be able to discover, compose, and invoke automatically SWS
[Hendler, 2001]. Several approaches have appeared with this aim, being the more relevant
the OWL-S specification, IRS-II, WSMO and the SWSF.

The OWL-S [OWL Services Coalition, 2004] specification (formerly DAML-S
[Ankolekar et al., 2002]) has been proposed to describe services in a semantic man-
ner, using OWL [Dean and Schreiber, 2004] in combination with the WSDL language
[Christensen et al., 2001] and SOAP [Gudgin et al., 2003], achieving thus the desirable
combination of WS standard languages and semantic annotation in order to use the cur-
rent infra-structure of the WS [Sollazzo et al., 2002].

KWEB/2005/D1.2.2/v1.3 June 30, 2005 47

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

The Internet Reasoning Service IRS-II [Motta et al., 2003] is a SWS framework,
which allows applications to describe semantically and execute SWS. It uses problem-
solving methods (PSM) to represent SWS, attaching to each WS a PSM that describes
it. A PSM is an abstract implementation of a domain-independent description of rea-
soning processes which can be applied to solve tasks in a specific domain. It is
based on the UPML (Unified Problem Solving Method description Language) frame-
work [Fensel et al., 2003].

The Web Service Modelling Framework (WSMF) [Fensel and Bussler, 2002] tries to
provide a model for describing the various components in an e-commerce environment.
WSMF is the result of research carried out on modelling of reusable knowledge compo-
nents and its core are two complementary principles: a strong de-coupling of the afore-
mentioned components that carry out an e-commerce application; and a strong mediation
between these elements. Mediation is applied at several levels: mediation of data struc-
tures; mediation of business logics; mediation of message exchange protocols; and medi-
ation of dynamic service invocation. WSMF consists of four main elements: ontologies,
goals, web services and mediators. All these elements are described using the Web Ser-
vice Modelling Ontology (WSMO) [Lausen et al., 2005]. The underlying representation
language for WSMO is F-logic [Kifer et al., 1995], a full first order logic language that
provides second order syntax.

Web Service Description Language [Christensen et al., 2001] standard does not con-
tain the semantic expressivity needed to represent the requirements and capabilities of
Web Services - a requirement for addressing the vexing heterogeneity challenges that
need to be addressed for achieving (semi) automated discovery, improved reuse and
faster composition. While efforts by the Semantic Web community to address this
issue have resulted in proposals such as WSMF [Fensel and Bussler, 2002], OWL-S
[OWL Services Coalition, 2004] and WSMO [Lausen et al., 2005], they are seen as revo-
lutionary and do not build on current WSDL standards, thereby making industry adoption
less likely, since industry prefers evolutionary approaches whenever available. WSDL-S
approach is right on that direction to demonstrate that any approach to annotating Web
Services should and could be built by enriching the current Web Services standards with
semantic descriptions.

SWSF (Semantic Web Services Framework) is a specification produced by the Seman-
tic Web Services Language (SWSL) Committee of the Semantic Web Services Initiative
(SWSI) (http://www.swsi.org/). In the same line of existing framework such as OWL-
S, ODESWS, WSMO, the aim of SWSF is to provide richer semantic specifications of
Web services in order to enable greater automation of service design, development end
use. As in the other frameworks, the main objective of SWSF is to provide the needed
technologies to realize the semantic web service vision [McIlraith et al., 2001].

48 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

4.2.2 Service Directory

UDDI (Universal Description, Discovery and Integration) is a protocol and registry spec-
ification that enables organizations to use a standardized mechanism for organizing, dis-
covering, reusing and managing Web services within an organization and across its part-
ners.

UDDI specifies protocols for:

• Publishing and searching services registry

• Controlling access to registry

• Distributing and delegatating requests to other registries

Expected Functionality

UDDI provides a mechanism for managing a largely ad-hoc approach to building exten-
sible Web service interactions. UDDI has a role defined both for development teams as
well as within a Service-Oriented Infrastructure.

Typically, UDDI is used for:

• Publishing web services and finding them based on specific criteria

• Determining security and transport protocols a Web service supports

• Failover across Web services

in both a private registry scenario (enterprise) as well as interactions between trading
partners (B2B).

In terms of semantics, UDDI’s discovery is, as of now, based on:

– Simple keyword searching, which allows to specify the name (or part of the name)
for a business, a service, a binding information or a ”‘tModel”’ and return the entry
from the repository.

The use of Taxonomies and Identifiers to categorize UDDI elements at publishing
time (businesses, services, ”‘tModel”’ and also bindings with the UDDI V3.0) as
well as specifying categories and/or identifiers to refine the search. Along with this,
UDDI users can create and publish their own appropriate taxonomies, validate them
and share them with other users.

UDDI V3 adds a policy guide to allow for additional flexibility within UDDI deploy-
ments given their context. However, the UDDI specification only provides a high level

KWEB/2005/D1.2.2/v1.3 June 30, 2005 49

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Policy Schema and a set of Policy Abstractions both at the registry level and at the node
level.

Like search engines, UDDI could provide automated searching capability that auto-
matically and transparently search into and across taxonomies, based on keywords entered
by the user, in order to provide a list of accurate services. This functionality would make
UDDI searching capabilities much more accurate and could serve for other UDDI func-
tionalities such as service versioning, life-cycle and quality of service, assuming that this
kind of information can be provided using taxonomies.

Requirements

Ontology support Given the role for UDDI in Web services searching and discovery,
the need to add more support for service semantics specification to the UDDI standard is
obvious.

The following areas are currently being discussed within the UDDI Technical Com-
mittee and potential solutions as well as timelines are currently under discussion:

–1. Standardize the description of taxonomies within UDDI by defining a common de-
scription language (using OWL). Indeed, the current use of taxonomy is limited by
proprietary solutions, hence restricted to particular implementations which are not
interoperable. A common way of describing external taxonomies would provide an
option of using interoperable UDDI client applications that are not dependent on
the implementation of the UDDI server they connect to.

2. Define a common API to manage the ontologies. The ideal scenario for taxon-
omy management would be achieved when users can create and publish their own
taxonomies, share them, update or delete them, upload to and download from the
server, check/validate value sets, manage security access, etc. Note that there is
actually a lot of debate being done within the UDDI TC on whether UDDI should
provide an API to manage ontologies (loading and deleting) or just recommend us-
ing existing 3rd party tools. A possible solution would be to have UDDI defining
only the format in which users receive the ontology, the vendors would then have
to implement themselves the management API.

3. Use Semantic Search protocols to enhance the UDDI discovery and search mech-
anism. The main problem is that service providers and service requesters have a
very different knowledge on the services that are registered with UDDI. The use of
Semantic expands the search to services that are similar to the services requested.
A Technical Note was created by the UDDI TC to specify to exploit the semantics
of OWL language and the relation between concepts as that are expressed in OWL
ontologies to facilitate the service discovery in UDDI. Specifically, three types of
searches are defined:

50 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

– Exact search that retrieves entities whose classification matches the inquiry
exactly;

Specialization search to locate services whose specification is more specific
than the inquiry (search within ontologies children);

–– Generalization search to locate services whose specification is less specific
than the inquiry (search within ontology node parents - reverse of the special-
ization search). The proposal also extends the search by defining equivalency
and similarity among the ontologies entries.

4. Formal policy language. While policies are defined in UDDI V3, the definition is
abstract and an exact policy language is not specified. This is largely because no
standard exists today around Web services policy definition. However, following a
workshop held at the W3C in October 2004, the need for standardizing around Web
services Constraints and Capabilities is well recognized.

Interoperability/Standard-Conformance The Service Directory should comply to the
UDDI Specification. Unfortunately the current UDDI Specification (UDDI V1.0 to V3.0)
does not provide any Semantic solution other than keyword searching and taxonomy clas-
sification. Hence, there is no vendor product available that offers any such standardized
Semantic UDDI implementations. However, the next UDDI version (V4.0) will provide
Semantics as follows:

• Using OWL as the language to describe taxonomies in UDDI. As explained above,
standardizing a process to describe taxonomies is very valuable since all businesses
would respect a same method to use taxonomies. Moreover, it would resolve inter-
operability issues when using different UDDI platforms from various vendors.

• Using OWL to make the searching mechanism more accurate and efficient.

As the UDDI and Semantic Web communities work together over time, it is possible
that the standard will provide a dedicated ontology management API within the registry.

Existing Solutions

Commercial solutions Among registry or Semantic vendors, we can quote:

• Systinet WASP UDDI includes the complete set of pre-built taxonomies as defined
by the UDDI specifications

• Network Inference provides tools to produce ontologies as well as services to help
companies implementing ontologies

• Infravio: has their X-Registry

KWEB/2005/D1.2.2/v1.3 June 30, 2005 51

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

• HP provides a parser for RDF extended for OWL

University solutions

• Carnegie-Mellon University (CMU) created the Semantic Matchmaker, an entity
that will allow web services to locate other services, provides a solution to the
problem of matching, and allow for full implementation of interoperable service
providers on the Web.

• University or Georgia (UGA) provides an environment for Web service discovery
among multiple registries. This work uses an ontology-based approach to organize
registries and enabling semantic classification and discovery of all Web services
based on domains, using two algorithms created by UGA.

• Mind Swap provided an OWL-DL reasoner as well as an OWL-S Java API.

Open-source solutions

• Juddi is an open-source UDDI V2.0 server compliant solution

• Uddi4j is a UDDI V2.0 client solution

4.2.3 Service Discovery

The Semantic Web should enable greater access not only to content but also to services
on the Web. Users and software entities should be able to discover, invoke, compose, and
monitor Web resources offering particular services and having particular properties, and
should be able to do so with a high degree of automation if desired. Powerful tools should
be enabled by service descriptions, across the Web service lifecycle.

Expected Functionality

Service discovery is usually based on the rationale that services are selected, at run-time,
based on their properties and capabilities. Providing automated support for service dis-
covery constitutes, nowadays, one of the most challenging problems that web service
technology faces. Indeed, because of the large number of available services and the het-
erogeneity and the versatility of the environment it is important to provide appropriate
support for selecting services that are relevant to a specific user needs.

The Semantic Service Discovery Component aims at enhancing the potential of web
services by providing support that enables effective automation of services discovery. The
key idea is to ground the service discovery process on a semantic matchmaking between

52 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

requester queries and available web service descriptions. To achieve this goal, the focus
will be on fundamental issues related to: (i) service description, which consists in the
definition of a formal semantics that enables understanding the structure and semantics
of service description ontologies, and (ii) service discovery process, which consists in
the design and implementation of effective reasoning mechanisms to support web service
discovery.

Requirements

Semantic service description and user queries specification The service discovery
component should provide rich and machine-processable abstractions that enable to de-
scribe service properties and capabilities as well as the specifications of user needs. This
is essential to enable the development of reasoning mechanisms to handle the discovery
process.

Approximate matchmaking A service discovery mechanism must support approxi-
mate matchmaking since it is unrealistic to expect service requests and service advertis-
ments to exactly match. Such a approximate matchmaking process should be based on a
measure of semantic distance between user queries and service descriptions. Given a user
query, the matchmaking algorithm should be able to return the collection of services that
best match the given query.

Consistency checking Semantic Service Discovery Component should be able to en-
sure that only services that are consistent with the user query are selected. Hence, the
notion of consistency should be formally defined and the matchmaking algorithm should
be designed in a way to prevent inconsistent answers.

Scalability This is one of the most important functionalities. The Service Discovery
Component should provide support to enable efficient discovery of services in large, het-
erogeneous, and highly dynamic environments.

Service selection with respect to non-functional criteria The discovery process
should also be able to select service with respect to non-functional criteria such as QoS
measures, user preferences, etc.

Existing solutions

Current web services infrastructure have serious limitations with respect to meeting the
automation challenges. For example, UDDI provides limited search facilities allowing
only a keyword based search of businesses, services and the so-called tModels based

KWEB/2005/D1.2.2/v1.3 June 30, 2005 53

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

on names and identifiers. To cope with this limitation, emerging approaches rely on
semantic web technology to support service discovery [González-Castillo et al., 2001,
Paolucci et al., 2002]. For example, [Bernstein and Klein, 2002] proposes to use process
ontologies to describe the behaviour of services and then to query such ontologies using
a Process Query Language (PQL). [Chakraborty et al., 2001] defines an ontology based
on DAML [DAML, 2005] to describe mobile devices and proposes a matching mecha-
nism that locates devices based on their features (e.g., a type of a printer). The matching
mechanism exploits rules that use the ontology, service profile information and the query
to perform matching based on relationships between attributes and their values.

A Prolog based reasoning engine is used to support such a matching. There
are other approaches based on a DAML-OIL [Horrocks, 2002] description of ser-
vices that propose to exploit the description logic based reasoning mechanisms.
[González-Castillo et al., 2001] reports on an experience in building matchmaking pro-
totype based on description logic reasoner which considers DAML+OIL based service
descriptions. The proposed matchmaking algorithm is based on simple subsumption and
consistency tests. [Paolucci et al., 2002] proposes a more sophisticated matchmaking al-
gorithm between services and requests described in DAML-S2. The algorithm considers
various degrees of matching that are determined by the minimal distance between con-
cepts in the concept taxonomy. Based on a similar approach, the ATLAS matchmaker
[Payne et al., 2001] considers DAML-S ontologies and utilizes two separate sets of fil-
ters: 1) Matching functional attributes to determine the applicability of advertisements
(i.e., do they deliver sufficient quality of service, etc). The matching is achieved by
performing conjunctive pair-wise comparison for the functional attributes; 2) Matching
service functionality to determine if the advertised service matches the requested service.
A DAML-based subsumption inference engine is used to compare input and output sets
of requests and advertisements.

In [Benatallah et al., 2005, Benatallah et al., 2003], service discovery is formalized
as a new instance of the problem of rewriting concepts using terminologies in the con-
text of Description Logics, called the best covering problem. The proposed matchmaking
algorithm provides the following building blocks for flexible and effective service discov-
ery: (i) a global reasoning mechanism that allows to discover combinations of services
that match (cover) a given request, (ii) a flexible matchmaking process that goes beyond
subsumption tests, and (ii) effective computation of the missed information (i.e., the dif-
ference between the query and its rewriting) which can be used, for example, to improve
service repository interactions.

Finally, it should be noted that the problem of capabilities based matching has also
been addressed by several other research communities, e.g., information retrieval, soft-
ware reuse systems and multi-agent communities. More details about these approaches
and their applicability in the context of the semantic web services area can be found in
[Bernstein and Klein, 2002, Paolucci et al., 2002].

2http://www.daml.org/services/

54 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

4.2.4 Service Composition

Expected Functionality

Web services composition refers to the ability to synthetize a new service using existing
services. Two kinds of service composition approaches have been proposed in the lit-
terature: static composition, where services are composed at design time, and dynamic
composition, where existing services are selected and composed at run-time. Dynamic
service composition is emerging today as a promising technology for the effective au-
tomation of application-to-application integration.

The service composition component aims to advance the fundamental understanding
to dynamically compose web services to perform complex tasks. This will lead to the
development of a service composition infrastructure that enables users to locate and ag-
gregate web services in a flexible and personalized manner. In particular, the proposed
infrastructure will support the functionnalities described below.

Requirements

Supervised/automatic service composition The aim here is to provide assistance to
a user in creating composite services. Two types of service composition should be sup-
ported: supervised and automatic composition. Supervised composition is based on a
semi-automatic process that allows a user to progressively create a new service by inter-
acting with the system. However, the aim of automatic composition is to fully automate
the composition process. Given a specification of user needs, this implies the ability to
locate services based on their capabilities and to aggregate them in order to achieve the
required functionality.

Personalized service composition The service composition component should be able
to take into account user preferences and/or profiles in the composition process in order
to propose the most appropriate composite services to end users.

Correctness of service composition It is essential to ensure that synthetized composite
services are correct in the sense that they can be effectively executed without generat-
ing errors. The notion of correctness of a composition must be formally defined and
mechanisms to enforce it must be developped and integrated in the proposed composition
infrastructure.

Scalability The service composition component should provide support to enable effi-
cient composition of services in large, heterogeneous, and highly dynamic environments.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 55

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Service composition with respect to non-functional criteria The composition compo-
nent should be flexible enough to enable to parameterize the service composition process
using non-functional criteria such as QoS measures, etc.

Existing solutions There are some recent research work that are interested in pro-
viding formal foundations for service composition [Hull et al., 2003, Bultan et al., 2003,
Berardi et al., 2003]. [Hull et al., 2003, Bultan et al., 2003] propose a formal framework
that enable to better understand the relations between the global properties of a com-
posite service and the local properties of its components. The motivation behind this
work is the development of techniques that enable to verify/synthetise global properties
of composite services from the local properties of the components. [Berardi et al., 2003]
addresses he problem of automatic composition of services in a framework based on De-
terministic Propositional Dynamic Logic (DPDL). The authors show that the problem of
service composition existence can be reduced into the problem of satisfiability of a DPDL
formula. [Narayanan and McIlraith, 2002, Hendler et al., 2003] propose approaches that
combine services annotation languages and planning techniques in order to enable auto-
matic or semi-automatic composition of services. These kinds of approach constitute an
alternative to static composition approaches based on BPEL4WS like languages. They
enable the composition of new services from declarative specifications of their expected
behaviors.

4.2.5 SemanticWeb Service Frameworks

WSMO Framework

The Web Service Modeling Ontology (WSMO) is an ontology for semantically describ-
ing Semantic Web Services. Taking the Web Service Modeling Framework (WSMF)
[Fensel and Bussler, 2002] as a starting point, WSMO refines and extends this frame-
work, and develops a formal ontology and language. WSMF consists of four different
main elements for describing semantic Web Services:

• ontologies which provide the concepts and relationships used by other elements,

• goals that define the users’ objectives, i.e. the (potential) problems that should be
solved by Web Services,

• Web Services descriptions that define various aspects of a Web Service, and

• mediators which bypass interoperability problems.

The Web Service Modeling Ontology (WSMO) is developed in the context of WSMO
Working Group, as part of the SDK cluster, with the aim of, through alignment between

56 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

key European research projects in the Semantic Web Service area, the further the devel-
opment of Semantic Web Services and works toward further standardization in the area of
Semantic Web Service languages and to work toward a common architecture and platform
for Semantic Web Services. The WSMO Working Group includes the WSML Working
Group, which aims at developing a language called Web Service Modeling Language
(WSML) that formalizes the Web Service Modeling Ontology (WSMO), and the WSMX
Working Group, which aims at providing an execution environment and a reference im-
plementation for WSMO.

WSMO Design Principles

WSMO provides ontological specifications for the core elements of Semantic Web Ser-
vices. In fact, Semantic Web Services aim at an integrated technology for the next gen-
eration of the Web by combining Semantic Web technologies and Web Services, thereby
turning the Internet from a information repository for human consumption into a world-
wide system for distributed web computing. Therefore, appropriate frameworks for Se-
mantic Web Services need to integrate the basic Web design principles, those defined for
the Semantic Web, as well as design principles for distributed, service-orientated comput-
ing of the Web. WSMO is therefore based on the following design principles:

• Web Compliance - WSMO inherits the concept of URI (Universal Resource Iden-
tifier) [Berners-Lee et al., 2005] for unique identification of resources as the essen-
tial design principle of the Word Wide Web. Moreover, WSMO adopts the con-
cept of Namespaces for denoting consistent information spaces, supports XML and
other W3C Web technology recommendations, as well as the decentralization of
resources.

• Ontology-Based - Ontologies are used as the data model throughout WSMO, mean-
ing that all resource descriptions as well as all data interchanged during service
usage are based on ontologies. Ontologies are a widely accepted state-of-the-art
knowledge representation, and have thus been identified as the central enabling
technology for the Semantic Web. The extensive usage of ontologies allows se-
mantically enhanced information processing as well as support for interoperability;
WSMO also supports the ontology languages defined for the Semantic Web.

• Strict Decoupling - Decoupling denotes that WSMO resources are defined in isola-
tion, meaning that each resource is specified independently without regard to pos-
sible usage or interactions with other resources. This complies with the open and
distributed nature of the Web.

• Centrality of Mediation - As a complementary design principle to strict decoupling,
mediation addresses the handling of heterogeneities that naturally arise in open en-
vironments. Heterogeneity can occur in terms of data, underlying ontology, proto-
col or process. WSMO recognizes the importance of mediation for the successful

KWEB/2005/D1.2.2/v1.3 June 30, 2005 57

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

deployment of Web Services by making mediation a first class component of the
framework.

• Ontological Role Separation - Users, or more generally clients, exist in specific
contexts which will not be the same as for available Web Services. For example,
a user may wish to book a holiday according to preferences for weather, culture
and childcare, whereas Web Services will typically cover airline travel and hotel
availability. The underlying epistemology of WSMO differentiates between the
desires of users or clients and available services.

• Description versus Implementation - WSMO differentiates between the descrip-
tions of Semantic Web Services elements (description) and executable technolo-
gies (implementation). While the former requires a concise and sound description
framework based on appropriate formalisms in order to provide a concise for se-
mantic descriptions, the latter is concerned with the support of existing and emerg-
ing execution technologies for the Semantic Web and Web Services. WSMO aims
at providing an appropriate ontological description model, and to be complaint with
existing and emerging technologies.

• Execution Semantics - In order to verify the WSMO specification, the formal execu-
tion semantics of reference implementations like WSMX as well as other WSMO-
enabled systems provide the technical realization of WSMO.

WSMO Top-level Elements

Figure 4.2: WSMO Top-level Elements

The following briefly outlines the conceptual model of WSMO - the complete spec-
ification can be found in [Lausen et al., 2005]. The elements of the WSMO ontology
are defined in a meta-meta- model language based on the Meta Object Facility (MOF)
[MOF, 2002]. In order to allow complete item descriptions, every WSMO element is

58 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

described by non-functional properties. These are based on the Dublin Core (DC) Meta-
data Set [DCMI Usage Board, 2005] for generic information item descriptions, and other
service-specific properties related to the quality of service.

Ontologies Ontologies provide the formal semantics for the terminology used within all
other WSMO components. Using MOF, we define an ontology as described in the Listing
1 below:

hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type ooMediator
hasConcept type concept
hasRelation type relation
hasFunction type function
hasInstance type instance
hasAxiom type axiom

Listing 1: Ontology Definition Class ontology

A set of non-functional properties are available for characterizing ontologies; they
usually include the DC Metadata elements. Imported ontologies allow a modular ap-
proach for ontology design and can be used as long as no conflicts need to be resolved
between the ontologies. When importing ontologies in realistic scenarios, some steps
for aligning, merging and transforming imported ontologies in order to resolve ontology
mismatches are needed. For this reason ontology mediators are used (ooMediators). Con-
cepts constitute the basic elements of the agreed terminology for some problem domain.
Relations are used in order to model interdependencies between several concepts (respec-
tively instances of these concepts); functions are special relations, with a unary range and
a n-ary domain (parameters inherited from relation), where the range value is functionally
dependent on the domain values, and instances are either defined explicitly or by a link to
an instance store, i.e., an external storage of instances and their values.

Web Services WSMO provides service descriptions for describing services that are re-
quested by service requesters, provided by service providers, and agreed between service
providers and requesters. In the Listing 2, the common elements of these descriptions are
presented.

hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type {ooMediator, wwMediator}
hasCapability type capability multiplicity = single-valued
hasInterface type interface

Listing 2: Service Description Definition Class service

KWEB/2005/D1.2.2/v1.3 June 30, 2005 59

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Within the service class the non-functional properties and imported ontologies at-
tributes play a role that is similar to that found in the ontology class with the minor ad-
dition of a quality of service non-functional property. An extra type of mediator to deal
with protocol and process related mismatches between web services is also included.

The final two attributes define the two core WSMO notions for semantically describ-
ing Web Services: a capability which is a functional description of a Web Service, de-
scribing constraints on the input and output of a service through the notions of precondi-
tions, assumptions, postconditions, and effects; and service interfaces which specify how
the service behaves in order to achieve its functionality. A service interface consists of
a choreography which describes the interface for the client-service interaction required
for service consumption, and an orchestration which describes how the functionality of a
Web Service is achieved by aggregating other Web Services.

Goals A goal specifies the objectives that a client may have when consulting a Web
Service, describing aspects related to user desires with respect to the requested function-
ality and behavior. Ontologies are used as the semantically defined terminology for goal
specification. Goals model the user view in the Web Service usage process and therefore
are a separate top level entity in WSMO.

hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type {ooMediator, ggMediator}
requestsCapability type capability multiplicity = single-valued
requestsInterface type interface

Listing 3: Goal Definition Class goal

As presented in Listing 3 above, the requested capability in the definition of a goal
represents the functionality of the services the user would like to have, and the requested
interface represents the interface of the service the user would like to have and interact
with.

Mediators The concept of Mediation in WSMO addresses the handling of hetero-
geneities occurring between elements that shall interoperate by resolving mismatches
between different used terminologies (data level), on communicative behavior between
services (protocol level), and on the business process level. A WSMO Mediator connects
elements and provides mediation facilities for resolving mismatches. The description ele-
ments of a WSMO Mediator are its source and target elements, and the mediation service
for resolving mismatches, as shown in the Listing 4 below.

WSMO defines different types of mediators for connecting the distinct WSMO el-
ements: OO Mediators connect and mediate heterogeneous ontologies, GG Mediators
connect Goals, WG Mediators link Web Services to Goals, and WW Mediators connects
interoperating Web Services resolving mismatches between them.

60 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
hasSource type {ontology, goal, service, mediator}
hasTarget type {ontology, goal, service, mediator}
hasMediationService type {goal, service, wwMediator}

Listing 4: Mediators Definition Class mediator

4.2.6 ODESWS Framework

With the aim of designing and composing SWS, the ODESWS framework (Figure 4.3)
has been proposed for SWS [Gómez-Pérez, 2004a]. The following elements have been
identified:

• ODESWS Ontology. To describe the features of a web service, we have used
a stack of ontolgies since they present the features in a formal and explicit way.
This stack of ontologies is composed of 4 layers: data-type ontology, knowledge
representation ontology, PSM Description Ontology and SWS ontology.

• Instance model. Designing SWS means to instantiate each of the ontologies of the
stack that describes what a service is: the domain ontology used by the service is
built on top of the data type and knowledge representation ontologies; the service
features are instances of both PSM and SWS ontologies. The whole instances con-
stitute a model that specifies the SWS at the knowledge level. The essential idea
here is that the user does not handle the ontologies directly but a graphical PSM
alike structure.

• Checking model. Once the instance model has been created, it is necessary to
guarantee that the ontology instances do not present inconsistencies among them.
Design rules will be needed to check this, particularly when ontology instances
have been created automatically (as in the case of (semi) automatic composition).

• Translate model. Although a service is modelled at the knowledge level, it must
be specified in a SWS-oriented language to enable programs and external agents
to access its capabilities. Therefore, once the instance that describes the WS is
created and checked, it is automatically translated into any of the existent SWS
representational language.

This framework will enable the (semi) automatic composition of SWS using (1) PSM
refiners and bridges to adapt the PSM ontology instances to the required capabilities of
the new service; and (2) design rules to reject both PSM and SWS ontology instances that
present errors or inconsistencies among them. Design rules are used to reduce the service
candidates that are to be combined to obtain a new service.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 61

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Figure 4.3: ODESWS Framework

ODESWS Ontology

The aim of designing SWS is to describe explicitly and semantically the features of a
WS. To achieve this purpose, the use of ontologies seems to be the most appropriate
solution, and, in fact, this approach has been followed by other authors. In the OWL-
S specification [OWL Services Coalition, 2004] the ontology is directly constructed in a
semantic-enriched mark-up language (OWL), and the internal structure of the services
is described with workflows. The WSMO ontology [Lara et al., 2004] uses the F-Logic
language to specify the service and it introduces the concept of mediator to decouple the
different elements of the service. Each of these solutions considers a particular semantic
language to describe the ontology of SWS description.

The ODESWS framework, however, proposes an ontology (Figure 4.4), called
ODESWS ontology [Gómez-Pérez, 2004a], that describes the SWS at the knowledge and
independent-language level. Thus, the ODESWS ontology is composed of a stack of on-
tologies developed following well-known specifications or de facto standards that cover
all the features of the SWS. These ontologies are:

• Data Type (DT) Ontology. It describes the types of concept attributes of the do-
main ontology used to define the input/output parameters. The DT ontology is
based on the XML Schema Datatypes [Biron and Malhotra, 2001], a W3C recom-
mendation formally included into the semantic Web languages, as OWL.

• Knowledge Representation (KR) Ontology. This ontology describes the knowl-
edge primitives (concept, instance attribute, etc.) used to represent the domain
ontology, which contains descriptions of the knowledge and data managed by the
SWS. This ontology has been constructed on the basis of the WebODE knowledge
model [Arpı́rez et al., 2003], which is frame-based and incorporates formulas to
represent axioms.

62 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

Figure 4.4: ODESWS Ontology

• Problem-Solving Method Ontology. It is based on the Problem-Solving Method
(PSM) paradigm, where a PSM is a domain-independent and knowledge-level spec-
ification of a problem-solving behaviour which can be used to solve a class of
problems [Motta, 1999]. The PSM ontology is based on the Unified Problem-
solving Method Language (UPML) [Fensel et al., 2003] that is a de facto stan-
dard for describing the PSM components: (1) tasks describe the operation to be
solved in the execution of its solving method by specifying the input/output pa-
rameters and the pre/post-conditions required to be applicable (this description
is independent of the method used for solving the task); (2) method details the
control of the reasoning process to achieve a task. A method can be composite,
which means that is composed of a number of subtasks whose coordinated execu-
tion indicates how the method will be carried out; and (3) adapters [Fensel, 1997]
specify mappings among the knowledge components of a PSM. The adapters are
used to achieve the reusability, since they bridge the gap between the general
description of a PSM and the particular domain where it is applied. To spec-
ify the coordination of the subtasks of the composite methods, that is, the op-
erational description of these methods, we have developed the workflow ontol-
ogy. This ontology describes explicitly and semantically the workflow primitives
[van der Aalst and van Hee, 2002, van der Aalst et al., 2003] that will be used to
determine the coordination of the execution of the subtasks.

• Semantic Web Service Ontology. The SWS ontology is on top of the stack and it

KWEB/2005/D1.2.2/v1.3 June 30, 2005 63

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

describes all the features of the services. This ontology replicates the upper-level
concepts of the OWL-S ontology, but these concepts do not have the same attributes
and relationships of the OWL-S specification. Thus, these upper-level concepts
are connected with the concepts of the PSM ontology in the following way: (1)
profile is a concept whose attributes specify the SWS non-functional features, and
it establishes a relationship (hasTask) (see Figure 2) with the task concept of the
PSM ontology to describe the SWS functional features; (2) model is a concept
that establishes a relationship (hasMethod) with the method concept of the PSM
ontology; it describes the components of the internal structure of the service and the
control flow that indicates how those components are coordinated to solve the task
related to the functional features of the service; and (3) grounding, which specifies
the access protocol and the necessary message exchanges to invoke the service.

4.2.7 OWL-S Framework

OWL-S (formerly DAML-S) is both a language and an ontology for describing semantic
Web services. It builds on Semantic Web technology developed at W3C to describe the
properties and capabilities of Web services. Indeed, OWL-S employs the Ontology Web
Language (OWL) [Dean and Schreiber, 2004], a recommendation produced by the Web-
Ontology Working Group at the W3C, to supply service providers with a core set of
markup language constructs for describing Web services in a computer-interpretable form,
thereby facilitating the automation of Web service discovery, invocation, composition and
execution.

OWL-S has been developed in the context of the DAML program
(http://www.daml.org/) and has been submitted to W3C member in November 2004. A
number of OWL-S based tools has been proposed recently such as OWL-S Protégé-based
Editor, which provides a set of capabilities for creating and maintaining OWL-S service
descriptions, or OWLSM (OWL-S Matcher), which implements an algorithm that outputs
different degrees of matching for individual elements of OWL-S descriptions. More de-
tails about existing tools can be found at http://www.daml.org/services/owl-s/tools.html.

OWL-S upper ontology

OWL-S can be viewed as a particular OWL ontology that enables to describe different
facets of web services. As depicted at Figure 4.5, an OWL-S ontology of services is
structured in three main parts :

• ServiceProfile describes the capabilities and parameters of the service. It is used
for advertising and discovering services.

• ServiceModel gives a detailed description of a service’s operation. Service op-
eration is described in terms of a process model, which details both the control

64 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

structures and dataflow structures of the service required to execute a service.

• ServiceGrounding specifies the details of how to access the service, via messages
(e.g., communication protocol, message formats, addressing, etc).

Figure 4.5: Top level of the OWL-S ontology

We describe below these components in more details.

OWL-S service profiles

The service profile provides information about a service that can be used by an agent to
determine if the service meets its needs. A profile consists of three types of information:

• A (human readable) description of the service (e.g., serviceName, textDescription,
contactInformation, etc).

• the functional behavior of the service which is represented as a transformation from
the inputs required by the service to the outputs produced. A functional description
of a service is expressed using the IOPE paradigm, i.e., the Inputs required by a
service, the Outputs generated, the Preconditions required to be satisfied and the
expected Effects that result from the execution of the service.

• Several other properties that are used to describe features of the service. Two main
types of properties can be used here: (i) properties that enable to specify the cate-
gory of a given service (e.g., the category of the service within the UNSPSC taxon-
omy), and (ii) non-functional attributes which specify QoS criteria (e.g., the cost of
the service).

Figure 4.6 describes some classes and properties of a service profile.

It should be noted that in the OWL-S approach, a service profile is intended to be used
by providers to advertise their services as well as by service requesters to specify their
needs.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 65

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Figure 4.6: Classes and properties of a profile

OWL-S process model

In addition to service Profiles, OWL-S allows a process-based description of services
using the class Process, a subclass of ServiceModel. A process specifies how a given
client may interact with a service. OWL-S distinguishes between three kinds of processes:

• AtomicProcess corresponds to simple actions made of one-step interactions.
Therefore, an atomic process do not support complex conversations between a ser-
vice and its clients. It only expects one message as input and returns one message
in response.

• SimpleProcess gives an abstraction mechanism to provide multiple views of the
same process. They are made of a single execution step like atomic processes.
However, simple processes are not invocable but can, instead, be used as elements
of abstraction (e.g., to provide a simplified representation of a composite process).

• CompositeProcess correspond to actions that require multi-steps interactions (i.e.,
complex conversations). Therefore, a composite process needs to maintain infor-
mation about execution states during conversations that involve multiple messages.
OWL-S provides several flow control constructs that enable to specify composite
processes (e.g., split, sequence, choice, if-then-else, etc).

It is worth noting that describing services as composite processes may be useful in
several tasks such as, for example, (i) to perform a compatibility analysis in order to
check whether two services (or a client and a service) can interact correctly, (ii) to cre-
ate new services by composing exiting ones, (iii) to coordinate the activities of different
participants during the course of service enactment, and (iv) to monitor service execution.

66 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

OWL-S service grounding

A service grounding specifies technical details of how a service can be accessed by a
client. For example, a service grounding gives information about the address, the com-
munication protocol and the message formats to be used by an agent to be able to com-
municate with a given service. A service grounding plays the role of a mapping from an
abstract description of a service (e.g., ServiceProfile or ServiceModel) into a concrete one.
Of particular interest is the mapping of OWL-S descriptions into WSDL which enables a
developer to take benefits from: (i) rich description and reasoning mechanisms provided
by OWL-S when designing a service, and (ii) the opportunity to reuse the extensive work
achieved in the area of web services around WSDL and SOAP during the implementation
of a service. Figure 4.7 given below show a mapping between OWL-S and WSDL.

Figure 4.7: Relationships between OWL-S and WSDL

Briefly speaking, a mapping from OWL-S into WSDL is based on the following three
correspondences:

• An atomic process is mapped into a WSDL operation,

• Inputs and outputs of an atomic process are mapped into WSDL messages.

• Types (OWL classes) of the inputs and the outputs are mapped into WSDL’s exten-
sible notion of abstract type.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 67

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

4.2.8 WSDL-S Framework3

Requirements for Web Services Semantics

The WSDL-S effort recommends that certain principles guide any work to define a frame-
work for Web services semantics. Those principles are the following.

Build on existing Web Services standards The Web services standards are fast be-
coming a preferred technology for application integration because of the promise of their
interoperability. Companies are making investments in integration projects based on Web
Services. Therefore, we believe that any approach to adding semantics to Web Services
should be specified in an upwardly compatible manner so as to not disrupt the existing
install-base of Web Services and associated investments in human training and technical
solutions [Sivashanmugam et al., 2003].

The mechanism for annotating Web services with semantics should be inde-
pendent of the semantic representation language There are a number of poten-
tial languages for representing semantics such as OWL [Dean and Schreiber, 2004],
WSMO [Lausen et al., 2005], and UML [UML, 2003]. Each language offers different
levels of semantic expressivity and developer support. Our position is that it is not

3 This section contains material from ”‘Web Service Semantics - WSDL-S”’([Akkiraju et al., 2005],
Copyright 2005 International Business Machines Corporation and University of Georgia. All rights re-
served. Copying is granted as long as the following copyright notice is included:
IBM and the University of Georgia (collectively, the ”Authors”) hereby grant you permission to copy and
display the Web Service Semantics ? WSDL-S Technical Note, in any medium without fee or royalty, pro-
vided that you include the following on ALL copies of the Web Services Semantic Annotations ? WSDL-S
Technical Note, or portions thereof, that you make:
1. A link or URL to the Specification at this location
2. The copyright notice as shown in the Web Service Semantics — WSDL-S Technical Note
EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT GRANT,
EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY OTHER INTELLECTUAL PROPERTY
THEY OWN OR CONTROL.
WEB SERVICE SEMANTICS ? WSDL-S TECHNICAL NOTE IS PROVIDED ”AS IS,” AND THE AU-
THORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF WEB SERVICE SEMAN-
TICS ? WSDL-S TECHNICAL NOTE ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLE-
MENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPY-
RIGHTS, TRADEMARKS OR OTHER RIGHTS.
THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBU-
TION OF THE WEB SERVICE SEMANTICS ? WSDL-S TECHNICAL NOTE.
The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity
pertaining to the Specification or its contents without specific, written prior permission. Title to copyright
in Web Service Semantics ? WSDL-S Technical Note will at all times remain with the Authors.
No other rights are granted by implication, estoppel or otherwise.

68 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

necessary to tie the Web services standards to a particular semantic representation lan-
guage. This is consistent with the approach prescribed by Sivashanmugam et al in their
work [Sivashanmugam et al., 2005]. By keeping the semantic annotation mechanism sep-
arate from the representation of the semantic descriptions, the approach offers flexibility
to developer community to select their favorite semantic representation language. In the
next section, we will show a way such independence can be achieved.

The mechanism for annotating Web services with semantics should allow the associ-
ation of multiple annotations written in different semantic representation languages
As mentioned earlier, there are many potential semantic representation languages. Ser-
vice providers may choose to annotate their services in multiple semantic representation
languages to be discovered by multiple discovery engines. Therefore, we believe that the
mechanism for annotating Web Services with semantics should allow multiple annota-
tions to be associated with Web Services.

Support semantic annotation of Web Services whose data types are described in
XML schema A common practice in Web services-based integration is to reuse in-
terfaces that are described in XML. The definition of business documents using XML
schema is a wide-spread and successful practice. XML schemas will be an important data
definition format for the foreseeable future. We believe that the semantic annotation of
service inputs and outputs should support the annotation of XML schemas. WSDL 2.0
supports the use of other type systems in addition to XML Schema, so constructs in se-
mantic models, such as classes in OWL [OWL] ontologies, could be used to define the
Web service input and output data types. But an approach that does not address XML
schema-based types will not be able exploit exiting assets or allow the gradual upgrade of
deployed WSDL documents to include semantics.

Provide support for rich mapping mechanisms between Web Service schema types
and ontologies Given our position on the importance of annotating XML schemas in
Web service descriptions, attention should be given to the problem of how to map XML
schema complex types to ontological concepts. Again, an agnostic approach to the se-
lection of schema mapping languages is called for. For example, if the domain model is
represented in OWL, the mapping between WSDL XSD elements and OWL concepts can
be represented in any language of user’s choice such as: XSLT, XQuery, RDF/S, OWL or
any other arbitrary language as long as the chosen language is fully qualified with its own
namespace.

Web Services Semantics: WSDL-S Approach

Following the principles described above IBM and University of Georgia have collabora-
tively developed Web Services Semantics - WSDL-S [Akkiraju et al., 2005] - a technical

KWEB/2005/D1.2.2/v1.3 June 30, 2005 69

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

note document. This technical note prescribes a mechanism to annotate Web Services
with semantics. It is conceptually based on, but a significant refinement in details of, the
original WSDL-S proposal [Miller et al., 2004] from the LSDIS laboratory at the Uni-
versity of Georgia. In WSDL-S, we augment the expressivity of WSDL with semantics
by employing concepts similar to those in OWL-S while being agnostic to the semantic
representation language (we only refer to profile model in this document. OWL-S pro-
cess model compares with BPEL4WS and it is not discussed here). The advantage of
this evolutionary approach to adding semantics to WSDL is multi-fold. First, users can,
in an upwardly compatible way, describe both the semantics and operation level details
in WSDL- a language that the developer community is familiar with. Second, by exter-
nalizing the semantic domain models, we take a language-agnostic approach to ontology
representation. This allows Web service developers to annotate their Web services with
their choice of modeling language (such as OWL, or legacy models developed in UML or
other knowledge representation languages discussed above). This is significant because
the ability to reuse existing domain models expressed in modeling languages like UML
can greatly alleviate the need to separately model semantics. Finally, it is relatively easy
to update the existing tooling around WSDL specification to accommodate our incremen-
tal approach. While it is noted that the theoretical underpinnings of OWL-S in description
logic or WSMO in F-Logic make them rich languages for representing semantics, we be-
lieve that extending the industry standards such as WSDL to include semantics is a more
practical approach for adoption. Moreover, by externalizing the semantic domain models
in our proposal, we still allow for richer representations of domain concepts and relation-
ships in languages such as OWL, thereby bringing together the best of both worlds. Use
of expressive mapping representation and techniques can further enable this approach to
deal with significant types of syntactic, structural, representational and semantic hetero-
geneity.

Below, we illustrate the key elements of the WSDL-S approach to adding semantics
to the WSDL specification.

Using the Extensibility Elements of WSDL

In this section we briefly describe how semantic annotations are added to WSDL doc-
ument elements in the Web Services Semantics - WSDL-S technical note (for details, see
the technical note [Akkiraju et al., 2005]). In this approach, we focus on semantically
annotating the abstract definition model of a service in WSDL specification to enable dy-
namic discovery services. Annotation of service implementation model is not discussed
for brevity. In essence, we provide URI reference mechanisms via extensibility elements
to the interface, operation and message constructs to point to the semantic annotations
defined in the externalized domain models for services. A quick summary of the extensi-
bility elements provided in this technical note are:

• an extension element, namely wssem:modelReference, to allow for one-to-one as-
sociations of WSDL input and output type schema elements to the concepts in a
semantic model

70 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

• an extension attribute, namely wssem:schemaMapping, to allow for many-to-many
associations of WSDL input and output type schema elements to the concepts in a
semantic model - typically associated with XML schema complex types

• two new elements, namely wssem:precondition and wssem:effect, which are spec-
ified as child elements of the operation element and describe the semantics of the
operation along the lines of the OWL-S approach. Preconditions and effects are
pprimarily used in service discovery, and are not required to invoke a given service,
and

• an extension attribute on interface element, namely wssem:serviceCategorization.
It consists of service categorization information that could be used when publishing
a service in a Web Services registry such as UDDI. It corresponds to the categoriza-
tion concept proposed in OWL-S.

An example WSDL document that is semantically annotated using this approach is
given below (again see. the technical note for details). In this sample, we present a
simple purchase order service. The inputs and outputs of ProcessPurchaseOrder service
are annotated with semantic references and preconditions and effects are introduced as
extensibility elements to the ProcessPurchaseOder operation. The semantic concepts and
their relationships are modeled in an OWL ontology - PurchaseOrder.owl (presented in
Appendix C of [Akkiraju et al., 2005]). Annotating XSD elements with OWL concepts
represents a schema mapping problem with representation model heterogeneity, as OWL
is far more expressive than XSD. A survey of schema matching and mapping approaches,
as well as description of some approaches which have tried to automate the XSD to OWL
approach is present in Appendix D of [Akkiraju et al., 2005]. A revised version of the
LSDIS semantic annotation tool that supports this proposal is expected in May 2005.

SWSF Framework

SWSF4 (Semantic Web Services Framework) is a specification produced by the Seman-
tic Web Services Language (SWSL) Committee of the Semantic Web Services Initiative
(SWSI) (http://www.swsi.org/). In the same line of existing framework such as OWL-
S, ODESWS, WSMO, the aim of SWSF is to provide richer semantic specifications of
Web services in order to enable greater automation of service design, development end
use. As in the other frameworks, the main objective of SWSF is to provide the needed
technologies to realize the semantic web service vision [McIlraith et al., 2001].

SWSF is made of two main components:

• SWSL, the Semantic Web Services Language, is logical language that is used to
formally describe web services.

4http://www.daml.org/services/swsf/1.0/overview/

KWEB/2005/D1.2.2/v1.3 June 30, 2005 71

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

• SWSO, the Semantic Web Services Ontology, which presents a conceptual model,
and its formal characterization, that enables to describe services.

These two components are described below.

SWSL (Semantic Web Service Language)

SWSL is a general-purpose logical language that includes special features (e.g., URIs,
XML namespaces, etc) to make it usable with the Web technologies. More precisely,
SWSL includes the following two sublanguages which are intended to be used in different
tasks:

• SWSL-FOL, is a full first-order logic language, extended with features from HiLog
[Chen et al. 1993] and F-logic [Kifer et al., 1995]. SWSL-FOL is used to specify
the service ontology (i.e., SWSO). Its semantics is based on the standard first-order
model theory and is monotonic. SWSL-FOL is well suited for specifying process
ontologies and for providing associated reasoning mechanisms (e.g., planning tech-
niques using process models which has been used to automate service composition).

• SWSL-Rules, a rule-based language with non-monotonic semantics. It includes a
combination of features from Courteous logic programs [Grosof 1999], HiLog, and
F-logic. SWSL-Rules is intended to be used as a specification and an implementa-
tion language for web services. It is well suited for tasks such as service discovery,
profile specification, policy specification, etc.

Both sublanguages of SWSL are presented as layered languages where each new
layer includes new concepts that enhance the modeling power of the language. SWSL
specification describes how the two sublanguages can be combined together (i.e., how
specifications in one sublanguage can use specifications written in the other sublan-
guage). More details about such a bridge between the two sublanguages can be found
at http://www.daml.org/services/swsf/1.0/swsl/.

SWSO (Semantic Web Services Ontology)

SWSO presents a conceptual model that enable description of the web service ontology.
It includes a complete first-order logic axiomatization, called FLOWS (First-Order Logic
Ontology for Web Services), which defines the model-theoretic semantics of the ontology.
FLOWS is given using the sublanguage SWSL-FOL. A translation of FLOWS into the
sublanguage SWSL-Rules has been proposed and the resulting ontology is called ROWS
(Rules Ontology for Web Services).

FLOWS captures the main concepts of various existing models of Web services as,
for example, OWL-S (e.g., atomic processes, inputs, outputs, preconditions and effects)

72 June 30, 2005 KWEB/2005/D1.2.2/v1.3

4. INTERFACE LAYER COMPONENTS

and WSMO (e.g., ontology for describing the intended goals of Web services). Following
the upper ontology of OWL-S, FLOWS displays three major components:

• Service Descriptors, provides basic functional and non-functional information
about a service (e.g., service name, service contact information,service reliability,
service cost, etc). Service descriptiors are primarily intended to be used for service
discovery.

• Process Model, based on a subset of PSL (Process Specification Language)
[Gruninger 2003], an international standard (ISO 18629), that was originally de-
veloped to enable specification of manufacturing processes. FLOWS extends PSL
with number of concepts in order to cope with web service specifics. FLOWS
process model is layered and hence one can incorporate only the ontological con-
structs that are needed for a given application. More precisely, FLOWS ontol-
ogy consists of a core set of axioms, called FLOWS-Core, and a set of extension
ontologies. FLOWS-Core provides the basic notions of services described as ac-
tivities composed of atomic activities. There are currently five ontology modules
that extends the FLOWS-Core: (i) Control Constraint, includes workflow-style
constructs (e.g., split, sequence, if then else, etc) (ii) Ordering Constraint, al-
lows specification of sequencing properties of atomic processes (iii) Occurrence
Constraints, allows specification of nondeterministic activities within services (iv)
State Constraints, allows specification of activities which are triggered by states
that satisfy a given condition (v) Exception Constraints, supplies basic constructs
for modelling exceptions.

• Grounding, as in OWL-S, the role of grounding is to provide concrete details (e.g.,
message formats, transport protocols, and network addresses) of how to access a
given service.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 73

Chapter 5

Portals as Example for a Modularized
Application (by UPM)

A good reference of using several of these Semantic Web Components is the Knowledge
Web (KW) Semantic Portal1. It is a software infrastructure underpinning the integration
of the activities of the KW partners. It serves as portal for information access and a dis-
semination point for ontology researchers, engineers, application and content developers
in both academic and industrial institutions. It provides a common medium of presenta-
tion where the partners’ development work is deployed, publicized and promoted, along
with work on technology promotion, research and e-learning.

The KW Semantic Portal is the latest instantiation of ODESeW [Corcho et al., 2003].
This is an ontology-based application built inside the WebODE ontology engineering
workbench, that allows managing knowledge-intensive ontology-based Intranets and Ex-
tranets.

In order to achieve these objectives, the KW Semantic Portal uses some of the Seman-
tic Web Components mentioned before.

5.1 Ontology Development Components

Ontology Editor . The KW Semantic Portal uses this component to provide the Seman-
tic Editing functionality. This consists of providing content to the KW Semantic Portal by
allowing internal users to edit concept instances and the values of their attributes, and to
connect such instances by means of relations, even if they belong to different ontologies.
With this component, the users are also able to create and remove an instance of a certain
concept, or even to move an instance from one concept to another.

1 http://knowledgeweb.semanticweb.org/

75

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Ontology Visualization . This component is used by the KW Semantic Portal because
it must provide the appropriate view for each user and for each situation, that is, de-
pending on the user’s permissions and its situation in the current navigation model. It is
represented in the portal by the Semantic Visualization functionality.

5.2 Data Layer Components

Storing Ontology Content and Instances . The KW Semantic Portal uses this compo-
nent because its ontologies are safely stored in an Ontology Server, namely WebODE.

In fact, when a user edits any of the ontologies published with ODESeW using the
WebODE ontology editor, (s)he can observe at run-time the modifications in the KW
portal, which means that there is auto-synching of the portal with respect to the ontology
server. This is all represented by the Ontology Repository system.

Ontology Querying . This component is used by the KW Semantic Portal, and it is
represented by the Semantic Searching functionality. It implements the search engine that
allows querying for information in one or in all the ontologies of the portal. There are two
types of searching: Search In Term Names and Search In Instance Values.

With the first one, the search engine looks for instances or concept names that contain
the keywords specified in the query.

The last one is quite more complete. The KW Semantic Portal provides an advanced
search function by means of a query form. The fields to be filled in the query form are
attributes and relations taken from the ontology we are querying. Once the user introduces
the values (s)he is looking for, the search engine returns the instances that satisfy the
conditions imposed in the attributes values specified in the form.

5.3 Interface Layer Components

Ontology-Driven User Interfaces . This component is used by the KW Semantic Por-
tal in order to perform a dynamic user interface. All the forms shown to the portal user
are provided by the Semantic Navigation Model Management subsystem. For example,
when editing a particular instance, the KW Semantic Portal obtains the instance infor-
mation from the Ontology Server,and then shows the form to the user. The fields of this
form represent the instance attributes and relations. This way, (s)he now can make the
convenient changes in their values.

The semantic navigation is managed by another subsystem mentioned above, the Se-
mantic Navigation Model Management.

76 June 30, 2005 KWEB/2005/D1.2.2/v1.3

5. PORTALS AS EXAMPLE FOR A MODULARIZED APPLICATION (BY UPM)

A navigation model is implemented as an ontology inside the Ontology Server. It
may be seen as an state diagram, in which the states are represented by concepts of the
ontology (which actually are views), and the transitions between states are defined by
relations between concepts (which actually are actions between different views). This
way, each view has a name, description, precondition to be accomplished to retrieve the
view and its location (URL). All these attributes are represented as concept attributes
(class attributes) of the views.

When the user clicks on a hyperlink, (s)he is actually giving to the KW Semantic
Portal the current view and the requested action. Afterwards, the portal will look up the
navigation model and return to the user the destination view.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 77

Chapter 6

Conclusion

As a step towards a Semantic Web framework, necessary components have been identified
and their requirements determined. The decomposition of such an environment into com-
ponents, and assignment of responsibilities and requirements will serve as an important
foundation for the further framework development. As long as standardized components
do not exist, such a decomposition can already serve as design guideline for large Se-
mantic Web applications. Of course, the long-term goal is to specify and standardize
component interfaces and protocols for their interaction.

Based on the requirements analysis we can identify cross-cutting functional require-
ments which are important for most components:

Ontology languages Of course, the fundamental condition for interoperability is the
availability of shared languages for Ontology description. Standardized solutions already
have emerged here. RDFS is a basic Ontology definition language which is used by
several solutions. The usage of OWL also becomes more widespread. A third basis
are rule-based definition languages which are needed especially for Ontology integration.
The standardization is already advanced here, but unfortunately we don’t have a strict
layering where one language forms a subset of the next more powerful one. This makes
interoperability of components based on different languages very difficult.

Storage access All components need access to the data layer (ontology and in-
stance store, reasoner). This access can be split into two aspects, (i) directly stor-
ing and fetching items, and (ii) querying. For none of these, standardized solutions
exist, and for the former there are not even standard processes started. For query-
ing, an SQL-based standard language is currently in the process of being defined
(SPARQL, [Prud’hommeaux and (eds.), 2005]). Also, a default reasoning API (DIG) has
been defined which is supported by the major DL reasoners. In the world of databases, ac-
cess standars as ODBC/JDBC together with a standardized query language (SQL) helped
immensely to foster database technology usage. It seems that the Semantic Web area

79

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

could benefit too from applying such a strategy

Version/Configuration management Ontologies and corresponding applications are
continuously evolving. To make sure that all components and ontologies stay consistent
with each other, we need a shared approach to configuration management. The listed
solutions show that the consistency requirement can be tackled by checking adherence
to formal specifications. Existing Semantic Web standards (e.g. OWL) alread allow to
formulate such specifications and can be applied in this context, too. The only thing we
need to make sure is that such a validation process has access to all configurations via a
common API.

Another result of the requirements collection is that some non-functional requirements
are of special importance across all components:

Scalability The most recurring topic in component requirements is scalability. This
affects components in different ways (e.g. compare the issue of storing huge instance col-
lections with the problem of visualizing ontologies consisting of thousands of concepts),
but still should have an important impact when ensuring interoperability. Some of the ex-
isting solutions and even standards (e.g. OWL-Full) have not sufficiently considered the
scalability question. When designing interfaces and formats for interoperability, we have
to make sure that components can provide efficient implementions for these even when
faced with huge ontologies and instance collections.

Distribution To support the vision of the semantic web, components need to work in a
distributed fashion. Their interfaces have to provide remote access, and they in turn need
to be able to exploit capabilities of remote components. Semantic Web Services seem to
be the most important element in realizing the distribution requirement.

As with all software frameworks, it is important to build and analyse applications
to find a good framework architecture and interface design. Therefore, one of the next
steps should be the analysis of current applications built from existing components. The
goal of this activity would be to evaluate how good current solutions do interoperate and
to identify their interoperability weaknesses. The results of this work will provide the
necessary experience to carry out the design and specification of interfaces and protocols
to ensure that standard interfaces will meet applications needs and thus foster Semantic
Web application development based on interoperable components.

80 June 30, 2005 KWEB/2005/D1.2.2/v1.3

Bibliography

[Aduna B.V., 2005] Aduna B.V. Aduna autofocus brochure, 2005.
http://aduna.biz/products/autofocus/docs/autofocus brochure.pdf.

[Akkiraju et al., 2005] R. Akkiraju, J. Farrell, J. A. Miller, M. Nagarajan, M.-T. Schmidt,
A. Sheth, and K. Verma. Web service semantics—WSDL-S, technical note, version
1.0. Technical report, International Business Machines Corporation and University of
Georgia, 2005. http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html.

[Alonso et al., 2003] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju.
Web Services. Springer, Berlin, Germany, 2003.

[Ankolekar et al., 2002] Anupriya Ankolekar, Mark H. Burstein, Jerry R. Hobbs, Ora
Lassila, David L. Martin, Drew V. McDermott, Sheila A. McIlraith, Srini Narayanan,
Massimo Paolucci, Terry R. Payne, and Katia P. Sycara. Daml-s: Web service de-
scription for the semantic web. In Proceedings of the First International Semantic Web
Conference, pages 348–363. Springer, 2002.

[Arpı́rez et al., 2003] J. C. Arpı́rez, O. Corcho, M. Fernández-López, and A. Gómez-
Pérez. Webode in a nutshell. AI Magazine, 24(4):37–48, 2003.

[Bechhofer et al., 2003] Sean Bechhofer, Phillip Lord, and Raphael Volz. Cooking the
Semantic Web with the OWL API. In 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, Oct 2003.

[Benatallah et al., 2003] B. Benatallah, M-S. Hacid, C. Rey, and F. Toumani. Request
Rewriting-Based Web Service Discovery. In Proceedings of the 2nd International Se-
mantic Web Conference (ISWC2003), volume 2870 of LNCS, pages 242–257, Sanibel
Island, FL, USA, October 2003. Springer.

[Benatallah et al., 2005] Boualem Benatallah, Mohand-Said Hacid, Alain Leger,
Christophe Rey, and Farouk Toumani. On automating web services discovery. The
VLDB Journal, 14(1):84–96, 2005.

[Berardi et al., 2003] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic Composition of E-services That Export Their Behavior. In

81

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

Maria E. Orlowska, Sanjiva Weerawarana, Mike P. Papazoglou, and Jian Yang, edi-
tors, ICSOC’03, Trento, Italy, volume 2910 of LNCS, pages 43–58. Springer, Decem-
ber 2003.

[Berendt et al., 2002] Bettina Berendt, Andreas Hotho, and Gerd Stumme. Towards se-
mantic web mining. In Proceedings of International Semantic Web Conference 2002,
pages 264–278, 2002.

[Berners-Lee et al., 2001] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, pages 34–43, may 2001.

[Berners-Lee et al., 2005] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform re-
source identifier (URI): Generic syntax. Technical report, The Internet Society, 2005.
http://www.gbiv.com/protocols/uri/rfc/rfc3986.html.

[Bernstein and Klein, 2002] A. Bernstein and M. Klein. Discovering Services: Towards
High Precision Service Retrieval. In CaiSE workshop on Web Services, e-Business, and
the Semantic Web: Foundations, Models, Architecture, Engineering and Applications.
Toronto, Canada, May 2002.

[Biron and Malhotra, 2001] P.V. Biron and A. Malhotra. Xml schema part
2: Datatypes. Technical report, World Wide Web Consortium, 2001.
http://www.w3.org/TR/xmlschema-2/.

[Broekstra et al., 2002] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A
generic architecture for storing and querying rdf and rdf schema. In International
Semantic Web Conference (ISWC-02), 2002.

[Bultan et al., 2003] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversa-
tion specification: a new approach to design and analysis of e-service composition. In
WWW 2003, Budapest, Hungary, pages 403–410. ACM, May 2003.

[Chakraborty et al., 2001] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. DReg-
gie: Semantic Service Discovery for M-Commerce Applications. In Workshop on
Reliable and Secure Applications in Mobile Environment, 20th Symposium on Reliable
Distributed Systems, pages 28–31, October 2001.

[Chalupsky, 2000] Hans Chalupsky. OntoMorph: a translation system for symbolic
knowledge. In Proceedings of 7th international conference on knowledge represen-
tation and reasoning (KR), Breckenridge, (CO US), pages 471–482, 2000.

[Christensen et al., 2001] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Web service description language (WSDL) 1.1. Technical report, World Wide Web
Consortium, 2001. http://www.w3c.org/TR/2001/NOTE-wsdl-20010315/.

82 June 30, 2005 KWEB/2005/D1.2.2/v1.3

BIBLIOGRAPHY

[Ciravegna and Wilks, 2003] F. Ciravegna and Y. Wilks. Designing Adaptive Information
Extraction for the Semantic Web in Amilcare. In S. Handschuh and S. Staab, editors,
Annotation for the Semantic Web. IOS Press, Amsterdam, 2003.

[Corcho et al., 2003] O. Corcho, A. Gómez-Pérez, A. Lopez-Cima, V. López-Garcı́a, and
M.C. Suárez-Figueroa. ODESeW. automatic generation of knowledge portals for in-
tranets and extranets. In Proceedings of the 2nd International Semantic Web Confer-
ence (ISWC2003) Industrial Track, pages 802–817, Sanibel Island, FL, USA, October
2003.

[Corcho, 2004] Oscar Corcho. A declarative approach to ontology translation with
knowledge preservation. PhD thesis, Universidad Politécnica de Madrid, 2004.

[Cunningham et al., 2002] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
GATE: A Framework and Graphical Development Environment for Robust NLP Tools
and Applications. In Proceedings of the 40th Anniversary Meeting of the Association
for Computational Linguistics (ACL’02), 2002.

[Curbera et al., 2001] F. Curbera, W. A. Nagy, and S. Weerawana. Web service: Why and
how? In Proceedings of the OOPSLA-2001 Workshop on Object-Oriented Services,
Tampa, FL, USA, 2001.

[DAML, 2005] DAML web site, 2005. http://www.daml.org/.

[DCMI Usage Board, 2005] DCMI Usage Board. DCMI metadata terms, 2005.
http://dublincore.org/documents/dcmi-terms/.

[Dean and Schreiber, 2004] Mike Dean and Guus Schreiber. OWL web on-
tology language. Technical report, World Wide Web Consortium, 2004.
http://www.w3.org/TR/owl-ref/.

[Domingue et al., 2004] J. Domingue, M. Dzbor, and E. Motta. Magpie: Supporting
Browsing and Navigation on the Semantic Web. In N. Nunes and C. Rich, editors,
Proceedings ACM Conference on Intelligent User Interfaces (IUI), pages 191–197,
2004.

[Dou et al., 2003] Dejing Dou, Drew V. McDermott, and Peishen Qi. Ontology transla-
tion on the semantic web. In Proceedings of the Eleventh International Conference on
Cooperative Information Systems, 2003.

[Euzenat and Stuckenschmidt, 2003] Jérôme Euzenat and Heiner Stuckenschmidt. The
‘family of languages’ approach to semantic interoperability. In Borys Omelayenko
and Michel Klein, editors, Knowledge transformation for the semantic web, pages 49–
63. IOS press, Amsterdam (NL), 2003.

[Euzenat and Tardif, 2002] Jérôme Euzenat and Laurent Tardif. Xml transformation flow
processing. Markup languages: theory and practice, 3(3):285–311, 2002.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 83

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

[Euzenat, 2004] Jérôme Euzenat. An api for ontology alignment. In Proc. 3rd interna-
tional semantic web conference, Hiroshima (JP), pages 698–712, 2004.

[FaCT, 1998] FaCT. http://www.cs.man.ac.uk/∼horrocks/FaCT/, 1998.

[FaCT++, 2003] FaCT++. http://owl.man.ac.uk/factplusplus/, 2003.

[Fensel and Bussler, 2002] Dieter Fensel and Christoph Bussler. The web service model-
ing framework wsmf. Electronic Commerce Research and Applications, 1(2):113–137,
2002.

[Fensel et al., 2003] Dieter Fensel, Enrico Motta, Frank van Harmelen, V. Richard Ben-
jamins, Monica Crubézy, Stefan Decker, Mauro Gaspari, Rix Groenboom, William E.
Grosso, Mark A. Musen, Enric Plaza, Guus Schreiber, Rudi Studer, and Bob J.
Wielinga. The unified problem-solving method development language upml. Knowl.
Inf. Syst., 5(1):83–131, 2003.

[Fensel, 1997] Dieter Fensel. The tower-of-adapter method for developing and reusing
problem-solving methods. In Proceedings of the 10th European Workshop on Knowl-
edge Acquisition, Modeling and Management, pages 97–112, Sant Feliu de Guixols,
Spain, 1997. Springer.

[Glimm and Horrocks, 2004] Birte Glimm and Ian Horrocks. Query answering systems
in the semantic web. In CEUR workshop proceedings of KI-2004 Workshop on Appli-
cations of Description Logics (ADL 2004), September 24 2004.

[Gómez-Pérez, 2004a] Asunción Gómez-Pérez. Ontological engineering. Springer-
Verlag, 2004.

[Gómez-Pérez, 2004b] Asunción Gómez-Pérez. A survey on ontology tools.
ontoweb deliverable 1.3. Technical report, OntoWeb Project, 2004.
http://ontoweb.org/About/Deliverables/D13 v1-0.zip.

[González-Castillo et al., 2001] J. González-Castillo, D. Trastour, and C. Bartolini. De-
scription Logics for Matchmaking of Services. In KI-2001 Workshop on Applications
of Description Logics Vienna, Austria, September 2001. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-44/.

[Gudgin et al., 2003] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques
Moreau, and Henrik Frystyk Nielsen. SOAP version 1.2 part 1: Messaging framework.
Technical report, World Wide Web Consortium, 2003. http://www.w3.org/TR/soap12.

[Haarslev and Möller, 2003] V. Haarslev and R. Möller. Racer: A core inference engine
for the semantic web. In EON, 2003.

84 June 30, 2005 KWEB/2005/D1.2.2/v1.3

http://www.cs.man.ac.uk/~horrocks/FaCT/
http://owl.man.ac.uk/factplusplus/

BIBLIOGRAPHY

[Handschuh et al., 2002] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM — Semi-
automatic CREAtion of Metadata. In 13th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW02), pages 358–372, Siguenza, Spain,
2002.

[Hendler et al., 2003] J. Hendler, D. Nau, B. Parsia, E. Sirin, and D. Wu. Automating
DAML-S Web Services Composition Using SHOP2. In In Dieter Fensel, Katia Sycara,
and John Mylopoulos, editors, International Semantic Web Conference (ISWC 2003),
Sanibel Island, FL, USA, volume 2870 of LNCS, pages 195–210. Springer, October
2003.

[Hendler, 2001] James A. Hendler. Agents and the semantic web. IEEE Intelligent Sys-
tems, 16(2):30–37, 2001.

[Horrocks, 2002] Ian Horrocks. DAML+OIL: A Reasonable Web Ontology Language.
In Proceedings of EDBT’2002 Prague, Czech Republic, pages 2–13, March 2002.

[Hull et al., 2003] Richard Hull, Michael Benedikt, Vassilis Christophides, and Jianwen
Su. E-services: a look behind the curtain. In Proc. 22th Principles of Database Systems
(PODS’03), San Diego, CA, USA, pages 1–14. ACM, June 2003.

[Karlsruhe, 2002] FZI Karlsruhe. OI-Modeler user’s guide, 2002.

[Kayne, 2003] D. Kayne. Loosely Coupled, The Missing Pieces of Web Services. Rds
Associates Inc., 2003.

[Kifer et al., 1995] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of
object-oriented and frame-based languages. J. ACM, 42(4):741–843, 1995.

[Kreger, 2001] H. Kreger. Web services conceptual architecture
(WSCA 1.0). Technical report, IBM Software Group, 2001.
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf.

[Lara et al., 2004] Rubén Lara, Dumitru Roman, Axel Polleres, and Dieter Fensel. A
conceptual comparison of wsmo and owl-s. In Proceedings of the European Confer-
ence on Web Services, pages 254–269, Erfurt, Germany, 2004.

[Lausen et al., 2005] Holger Lausen, Axel Polleres, and Dumitru Roman. Web service
modeling ontology (WSMO). Technical report, World Wide Web Consortium, 2005.
http://www.w3.org/Submission/WSMO/.

[Mädche et al., 2002] Alexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz.
MAFRA – a mapping framework for distributed ontologies. In Proc. ECAI workshop
on Knowledge Transformation for the Semantic web, Lyon (FR), pages 60–68, 2002.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 85

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

[Maedche et al., 2002] A. Maedche, B. Motik, and R. Volz. A conceptual modeling ap-
proach for semantics-driven enterprise applications. In Springer-Verlag, editor, On the
Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002 Confeder-
ated International Conferences DOA, CoopIS and ODBA, pages 1082 – 1099, October
30 - November 01 2002.

[Maynard et al., 2002] D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Saggion,
K. Bontcheva, and Y. Wilks. Architectural Elements of Language Engineering Robust-
ness. Journal of Natural Language Engineering – Special Issue on Robust Methods in
Analysis of Natural Language Data, 8(2/3):257–274, 2002.

[Maynard et al., 2004] D. Maynard, M. Yankova, N. Aswani, and H. Cunningham. Au-
tomatic Creation and Monitoring of Semantic Metadata in a Dynamic Knowledge Por-
tal. In Proceedings of the 11th International Conference on Artificial Intelligence:
Methodology, Systems, Applications (AIMSA 2004), Varna, Bulgaria, 2004.

[McBride, 2001] Brian McBride. Jena: Implementing the rdf model and syntax specifi-
cation. In Proceedings of SemWeb 2001, 2001.

[McIlraith et al., 2001] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic
web services. IEEE Intelligent Systems, 16(2):46–53, 2001.

[Miller et al., 2004] J. A. Miller, K. Verma, P. Rajasekaran, A. Sheth, R. Aggarwal, and
K. Sivashanmugam. WSDL-S: A proposal to the W3C WSDL committee. Technical
report, University of Georgia, 2004. http://lsdis.cs.uga.edu/projects/WSDL-S/wsdl-
s.pdf.

[MOF, 2002] MOF. Metaobjectfacility(MOF) specification. Technical report, Object
Management Group, Inc., 2002. http://www.omg.org/docs/formal/02-04-03.pdf.

[Motta et al., 2002] E. Motta, M. Vargas-Vera, J. Domingue, M. Lanzoni, A. Stutt, and
F. Ciravegna. MnM: Ontology Driven Semi-Automatic and Automatic Support for
Semantic Markup. In 13th International Conference on Knowledge Engineering and
Knowledge Management (EKAW02), pages 379–391, Siguenza, Spain, 2002.

[Motta et al., 2003] Enrico Motta, John Domingue, Liliana Cabral, and Mauro Gaspari.
Irs-ii: A framework and infrastructure for semantic web services. In Proceedings of
the Second International Semantic Web Conference, pages 306–318, Sanibel Island,
FL, USA, 2003.

[Motta, 1999] Enrico Motta. Reusable Components for Knowledge Modelling. IOS
Press, Amsterdam, Netherlands, 1999.

[Narayanan and McIlraith, 2002] S. Narayanan and S.A. McIlraith. Simulation, verifi-
cation and automated composition of web services. In International World Wide Web
Conference, pages 77–88, May 2002.

86 June 30, 2005 KWEB/2005/D1.2.2/v1.3

BIBLIOGRAPHY

[Omelayenko, 2002] Borys Omelayenko. Integrating vocabularies: discovering and rep-
resenting vocabulary maps. In Proc. 1st International Semantic Web Conference
(ISWC-2002), Chia Laguna (IT), pages 206–220, 2002.

[OWL Services Coalition, 2004] OWL Services Coalition. OWL-S 1.0 release: Se-
mantic markup for web services. Technical report, DAML Program, 2004.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf.

[Palmér et al., 2004] M. Palmér, A. Naeve, and F. Paulsson. The SCAM framework:
Helping semantic web applications to store and access metadata. In Proceedings of the
European Semantic Web Symposium 2004, 2004.

[Pan, 2004a] Jeff Z. Pan. Description Logics: Reasoning Support for the Semantic Web.
PhD thesis, School of Computer Science, The University of Manchester, Oxford Rd,
Manchester M13 9PL, UK, 2004.

[Pan, 2004b] Jeff Z. Pan. Reasoning Support for OWL-E (Extended Abstract). In Proc.
of Doctoral Programme in the 2004 International Joint Conference of Automated Rea-
soning (IJCAR2004), July 2004.

[Paolucci et al., 2002] M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara. Semantic
Matching of Web Services Capabilities. In Int. Semantic Web Conference, Sardinia,
Italy, pages 333–347, June 2002.

[Payne et al., 2001] T.R. Payne, M. Paolucci, and K. Sycara. Advertising and Match-
ing DAML-S Service Descriptions (position paper). In International Semantic Web
Working Symposium, Stanford University, California, USA, July 2001.

[Popov et al., 2004] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and
M. Goranov. KIM – Semantic Annotation Platform. Natural Language Engineering,
2004.

[Prud’hommeaux and (eds.), 2005] Eric Prud’hommeaux and Andy Seaborne (eds.).
SPARQL query language for RDF. Technical report, World Wide Web Consortium,
2005. http://www.w3.org/TR/rdf-sparql-query/.

[Racer, 1999] Racer. http://www.sts.tu-harburg.de/∼r.f.moeller/
racer/, 1999.

[Sintek and Decker, 2002] M. Sintek and S. Decker. Triple–a query, inference, and trans-
formation language for the semantic web. In International Semantic Web Conference
(ISWC-02), 2002.

[Sivashanmugam et al., 2003] Kaarthik Sivashanmugam, Kunal Verma, Amit P. Sheth,
and John A. Miller. Adding semantics to web services standards. In Proceedings of
the International Conference on Web Services, pages 395–401, Las Vegas, Nevada,
USA, 2003.

KWEB/2005/D1.2.2/v1.3 June 30, 2005 87

http://www.sts.tu-harburg.de/~r.f.moeller/racer/
http://www.sts.tu-harburg.de/~r.f.moeller/racer/

D1.2.2 Semantic Web Framework Requirements Analysis IST Project IST-2004-507482

[Sivashanmugam et al., 2005] Kaarthik Sivashanmugam, John A. Miller, Amit P. Sheth,
and Kunal Verma. Framework for semantic web process composition. International
Journal of Electronic Commerce (IJEC), 9(2):71–106, 2005.

[Sollazzo et al., 2002] Tanja Sollazzo, Siegfried Handschuh, Steffen Staab, Martin R.
Frank, and Nenad Stojanovic. Semantic web service architecture – evolving web ser-
vice standards toward the semantic web. In Proceedings of the Fifteenth International
Florida Artificial Intelligence Research Society Conference, pages 425–429, Pensacola
Beach, FL, USA, 2002.

[Stojanovic et al., 2002a] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-
driven ontology evolution management. In Proceedings of the 13th European Confer-
ence on Knowledge Engineering and Knowledge Management EKAW, volume 2473 of
Lecture Notes in Computer Science, pages 285 – 300, Siguenza, Spain, October 1-4
2002. Springer.

[Stojanovic et al., 2002b] L. Stojanovic, N. Stojanovic, and S. Handschuh. Evolution
of the metadata in the ontology-based knowledge management systems. In German
Workshop on Experience Management, pages 65 – 77, 2002.

[Stuckenschmidt and Wache, 2000] Heiner Stuckenschmidt and Holger Wache. Con-
text modelling and transformation for semantic interoperability. In M. Bouzeghoub,
M. Klusch, W. Nutt, and U. Sattler, editors, Knowledge Representation Meets
Databases (KRDB 2000) - CEUR Workshop Proceedings, 2000.

[UML, 2003] UML. Unified modeling language (UML), version
1.5. Technical report, Object Management Group, Inc., 2003.
http://www.omg.org/technology/documents/formal/uml.htm.

[Valente et al., 1999] Andre Valente, Thomas Russ, Robert MacGregor, and William
Swartout. Building and (re)using an ontology of air campaign planning. IEEE In-
telligent Systems, 14(1):27–36, 1999.

[van der Aalst and van Hee, 2002] Wil M. P. van der Aalst and Kees M. van Hee. Work-
flow Management: Models, Methods, and Systems. MIT Press, Cambridge, MA, USA,
2002.

[van der Aalst et al., 2003] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek
Kiepuszewski, and Alistair P. Barros. Workflow patterns. Distributed and Parallel
Databases, 14(1):5–51, 2003.

[Züllighoven, 2005] Heinz Züllighoven. The Object-Oriented Construction Handbook.
Elsevier, 2005.

88 June 30, 2005 KWEB/2005/D1.2.2/v1.3

	Introduction (by L3S)
	Knowledge Processing Tasks and Components according to Use Case Analysis
	Three-Tier Architecture for Information Systems
	Ontoweb Ontology Tool Survey
	High-level Tools and Components

	Ontology Development
	Ontology Editor (by UKARL)
	Expected Functionality
	Requirements
	Existing Applications

	Ontology Integration (by INRIA)
	Expected Functionality
	Requirements
	Existing systems

	Ontology Transformation (by INRIA)
	Expected Functionality
	Requirements
	Existing systems

	Ontology Extraction/Mining (by USFD)
	Expected Functionality
	Requirements
	Existing systems

	Data Layer Components
	Semantic Query Processor (by VUM)
	Expected Functionality
	Requirements
	Existing Systems

	Reasoner (by VUM)
	Expected Functionality
	Requirements
	Existing Systems

	Wrapper to existing Information Sources - Instance Mining (by UKARL)
	Expected Functionality
	Requirements
	Existing solutions

	Interface Layer Components
	Annotation and Instance Editor (by L3S/USFD)
	Expected Functionality
	Requirements
	Existing Solutions

	Semantic Web Service Infrastructure (by FT)
	Introduction
	Service Directory
	Service Discovery
	Service Composition
	SemanticWeb Service Frameworks
	ODESWS Framework
	OWL-S Framework
	WSDL-S Framework

	Portals as Example for a Modularized Application (by UPM)
	Ontology Development Components
	Data Layer Components
	Interface Layer Components

	Conclusion

