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Deliverable 4.1 ANR-10-CORD-009

Executive Summary

Interlinking data is a crucial step in the Datalift platform framework. It ensures that the
published datasets are connected with others on the Web. Many techniques are developed
on this topic in order to automate the task of finding similar entities in two datasets. In this
deliverable, we first clarify terminology in the field of linking data. Then we classify and
overview many techniques used to automate data linking on the web. We finally review 11
state-of-the-art tools and classify them according to which technique they use. This work will
serve as the basis to design an efficient set of interlinking techniques that will be implemented
for the Datalift platform. Deliverable 4.2 will present the specific techniques we develop for
the platform.
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Datalift CHAPTER 1. PROBLEM FORMULATION

1. Problem formulation

In the Semantic Web and in the Web in general, which are increasingly seen as systems where
active users produce and consume information consisting not only of documents but also of
structured data, a fundamental problem is the comparison and matching of these data and
the capability of resolving the multiplicity of data references to the same real objects, by
defining correspondences among data in form of data links.

In general terms, data linking is the task of determining whether two object descriptions
can be linked one to the other to represent the fact that they refer to the same real object in a
given domain or the fact that some kind of correspondence holds between them. Quite often,
this task is performed on the basis of the evaluation of the degree of similarity among different
data describing real objects across heterogeneous data sources, under the assumption that
the higher the similarities between two data descriptions, the higher the probability that the
two descriptions actually refer to the same object. From an operative point of view, data
linking includes also the task of defining methods, techniques and (semi-)automated tools for
performing the similarity evaluation task. We call this specific subtask instance matching1.

1.1 The data linking task

Data linking can be formalized as an operation which takes two collections of data as input
and produces a collection of mappings between entities of the two collections as output.
Mappings denote binary relations between entities corresponding semantically one to each
other. The data linking task is articulated in steps as shown in Figure 1.1.

Dataset(s)

CONFIGURATION PRE-PROCESSING & 
OPTIMIZATION

External resources

User

INSTANCE
MATCHING

POST-PROCESSING 
& VALIDATION

Mapping

Mandatory components

Optional components

Figure 1.1: The data linking task

The input of the process is one or several datasets. Each dataset is a collection of data
representing object descriptions to be linked. The output of the process is a mapping set,
that is a collection of binary relations (usually referred as mappings or links) between the
object descriptions of the dataset(s) in input. Sometimes, the term mapping is used in order
to denote the collection of binary relations between object descriptions and the term mapping
rule is used in order to denote the single correspondence between two object descriptions.

1Sometimes however, the expression “data linking” is used instead of “instance matching” to denote only
the matching task.
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This terminology is more common in the field of ontology matching, where mappings of-
ten represent more than a simple correspondence between entities, but a transformation
rule holding between two entities [16]2. The data linking task also involves a user, who has
the responsibility of configuring the process and, optionally, interact with the pre-processing,
matching and post-processing steps in case of a semi-automatic procedure. Another optional
component is given by external resources such as lexical databases and thesauri, reasoning
systems or pre-defined mappings that can be used both in the matching and in the post-
processing steps as a support for the main process. A typical external resource used for
the comparison is a schema level mapping, that is used to determine which data must be
compared.

The main steps of the process are more extensively described in the following:

Configuration. The configuration step has the goal of setting up those parameters that
are used during the instance matching step in order to execute the comparison between object
descriptions. In particular, it is very common to evaluate the object description similarity as
a value in the range [0,1] and to set a threshold that denotes the minimum value of similarity
needed in order to consider a pair of object descriptions as similar one to the other. Another
parameter in some systems is the choice of similarity metrics combination that has to be
used in the matching step as well as the list of external resources that may be needed for
similarity evaluation.

Pre-processing & optimization (optional) Pre-processing of data is an optional step
that can be executed for two main purposes. The first is to transform the original represen-
tation of data according to a reference format used for the comparison. A second goal is to
minimize the number of comparisons that have to be executed to produce the final mapping
set. To this end, the system may implement several kinds of optimization techniques to select
the descriptions that have the highest probability to match any given object description.

Matching. In the instance matching step the object description comparison is finally ex-
ecuted according to the metrics chosen in the configuration step. In many cases, more than
one type of matching techniques are combined, including for example string/value matching,
learning-based matching, similarity propagation. If required, external resources are used in
this step to optimize the matching with respect to a pre-defined mapping or to determine
the similarity between property values according to existing lexical resources or ontologies
(e.g., WordNet, SKOS, OpenCyC). In case of a semi-automatic process, the user interaction
is needed in the matching step in order to select the correct mappings or to validate the
system result.

Post-processing & validation (optional) The post-processing step is optional and has
the goal of refining the matching result according to specific domain or application require-
ments. A typical post-processing goal is to validate the mappings with respect to a formal
definition of consistency for the mapping set, that may include, for example, the fact that
two distinct object descriptions cannot be mapped onto the same entity [37]. Another kind of
validation is executed with respect to the required mapping set cardinality. In some cases, a
mapping set cannot include more than one matching counterpart for each object description.

2Another terminological choice is to use the term alignment in order to denote the mapping set and the
term correspondence to denote the mapping.
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This requirement can be taken into account either in the instance matching step or in the
post-processing step, by defining appropriate heuristics for the deletion of multiple mapping
rules and the selection of the best one [9].

1.2 Terminological hints and related problems

The problem of data linking is directly related to many similar problems, and this causes
sometimes confusion about the appropriate terminology. Problems similar to data linking
can be grouped in two main categories: the first category describes the problems related to
the proper activity of data linking [1], that is the activity of connecting together different data
provided by heterogeneous data sources. In this field, we often talk about entity matching,
coreference resolution or entity resolution to denote the activities of evaluating the degree of
similarity between pairs of entities with the goal of finding a common reference to a single
real object [13, 31, 32]. On the other side, a second category of problems is related to the
comparison of data records especially for data cleaning and duplicate detection purposes. In
this field, we often talk about duplicate identification, record linkage or merge/purge problem.
For both categories of problems many solutions have been proposed. Recent surveys and
contributions on this field include for example [33, 6, 3]. The main differences between these
two categories of problems and their related solutions can be described according to three
main dimensions of analysis: i) the goal of the problem; ii) the object of the solution, and iii)
the meaning of the results, as graphically shown in Figure 1.2.

Goal of the problem. The goal of the problem is the final purpose of the comparison
task. Some of the problems mentioned above have the goal for example of detecting duplicate
records in order to clean a collection of data by capturing errors. This is the case for example
of duplicate detection and record linkage, when these techniques are used in the context of
data cleaning. Another goal is data integration. In this case, the final purpose is to provide
a unique description for each real object mentioned in different data sources. Between these
two options, a third goal is the linkage of data. In this case, we admit the presence of
different and heterogeneous descriptions of real objects, but we want to create links and
relations among these descriptions in order to make explicit their correspondence.

Object of the solution. By object of the solution we mean the kind of data that are
taken into account for the comparison. A general but useful distinction concerns techniques
and solutions mainly focused on unstructured data, such as plain text or web pages, on one
side, and techniques and solutions mainly focused on ontology instances on the other side.
Between these two sides of the comparison, it is very important to recall the several meth-
ods and techniques that have been conceived in order to work on structured data (usually
relational database instances). The main difference between these kinds of solutions is that
the assumptions that can be made on unstructured and structured data are different from
those that are valid in case of ontological data. For example, in the case of relational data
we usually do not deal with multi-valued attributes and the structure of data is explicit.
On the contrary, the structure of ontological data is implicit and must to be inferred from
the ontology. Moreover, the structure of ontological instances in often not rigid and can
provide multivalued or structured attributes. Finally, when dealing with relational data,
the attribute values of records consist quite often in atomic data and the reference to other
records through a foreign key is not so frequent. On the contrary, in case of ontological
instances expressed by semantic web languages like RDF or OWL, it is very common to
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provide attribute values in form of references to other objects, while literal values are less
used.

Meaning of the results. Finally, about the meaning of mappings produced as a result of
the comparison, we can distinguish between two main approaches. On one side, mappings are
interpreted as “same-as” relations, where the two mapped object descriptions are intended
to denote the same real object. On the other side, a mapping may be intended just as a
generic relation of similarity between object descriptions. In this case, the term matching is
usually used to stress the role of the comparison more than the interpretation of its results.
The term resolution instead is more focused on the idea of determining if two descriptions of
objects are referred to the same object. More details about the interpretation of mappings
meaning is given below.

Other relevant terminology and fields. The problem of data linking and its associated
techniques of instance matching and object description comparison is very pervasive also in
fields other than the semantic web and for purposes other than the linking of data. For
example, the expression reference reconciliation has been used with reference to ontological
data in [14] and [50]. The problem of comparing different object descriptions has been
addressed also in the research community on natural language processing, where linguistic
descriptions of objects like names of sentences are compared for disambiguation purposes.
In this case we talk about anaphora resolution or named entity disambiguation [15]. In the
database and data mining fields, the problem is relevant also for addressing the problem of
object identification.

1.3 Mappings and their meaning

The data linking task produces a collections of mappings that are used to define links between
object descriptions in different data sources. In this context, a relevant issue is to determine
the meaning of these mappings. Usually, the mappings are interpreted as binary relations
between two object descriptions that could be considered identical in that they refer to the
same real object. The notion of identity in itself, however, is ambiguous and is a subject of
philosophical discussions. In literature about ontologies and the semantic web, identity has
been described as the problem of distinguishing a specific instance of a certain class from
other instances [22]. Thus, the identity criterion is linked to the class to which an instance
belongs and depends on the assumptions made by the ontology designer. In this way, identity
mappings between instances should, in principle, follow the identity criterion associated
with the corresponding classes. However, instance matching usually deals with datasets
originating from different sources, and the assumptions of their creators may be potentially
different. Moreover, the design practices in the semantic web are always not explicitly stated
and do not follow a standard approach. In the Linked Data domain, identity is commonly
expressed using the standard owl:sameAs property. In OWL, two individuals connected by
the owl:sameAs property are considered identical in the sense that the subject and object of
this statement share all their properties. Such interpretation of identity, however, appears
too strong in many cases and it is not always compatible with the evaluation of mappings,
which is based on similarity. In order to understand the practices of the usage of owl:sameAs
links by existing repositories, the authors of [23] distinguished five weaker varieties of identity
beyond the canonical one. The idea of providing more than a single notion of identity is
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also adopted by the UMBEL and the SKOS vocabularies, which provide weaker relations of
correspondence such as umbel:isLike or the family of “Match” properties of SKOS.

More in general, the problem of having a sound and well founded notion of identity is
often ignored in the data linking process. As a consequence, the interpretation of mapping
can shift among three very different notions of identity:

1. Ontological identity: the idea behind ontological identity is that the real and exist-
ing object denoted by two identical object descriptions is the same. In other terms,
the properties of the two object descriptions must be the same in order to call them
“identical”.

2. Logical identity: what we refer as logical identity is the idea that two descriptions are
identical when they can be substituted one to the other in a logical expression without
changing the meaning of the expression.

3. Formal identity: in case of formal identity, we refer to the fact that identity is super-
imposed to the data. This happens for example when some organization sets a unique
identifier for something with the goal of providing a standard tool for the identification
of the object. For example, in the Datalift platform the IGN and INSEE are providing
reference identifiers for geographical and administrative objects on the french territory.

The main problem with the notion of identity in the field of data linking is that the
process of matching is always based on the notion of similarity and that the relation between
similarity and identity is not clear. This can be shown by the following example: suppose
comparing two object descriptions referring to different editions of the same book. Now,
the two descriptions are probably similar, but they can be considered identical only if we
are interested in the book, seen as a work and not as the edition. But if we look and the
manifestation of the book (i.e., the edition) or even to a physical volume in a library, the
two descriptions have to be considered different. Thus, the identity is not “internal” to the
data and not directly dependent on the relation of similarity, but depends on the reference to
something else than data (e.g., in this case the kind of object we are interested in). However,
despite the fact that the identity problem is widely recognized and discussed in the research
community and that ontologies defining weaker degrees of identity exist (e.g., SKOS3 or the
ontology proposed in [23]), owl:sameAs remains the most popular representation of identity
links between Semantic Web repositories. this predicate will be in a first step used by Datalift
platform to assert similarity between resources. Existing matching systems do not explicitly
operate with different interpretations of matching results: instead the choice of interpretation
is left to the user of the system.

3http://www.w3.org/TR/skos-reference/
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2. Instance matching techniques

As was discussed in section 1, the problem of data linking is closely related both to the
problem of database record linkage and the problem of ontology schema matching. Data
linking systems processing semantic data utilize many techniques originating from both these
communities. Thus, in order to determine suitable classification criteria for data linking
techniques, we considered both the techniques themselves and existing classification schemas
proposed in the literature on database record linkage [15, 62, 32] and schema matching
[48, 16]. Based on this analysis, we have chosen the following dimensions for classifying
coreference resolution techniques and approaches.

The first dimension we included in our classification schema is Granularity, which is also
commonly used in the literature on adjacent topics. In the record linkage research there is
a distinction between field matching and record matching techniques, which focus on two
different stages of the linkage process [15]. The former concentrate on identifying equivalent
values for the same field in two records. This requires resolving the cases of different rep-
resentation for the same data, such as misspellings, format variations, and synonymy (e.g.,
“Smith, John” and “J. Smith” or “Yangtze River” vs “Chang Jiang”). The latter focus on
deciding whether two records (possibly containing several fields) refer to the same real-world
entity. A similar distinction exists in the schema matching research community: e.g., in
[48] and [16]. Matching algorithms are classified into element-level and structure-level ones.
When analysing existing data linking techniques with respect to the granularity criterion,
we identified three main categories:

1. Value matching. Similarly to the field matching task in record linkage, this step focuses
on identifying equivalence between property values of instances. In the simplest cases
(e.g., when equivalence of two individuals is decided based on equivalence of their
labels), no further steps are performed.

2. Individual matching. The goal of this stage is to decide whether two individuals rep-
resent the same real-world entity or not. Individual matching techniques compare two
individuals and utilize the results of the value matching stage applied to properties of
these individuals. At this stage, two individuals are considered in separation from all
other individuals in two datasets.

3. Dataset matching. This step takes into account all individuals in two datasets and
tries to construct an optimal alignment between these whole sets of individuals. The
techniques handling this stage take as their input the results of the individual matching
and further refine them. At this level, mutual impact of pairwise individual matching
decisions can be taken into account: e.g., if we know that both datasets do not contain
duplicates, then one individual cannot be mapped to two individuals from the other
dataset.

As the second classification criterion, we use Type of Evidence used by the matching
method. Based on this criterion, we distinguish between two categories of methods:

• Data-level. These methods rely on information defined at the level of individuals and
their property values. In case of ontologies based on description logic, this information
corresponds to ontological ABox.

• Knowledge-level These methods utilise knowledge defined by the ontological schema
(e.g., subsumption relations, property restrictions) as well as in external sources. Ex-
ternal sources can include, for example, third-party ontologies as well as linguistic
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resources which specify the meaning of terms based on their relations with other terms
(such as WordNet [39]).

Finally, we distinguished algorithms based on the Source of Evidence:

• Internal. These techniques only utilise information contained in the datasets being
matched.

• External. These techniques exploit information contained in external sources.

To select the techniques for this section, we reviewed different relevant tools and algo-
rithms described in the literature, which included the instance matching task in their process.
We use the following criteria for considering a tool or an algorithm as a relevant one:

• It has to operate on semantic data expressed in RDF. Thus, various record linkage
tools which assume relational data representation are not included and the methods
used in these tools are not mentioned. However, we still consider techniques originated
in the database domain if those techniques were later adopted by the tools processing
semantic data.

• It has to include the instance matching task in its workflow. We primarily focused
on the systems dedicated to data linking (see section 3). However, we also included
the techniques used by tools, which performed instance matching as an auxiliary task.
In particular, these include generic ontology matching systems which match instance
data in addition to schemas (e.g., RiMOM [34] or ASMOV [30]), semantic search tools
(e.g., PowerAqua [35]), and identity management servers (OKKAM [7]).

With respect to the data linking workflow shown in Figure 1.1, most systems implement
these techniques as a part of the instance matching stage, however, some of the techniques
(primarily, dataset matching ones) are sometimes applied during the post-processing & val-
idation step.

2.1 Value matching

Sometimes two individual descriptions contain the same property value expressed in differ-
ent ways, e.g., because of different formatting conventions of two repositories or the use of
synonyms. Resolving these discrepancies and determining that two values are equivalent
constitutes the value matching task. As their output, value matching techniques often pro-
duce a score denoting the degree of similarity between two values, e.g., that “J. Smith” and
“Smith, John” are likely to be two representations of the same name. Although equivalence
of values does not necessarily imply equivalence of entities (e.g., there can be many people
with the name “John Smith”), value matching techniques serve as building blocks in the
instance matching process: their output is aggregated and serves as evidence for making
decisions about equivalence of individuals.

2.1.1 Data-level techniques

Data-level value matching techniques primarily involve various string similarity metrics
widely used in both record linkage and schema matching. These metrics often serve as
basic building blocks for more sophisticated methods operating at individual matching and
dataset matching levels. External data-level metods are less frequent and include, in partic-
ular, standard keyword search services such as Google.
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Internal approaches To perform value matching, data linking systems widely adopt
methods developed for database record linkage, in particular, various string similarity met-
rics. There are several survey papers reviewing these metrics (e.g., [11], [15], [62]) and we
refer the reader to these papers for the detailed description of different similarity functions.
Given that there is no single best string similarity measure for all domains, data linking tools
usually allow selection among several metrics. In particular, existing tools use the following
similarity functions:

• String equality. The basic similarity function which returns 1 if two values are equal
and 0 otherwise. It has the highest precision, but does not accept slight variations
caused by typos or minor formatting differences. Nevertheless, it is used, in particular,
by the popular Silk data linking tool as one of the options [61].

• Edit distance (Levenshtein). Character-based similarity function which measures the
number of primitive change operations needed to transform one string value into an-
other. Examples of systems employing this metrics include [61], [34], and [35].

• Jaro. The metric designed to take into account common spelling deviations. It is also
employed in the Silk system [61].

• Jaro-Winkler. A modification of the Jaro metric adjusted to give a higher score to
values which share a common prefix. It is commonly used to compare person names.
Examples of usage are given in [59], [51], [61], [43], [27].

• Monge-Elkan. This similarity function first involves dividing input strings into a set
of substrings and then computing the maximal aggregated similarity between pairs of
tokens. In the comparison study described in [11], this metric achieved the best average
performance. Among data linking systems, its use is reported in [61] and [43]

• Soundex. This is a phonetic similarity function which tries to determine string values
which are pronounced similarly despite being different at the character level. The
authors of [27] use Soundex similarity as part of their algorithm.

• Token set similarity. This metric involves tokenizing the input strings and then com-
paring resulting sets of tokens using a common set similarity function (such as Jaccard
score or overlap distance). It is employed in [61] and [30].

• I-Sub. This metric proposed by [57] specially for the ontology matching task calcu-
lates similarity between two strings as a function of both their commonalities and
their differences. For the purpose of instance matching, this technique is employed in
ObjectCoref [26].

We can distinguish two common usage patterns of string similarity metrics depending on the
purpose of the system:

• Semi-automated tools which must be pre-configured by the user often include a wide
range of similarity functions. The user can select suitable similarity metrics depending
on the task at hand. This particularly applies to data linking frameworks designed to
deal with RDF data such as Silk [61] or KnoFuss [43].

• The tools which implement an automated workflow usually employ a single metric or an
aggregation of several metrics applicable to a wide range of domains. This approach is
usually implemented in ontology matching tools which also deal with instance matching

13 of 38



Deliverable 4.1 ANR-10-CORD-009

(e.g., RiMOM [34], ASMOV [30], or ILIADS [59]) and semantic search tools (e.g.,
PowerAqua [35]).

Existing tools usually do not implement the similarity metrics but reuse public API libraries
containing these implementations, such as Simmetrics1 or SecondString2.

External approaches Standard keyword-based Web search engines provide an additional
source of evidence available to matching tools. Normalized Google distance [10] uses the
sets of hits returned by Google for two labels being compared as an indication of semantic
similarity between these terms. The distance is defined as

NGD(x, y) =
max(log(f(x)), log(f(y)))− log(f(x, y))
log(M)−min(log(f(x)), log(f(y)))

,

where

• f(t) is the number of Google hits for the search term t,

• f(x, y) is the number of Google hits for the tuple of search terms x and y,

• M is a total number of pages indexed by Google.

This distance measure is adopted for the generic ontology matching task in [19]. One disad-
vantage of this metric is the time cost of the Web search operations, which complicates its
use for data linking tasks potentially involving large number of value comparisons.

For the traditional interlinking method will check every property of the instance. It’s
not applicable for large data sets. [56] designs an index-based selecting algorithm in order to
reduce the comparison set. They find the key from properties to select instances. It produces
the key by computing on single datatype properties. If no single datatype property can be
the key, the combination of datatype property is considered to be candidate keys. Their
method can be applied to any structured data.

One potential drawback of his method might be as follows. This method will consider
all datatype properties of all concept in a RDF data set. But not all property of source
instance have parallel property of instance from target RDF data set. That is to say, such
key could not be used to distinguish candidate matching instances for there is no benchmark
from another RDF data set to be referred to for picking out which is the most matching one.

[25] considers not only key properties to find similar RDF data, but also mining frequently
linked properties to identify equivalent data pairs. It uses machine learning techniques to
enlarge iteratively the property set that could be treated as the key to identify similar
instances.

2.1.2 Knowledge-level techniques

Knowledge-level techniques try to discover similarity between property values based on some
semantic relations between them. In order to obtain this information, the tools involve
external knowledge sources. These sources can be classified into two main categories:

• Linguistic resources.

• Formal domain models.
1http://staffwww.dcs.shef.ac.uk/people/S.Chapman/simmetrics.html
2http://secondstring.sourceforge.net/
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Linguistic resources provide relations between words used in the property values. WordNet
[39] is the most commonly used thesaurus which contains such relations as synonymy and
hyponymy, which are used directly for value matching. In particular, it is employed in [8],
[21], [52], [35]. Similarity between terms is computed using distance measures based on the
length of path between two entities in the graph. For example, the term affinity function
which is used in HMatch [8] is defined as

A(t, t′) =
{
maxi=1..kWt→i

it
′ ifk ≥ 1

0 otherwise

where k is the number of paths between t and t′ in the graph, t→i
i t
′ is the i-th path of length

n, Wt→i
it

′ = W1tr ·W2tr · · ·Wntr is the aggregated weight of the i-th path which equals the
product of weights associated with each edge in the path. Weights of edges are set depending
on the type of the corresponding relation (hyponymy, synonymy, etc.).

In a specific case where the datasets contain field values expressed in different languages,
multi-lingual dictionaries are used in addition to pre-process values and translate them into
a default language (e.g., English). Translation procedures are applied by the OKKAM server
[7].

More specialised relations between terms are represented in publicly available ontologies.
High-level vocabularies such as SUMO3, SKOS4, OpenCYC5 contain terms from a wide
range of domains. In particular, taxonomic distance based on SKOS is used in RDF-AI [52].

The approaches based on formal domain models, however, are less commonly used for
the instance matching task than in the schema matching community. This is due to the fact
that these models mainly cover common terms, which correspond to classes in the ontologies,
rather than entity names, which denote labels of individuals.

2.2 Individual matching

Establishing links between individuals which refer to the same real-world entities constitutes
the main goal of the matching process. Individuals are described using their properties
as well as relations to other individuals in the dataset. Individual matching techniques
decide whether two individuals taken from different datasets should be linked or not using
descriptions of these individuals as evidence.

2.2.1 Data-level techniques

Data-level individual matching normally involves aggregating the results of value matching
methods over the values of properties belonging to two individuals being compared. Different
attribute-based similarity functions have been proposed to perform such aggregation. In
addition, existing external mapping sets are utilised to infer mappings between individuals
in the context of Linked Data cloud.

Internal approaches The classical approach to individual matching includes aggregating
the results produced by value matching techniques. This model for solving the record linkage
problem was proposed in a seminal paper by Fellegi & Sunter [17]. The model assumes that
there exist two lists of records (A and B) describing some real-world entities. The task of

3http://www.ontologyportal.org/
4http://www.w3.org/2004/02/skos
5http://www.opencyc.org
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record linkage is to classify each pair of records from the set A×B into two sets: M (set of
matched pairs) and U (set of non-matched pairs). Given that each real-world entity a or b
is described using records α(a) and β(b), the classification decision is based on a comparison
of two records expressed as a vector function γ(α(a), β(b)) = γ(a, b) (distance function).
The authors propose a probabilistic model introducing conditional probabilities m(γ) =
P (γ[α(a), β(b)]|(a, b) ∈ M) =

∑
(a,b)∈M P (γ[α(a), β(b)]) · P ((a, b)|M) and u(γ) (similar for

(a, b) ∈ U). The obtained value m(γ)/u(γ) is used to make a decision about the equivalence
of two entities. Possible decisions are denoted as A1 - positive link, A2 - possible (uncertain)
link, and A3 - positive non-link. The decision is chosen by comparing the value m(γ)/u(γ)
with thresholds Tµ, such that if m(γ)/u(γ) > Tµ then P (A1|U) < µ, and Tλ, such as if
m(γ)/u(γ) < Tλ then P (A3|M) < λ, where µ and λ are desired error levels. The challenges
in this classical model include calculating m(γ) and u(γ), threshold values Tµ and Tλ, and
the form of the comparison function γ. In the original method proposed in [17], components
of the vector γ = (γ1, γ2, ..., γK) are the results of pairwise field values comparison produced
by value matching techniques.

This model served as the base for the majority of algorithms developed in the record
linkage domain (see [15] for a survey) and was re-used in several tools developed in the
Semantic Web community. The aggregation methods adopted by these tools include the
following:

• Weighted average. γ = ΣK
i=1wiγi

K , where wi denotes the weight of the ith element of the
attribute comparison vector.

• Picking maximal (minimal) value. γ = maxKi=1(γi)

• Euclidean distance. γ =
√

ΣK
i=1γ

2
i

• Weighted product. γ = ΠK
i=1wiγi

• Group linkage. γ = ΣK
i=1si

|Q|+|C|−|M | , where si = {γi, if γi > t, 0 otherwise}, {Q,C} are the
sets of predicates of two individuals, and M is the number of elements for which γi > t

• Log-based tempered geometric mean. γ = exp

tP
i=1

wilog(γi+ε)

tP
j=1

wj

− ε.

In particular, the Silk system [60] assumes a supervised matching scenario where the user se-
lects an aggregation approach (weighted average, max(min), Euclidean distance, or weighted
product) for her task. Similarly, the the ODDLinker system [24] used to discover interlinks for
the LinkedMDB repository represented RDF individuals as relational tuples and employed
aggregated attribute-based similarity to decide on equivalence of individuals. In contrast,
the OKKAM Entity Naming Service [7] is targeted at the unsupervised matching scenario in
an open environment and employs automatic selection of an aggregation function. In order
to achieve high precision, more involved functions (such as group linkage or geometric mean)
are utilized [28].

External approaches While internal data-level individual matching techniques are largely
adopted from traditional record linkage research, external approaches often utilize the fea-
tures specific for the Web environment, and, in particular, Semantic Web. Sets of pre-existing
identity links between individuals declared in distributed Linked Data repositories consti-
tute one such feature. Using the transitivity of the owl:sameAs property, these identity
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links can be aggregated to infer the equivalence between individuals connected via a chain of
owl:sameAs links. This approach is directly exploited by the authors of sameas.org portal
6, which aggregates equivalent Linked Data resources into “coreference bundles” using both
explicit owl:sameAs links and inferred ones. The idMesh system [13] employs this method
as its first step to construct the graphs connecting potentially equivalent RDF individuals,
which it later refines using the graph analysis techniques. The ObjectCoref system [26] also
uses existing sets of individuals linked via the owl:sameAs property to bootstrap learning of
discriminative properties which are later used to infer new equivalence mappings.

2.2.2 Knowledge-level techniques

The main source of knowledge which can be utilised by individual matching algorithms
are ontological restrictions defined by domain ontologies used to structure the data in the
matched repositories. In cases where the repositories are structured using different schema
ontologies, ontology mappings obtained from external sources can be exploited to establish
correspondences between schema terms and align the structure of individual descriptions in
both repositories.

Internal approaches The main sources of information used by internal knowledge-level
approaches are the domain ontologies which define the structure of individuals in the input
repositories. Logical axioms defined in the ontologies can provide both “positive” evidence
from which new equivalence mappings can be inferred as well as “negative” evidence which
can be used to filter out spurious mappings. Because of this, methods based on the use
of ontological constraints are often applied to refine an initial set of candidate equivalence
mappings obtained using other methods (such as attribute-based similarity).

In particular, the following ontological constructs are valuable for the individual matching
task and are often directly utilised by matching systems:

• owl:FunctionalProperty (owl:InverseFunctionalProperty). These properties essentially
define the key attributes for individuals similarly to database keys. Equivalent values
of inverse functional properties imply the equivalence of the subjects of properties.
Functional properties, in a similar way, allow equivalence of objects to be inferred if
they are connected to the same subject. Functionality provides a strong restriction
which can be useful both for inferring the new sameAs links between instances and
for detecting spurious existing links. If two individuals were initially considered as
equivalent and connected by a owl:sameAs mapping but have two different values for
the same functional property, this can indicate that the mapping was incorrect.

• owl:maxCardinality. Similarly to the functionality restriction, cardinality violation can
also point out to an incorrect mapping (although it does not directly ).

• owl:disjointWith. As another type of negative evidence, disjointness between classes
can be used to reject candidate mappings if they connect instances belonging to differ-
ent classes.

Among the existing systems, Sindice [58] implements a method for instance matching using
explicitly defined inverse functional properties as positive evidence to infer equivalence be-
tween instances. The L2R algorithm [50] utilises all relevant ontological schema constraints
mentioned above and uses them as both positive and negative evidence. ObjectCoref [26]

6http://www.sameas.org
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also employs ontological restrictions together with explicit owl:sameAs links to create the
initial “kernel” mappings. These “kernel” mappings are used as a training set to learn
discriminative properties, which in turn help to infer more individual mappings.

While logical restrictions are valuable in the data linking task, it is difficult to exploit
them if the datasets are structured using different schema ontologies: precise translation
of ontological axioms is problematic for automatic ontology matching systems. ILIADS
[59] is an ontology matching system which performs schema- and data-level matching in
iterations. After each data-level matching iteration, restrictions defined in both ontologies
being matched are used to check the validity of obtained mappings between instances. Then,
at the schema-level iteration, these mappings are used as evidence to infer mappings between
classes (by using set similarity metrics over the sets of their instances).

External approaches External knowledge sources are particularly valuable in the data
linking tasks involving repositories structured using different ontologies. Such tasks are com-
mon in the Linked Data environment, and existing schema mappings and schema restrictions
represent a commonly used knowledge resource.

In [42] schema mappings are inferred using existing owl:sameAs links between Linked
Data repositories. In case where instances of two repositories are not linked to each other di-
rectly, but there exist connections to the same external repositories, such links are used as evi-
dence for instance-based ontology matching. For example, both instances movie:music contributor/4026
from LinkedMDB7 and dbpedia:Ennio Morricone from DBPedia8 are connected to music:artist-
a16e47f5-aa54-47fe-87e4-bb8af91a9fdd from MusicBrainz9. Aggregating sets of such compos-
ite mappings and using set similarity functions, the system can derive mappings between cor-
responding classes movie:music contributor and dbpedia:MusicalArtist. Schema-level map-
pings obtained in this way present an additional input to the KnoFuss system [43]. They are
used to determine subsets of two repositories which are likely to contain identical instances
and to perform instance matching in the same way as in a single-ontology scenario.

An extension to the CIDER ontology matching system [21] described in [20] uses onto-
logical context to disambiguate ontological entities (both classes and individuals), e.g., to
disambiguate the country name “Turkey” from the name of the bird. Ontological context
consists of all neighbouring ontological terms and is obtained by querying the Watson ontol-
ogy search service10. This ontological context is then used to cluster different senses of the
same term available on the Semantic Web as a whole and to assign the ontological entities
being compared into appropriate clusters. This approach, however, is primarily targeted at
the schema level and has a limited applicability to instance matching. For instance, it is
difficult to distinguish between two individuals belonging to the same class as there would
be little difference in their ontological context.

2.3 Dataset matching

Data individuals inside repositories are usually interrelated with other individuals. Thus,
a decision about matching a pair of individuals can influence the confidence in matching
another pair of individuals. For example, deciding that two publication references in two
citation datasets refer to the same paper also increases the confidence in matching the refer-
ences to their authors. To capture and utilise such interdependencies, one must analyse the

7http://www.linkedmdb.org/
8http://dbpedia.org
9http://dbtune.org/musicbrainz/

10http://watson.kmi.open.ac.uk/
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whole set of potential mappings between two datasets rather than each pair of individuals in
isolation. Dataset matching techniques require a set of candidate mappings to be provided
as input and thus are usually applied after the individual matching stage.

2.3.1 Data-level techniques

Data-level dataset matching techniques involve the analysis of graphs formed by both re-
lations between individuals within repositories and identity mappings across repositories.
Internal matching techniques perform this on the basis of two datasets being matched while
external ones involve information from third-party sources, in particular, Linked Data repos-
itories containing links to the input datasets. To reason about the data statements and
individual mappings in these graphs, various belief propagation frameworks are used.

Internal approaches Existing systems commonly employ various similarity propagation
techniques. These techniques exploit the principle that the similarity between two nodes in
the graph depend on the similarity between their adjacent nodes. A generic graph match-
ing algorithm called similarity flooding [38] is used both in schema- and data-level ontology
matching (in particular, in the RiMOM system [34]). Similarity flooding includes the fol-
lowing stages:

• Transforming datasets into a directed graph in which pairs of entities (potential matches)
correspond to nodes. Edges between two nodes exist in both directions if in both
datasets there is a relation between the corresponding entities.

• Assigning weights to the edges. Usually, wij = 1/n, where wij is the weight of the edge
from the node i to the node j and n is the number of outgoing edges of the source
node i.

• Assigning initial similarity σ0 to nodes. The value of σ0 is usually taken from the
output of the individual matching stage.

• Computing σi+1 using a weighted linear aggregation function. The default function is
defined as

σi+1(x, x′) = σ0(x, x′) +
∑
ep

σi(y, y′)× w(ep),

where σi(x, x′) is the similarity value for the node representing the mapping between
entities x and x′, ep =<< y, y′ >, p,< x, x′ >>∈ G is an edge from the node < y, y′ >
to the node < x, x′ > with the label p, and w(ep) is the weight of this edge. Resulting
values σi+1 are normalised after each iteration.

• The procedure stops if no similarity value changes more than a particular threshold ε
or after a pre-defined number of iterations.

In [14] another propagation algorithm is used where the graph includes not only indi-
vidual matching nodes but value matching nodes as well. Nodes corresponding to pairs of
individuals are connected by edges to nodes corresponding to pairs of their property values:
e.g., a node representing a potential mapping between two publications {a 1, a 2} has edges
from the node representing the similarity between titles {“Title 1”, “Title 2”} and publica-
tion years {1978, 1979}, expressing the dependency of the individual similarity from value
similarities. In this way, the propagation algorithm combines the value matching, individual
matching, and dataset matching stages in a single workflow. At each iteration, the algorithm
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makes a decision about whether a pair of individuals should be merged. Each individual in
a merged pair is assumed to contain all the properties of its counterpart, and the graph is
updated accordingly. Impact factors which specify how a similarity of node influences its
neighbours are chosen on the basis of the type of property corresponding to the edge and
the class of instances included in the node. These parameters are set by human users.

In a similar way, the RDF-AI system [52] implements an algorithm which propagates
similarities from value similarity nodes to resource similarity ones. This algorithm does not
assume the use of the same schema ontology by two datasets. The algorithm first selects pairs
of matching property values. At each iteration, a pair of values with the highest similarity
is selected as potentially matching and other candidate pairs containing the same values
are discarded. Then, similarities are propagated from value matching nodes to individual
matching ones. The aggregation function chosen by the authors calculates a new resource
similarity as average of the neighbouring value similarity nodes.

The approach presented in [27] is based on the interpretation of similarities as Bayesian
probabilities. Accordingly, Bayesian networks [47] are used as the framework for belief
propagation in graphs. The propagation is performed by the standard message passing
algorithm described in [47].

External approaches External data-level dataset matching approaches aggregate mutual
impact of individual matching decisions in a set of several repositories rather than only two
at a time. This method is particularly relevant in the Linked Data environment which
represents a network of distributed interconnected repositories. These interconnections are
usually created by applying data linking to a pair of repositories. In the idMesh system [13],
these sets of mappings between individuals are combined over the whole network of data
repositories and refined by analysing mutual impact of these mappings. In this way, idMesh
can be considered a meta-level data linking system. idMesh builds graphs based only on
equivalence and non-equivalence relations between entities and uses factor-graph message
passing to compute marginal probabilities. As mentioned in section 2.2.2, ObjectCoref [26]
uses a set of mappings between individuals collected from the whole network of distributed
semantic repositories as a training set to learn discriminative data patterns.

2.3.2 Knowledge-level techniques

Dataset matching techniques often rely on relations between individuals as evidence. These
relations can either be declared or assumed: e.g., having a hypothesis that all individuals
within a repository are different from each other. To decide how a specific relation impacts a
matching decision, data-level techniques utilise various statistic-based heuristics (e.g., num-
ber of incoming/outgoing properties in similarity flooding). One disadvantage of the purely
data-level techniques is ignoring explicit definitions of relations provided by the domain on-
tologies. Knowledge-level methods aim at improving the dataset matching results by utilising
this information. These methods usually enrich the belief propagation algorithms operating
purely at the data level. However, one of the proposed approaches also implements dataset
matching as a standard linear programming problem.

Internal approaches Internal knowledge-level dataset matching techniques utilise infor-
mation defined in the domain ontologies which describe the structure of data in the reposi-
tories.

LN2R system [51] employs similarity propagation as a part of the “numerical” matching
algorithm N2R which is combined with the “logical” one (L2R). Unlike the algorithms de-
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scribed in section 2.3.1, this procedure is schema-aware. It employs the aggregation function

σi+1(x, x′) = max(σi+1
f (x, x′), σi+1

nf (x, x′)),

where σi+1
f (x, x′) is the aggregated similarity function over the edges representing functional

properties and σi+1
nf (x, x′) corresponds to non-functional ones. Similar to [38], the impact of

non-functional attributes is reduced proportionally to the number of edges corresponding to
the same property.

In [44] the results of value matching, ontological axioms, and relations between individ-
uals are combined together using valuation networks [55]. Valuation networks are graphs
containing two kinds of nodes. Variable nodes correspond to the confidence degrees of indi-
vidual matching decisions and data statements11. Valuation nodes represent the rules which
determine the valid combinations of states of the neighbor variable nodes and correspond
to ontological axioms and weak relations. Confidence degrees are interpreted as Dempster-
Shafer belief distributions [54].

Unlike the majority of dataset matching approaches which are based on various algo-
rithms for belief propagation on the graph, the authors of [46] implement the procedure
for global optimisation of the whole set of mappings. They use class subsumption relations
in addition to property restrictions. Their method measures the impact of non-strict onto-
logical relations relevant for a particular mapping between instances. For example, having
two potential instance mappings (a, b1) and (a, b2) and the concept C defined in the on-
tology such that a, b1 ∈ C, but b2 /∈ C, the first mapping is preferred because it is better
“compatible” with the domain ontology. They define the A-Box similarity measure which
quantifies the degree of similarity between two ontological A-Boxes described in terms of
the same ontological T-Box. This similarity metrics relies on the value of the overlap func-
tion overlapT (A1,A2,M) between A-Boxes A1 and A2 induced by an instance alignment
M. The weighted overlap function measures the aggregated “compatibility” of all pairwise
mappings included in M.

overlapwT (A1,A2,M) := overlapc + overlapp + overlap¬c + overlap¬p,

where

• overlapc =
∑

(<a,b>)

∑
(C(a)∧C(b))

σ(a, b), where < a, b >∈ M and C ∈ T - aggregated

confidences (σ(a, b)) of mappings connecting instances belonging to the same class,

• overlapp =
∑

(<a,b>,<a′,b′>)

∑
(P (a,a′)∧P (b,b′))

σ(a,b)+σ(a′,b′)
2 , where < a, b >,< a′, b′ >∈ M

and P ∈ T - impact of mappings between pairs of individuals connected by the same
property in both repositories,

• overlap¬c =
∑

(<a,b>)

∑
(¬C(a)∧¬C(b))

σ(a, b) and

• overlap¬p =
∑

(<a,b>,<a′,b′>)

∑
(P (a,a′)∧P (b,b′))

σ(a,b)+σ(a′,b′)
2 , where < a, b >,< a′, b′ >∈ M,

C ∈ T , and P ∈ T - impact of corresponding negated concept and property assertions.
11Since the approach is aimed at processing annotations extracted from text, data statements are not

considered 100% reliable.
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At the next step, weighted A-Box similarity has to be maximised, in other words the value of
arg max

M∈M
(A1,A2,M) has to be determined. The authors propose two alternative approaches

to achieve this. The first one involves transforming the problem into an integer linear pro-
gramming problem [53] and solving it using standard methods. However, the disadvantage
of these methods is their computational complexity which makes it difficult to apply them to
large-scale repositories. In order to reduce the computational cost, the authors included an
alternative approach which involves applying a generic algorithm for inexact graph matching
[12]. This algorithm reduces execution time with some loss of precision.

External approaches External knowledge sources can contribute with additional infor-
mation of the same kind as utilised by internal techniques, namely ontological restrictions,
subsumption and equivalence relations between schema terms, information about properties
valuable for determining identity, etc. Relevant knowledge sources include, among others:

• Schema-level mappings obtained using third-party services. Such mappings can be
used to translate ontological restrictions from the terminology of one ontology into
another.

• Existing interlinked data repositories. These repositories can be used to infer schema-
level mappings using instance-based ontology matching (as in [42]) and to mine common
data patterns such as discriminative properties for matching (as in [26]).

2.4 Time-Efficient similarity algorithms

Linking a large amount of entities is a challenging task which has been the focus of several
works [41]. This is an important problem as the size of datasets to be interlinked can be
very large (eg. DBPedia) and thus require a consequent amount of time. Since comparing
every pair of instances is time consuming, some blocking methods and candidate selection
algorithms have been proposed to prune the search space. Blocking-based techniques (i.e.
standard blocking, sorted-neighborhood, bi-gram indexing, canopy clustering and adaptive
blocking) propose different ways to form blocks of entities sharing an identical or approxi-
mate key [4]. For example, the key in Standard Blocking can be composed from the entity
attributes. As for the bigram indexing, it convert the key values into a list of bigrams and
build a sub-lists of all possible permutations using a threshold. The resulting bigram lists are
sorted and inserted into an inverted index, which will be used to retrieve the corresponding
entities numbers in a block. The performance of such techniques is very sensitive to the
choice of the key where the entity pairs of true matches have to be in the same block.

In addition, some inverted index based algorithms propose a time-efficient string similar-
ity such as the AllPairs, PPJoin and PPjoin+. The AllPairs [5] provides certain optimization
strategies to inverted index-based approach. Indeed, rather than exploiting the similarity
threshold to reduce candidate pairs, it exploits it to reduce overhead such as index construc-
tion and inverted list scanning. The PPJoin [63] combines positional filtering with prefix
filtering method. To cope with the presence of stop words, tokens in each record are sorted
according to document frequency ordering. Then, using positional information, PPJoin com-
putes the upper bound of the overlap between two entities x and y. This maximum possible
overlap is a sum of the overlap computed on the left partitions using the prefix filtering
algorithm, and the minimum number of unseen tokens on the right partitions of x and y.
To prune more candidates, the algorithm PPJoin+ [63] propose to integrate a suffix filtering
method. The idea is to choose an arbitrary token from the suffix of an entity x to create
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the right and left partitions (xr, xl). As tokens are sorted by a global ordering, xl(xr) shares
no common tokens with yr(yl). Thus, the lower bound Hamming distance of the suffixes is
the sum of Hamming distance of right and left partitions. This algorithm can prune some
candidates whose the lower bound Hamming distance is larger than an allowable threshold
Hmax which depends on similarity threshold.

To deal with numeric values, a time efficient method (HYPPO) has been proposed in [41].
It stands for HYpersphere aPPrOximation algorithm and operates in a n-dimensional metric
space Ω. In an orthogonal space, a distance metric can be decomposed into the combination
of functions ϕi,i∈{1...n} which operates on one dimension. Assuming that the dimensions of Ω
are independent, HYPPO holds that ϕi(x,w) ≤ δ(x,w) where δ(x,w) is the distance metric
between two n-dimensional points x and w, and θ is a distance threshold. Based on this
inequality, the hypersphere H(w, θ) = {x ∈ Ω : δ(x,w) ≤ θ} is a subset of the hypercube
V (w, θ) = {x ∈ Ω : ∀i, ϕi(xi, wi) ≤ θ}. HYPPO tiles Ω into hypercubes using a granularity
parameter and approximate H(w, θ) by several hypercubes. It discards all elements which
are not in V (w, θ) and it is guaranteed not to lose any link while most blocking techniques
are not lossless.

2.5 Summary

As we can see from the analysis of the state of the art on data linking for the Semantic
Web, existing systems to a large extent reuse the techniques developed for database record
linkage and schema matching. However, the data linking task possesses several features which
distinguish it from both these adjacent research directions. These features are exploited by
individual matching and dataset matching methods specifically aimed at the Semantic Web
environment. Such specific features include:

• Rich structure and additional expressivity provided by ontological schema definition
languages (especially OWL) in comparison with relational database schemas. Ad-
vanced schema constructs (e.g., class hierarchy, disjointness relations, etc.) can be
used to refine the mappings produced by individual matching and dataset matching
methods.

• Availability of large volumes of publicly available data and existing mappings between
them. In the Linked Data cloud, data linking systems can consider a whole network
of repositories instead of only two as in classical record linkage and ontology matching
scenarios.
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3. Data linking systems

Data linking systems implement a number of the techniques identified in Section 2 in order
to interlink Web data described in RDF.

In the following analysis, we study 11 systems performing both automated and semi-
automated data linking. While many ontology matching systems are also able match instance
sets or use instance matching techniques in the ontology matching process (see [8, 34, 21,
30, 46, 59]), we focus here on systems whose primary focus is to perform data linking. A
few other systems dealing with Web data use data linking techniques while not focusing on
linking data and are thus not included in this section (see [35, 7, 58]). More generally, many
ad-hoc matchers are designed when interlinking a specific dataset on the Web of data.

Semi-automated data linking systems typically use configuration files that need to be
adapted for each pair of datasets. Parameters such as matching techniques, properties to be
compared and thresholds need to be entered by the user. This manual input is in most cases
needed if a high link quality has to be reached. Automated matching with high quality links
can be achieved if the domain of the tool is well defined, such as for LD mapper [49] for the
music domain.

Each tool is described below, then in Section 3.12. Tables 3.1, 3.2, and 3.3 specify which
of the techniques we present in Section 2.

3.1 LN2R

LN2R [51] is an unsupervised instance matching system. It uses two approaches: one logical
(L2R) and one numerical (N2R). L2R exploits the axioms of the ontologies describing in-
stances. Both datasets should be described using the same set of ontologies. Functional and
inverse functional properties, as well as disjoint classes axioms are considered. Matches and
non-matches found by L2R are then used as input for the numerical similarity method N2R.
N2R uses equations modelling dependencies between similarities of entities. This capture the
intuition that if two pairs of instances are related in two datasets and two of these instances
are similar across datasets, then the two other instances are likely to be similar as well.
Similarity between attributes is computed using an external thesaurus or string similarity
algorithms. Then an iterative algorithm compute the similarity of instances based on the
attributes similarities and the dependencies equations.

3.2 ObjectCoref

ObjectCoref [26] aims at building a searchable repository of identity links between resources
on the Web of data. The data linking system is based on a self-training network, a semi-
supervised learning framework. The system thus needs a training set before being able to
interlink two datasets. ObjectCoref uses ontological axioms to further discover equivalences
between resources: existing owl:sameAs links, functional and inverse functional, as well
as cardinality restrictions. A discriminating factor is then computed for pairs of properties
belonging to matching resources in the training set. The system then performs an analysis of
property-value pairs in order to ascertain which properties have a similar value for resources
in the training set. In fact the system performs on the fly matching of properties used in the
two datasets. The matching properties are then used to link the two datasets in an iterative
process.
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3.3 Okkam

Okkam [28] proposes an architecture based on the use of distributed servers maintaining
sets of equivalent resources. They are named Entity Name Servers (ENS). Each equivalent
resource set is assigned a identifier. An ENS store entity descriptions on the form of key/prop-
erty values. New entities are added based on a matching algorithm constructing a similarity
measure between the candidate resource and the ENS entity. The similarity measure uses a
string matching algorithm between the key/property pairs. The similarity measure is then
weighted according to the likelihood of the key to indicate a name for the entity. A small
vocabulary of naming properties is thus maintained in the system. Finally similarities are
aggregated by computing the sum of maximal similarities between the features of the two
entities.

3.4 RKB-CRS

The co-reference resolution system of RKB [18, 29] consists of resource equivalence lists.
These lists are constructed using ad-hoc Java code on the specific conference/university
domain. Domain heuristics are provided such as co-authorship analysis. New code needs to
be written for each dataset. It consists in selecting resources to be matched and performs
string similarity matching on relevant attributes.

3.5 LD-mapper

LD mapper [49] is a Prolog based dataset interlinking tool. The tool is based on a similarity
aggregation algorithm taking into account the similarity of neighbor resources. The tool
requires little user configuration and has been tested on music related datasets. The current
implementation works with the Music Ontology, but the algorithm can be used on datasets
working with any ontology.

3.6 Silk

Silk [61] is a framework and tool for interlinking datasets and maintaining the links. It con-
sists of a tool and a link specification language: the Silk Link Specification Language. Before
matching two datasets, the user specifies entities to link in a LSL file. The tool uses various
string matching methods, but also numeric equality, date equality, taxonomical distance sim-
ilarity, and sets similarity measure. All these similarity measures are parameterized by the
user using a specific format. Preprocessing transformations can be specified by the user in
order to improve the quality of the matching. Matching algorithms can be combined using a
set of operators (MAX, MIN, AVG). Also, literals can be transformed before the comparison
by specifying a transformation function, concatenating or splitting resources. Silk takes as
input two datasets by specifying SPARQL endpoints. It is able to output sameAs triples
or any other predicate between the matched entities. Silk was tested on diverse datasets
available on its project Web page.1

1http://www4.wiwiss.fu-berlin.de/bizer/silk/spec/
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3.7 LIMES

LIMES [40] is a semi-automatic interlinking tool that can be configured using a XML speci-
fication format. Its originality lies in the usage of the properties of metric spaces in order to
optimize the use of matching techniques and reduce the number of comparisons needed to
match two datasets. The tool needs user input formatted using a link specification language.
The tool is available online as a Web service2 a graphical user interface to a Web service is
also available at 3.

3.8 KnoFuss

The KnoFuss architecture [43] is designed for the fusion of heterogeneous knowledge sources.
One particularity of KnoFuss is its ability to match datasets described under heterogeneous
ontologies. The matching process is driven by instanciating an ontology specifying resources
to be matched, and the adequate matching techniques to use for these resources. For each
type of resource to be matched, an application context is defined, specifying a SPARQL
query for this type of resource. A variety of string similarity algorithms are available. When
datasets described by heterogeneous ontologies are used, it is possible to specify an ontology
alignment in the alignment format4, thus allowing to use any matcher outputting this for-
mat. The tool is primarily meant to perform fusion of two input dataset. The input fusion
ontologies thus also specify how should the resources be merged. A post-processing step is
performed to verify and enforce the consistency of the new dataset resulting from the fusion
operation with regards to the ontologies. The tool works with local copies of the datasets
and is implemented in Java.

3.9 RDF-AI

RDF-AI [52] is an architecture and prototype implementation for datasets matching and
fusion. The tool generates an alignment that can be further used to either merge the two
matched datasets or produce a set of links containing the owl:sameAs triples. The system
takes as input XML files specifying the preprocessing parameters: name reordering, property
strings translation, datasets ontological structure, and matching techniques for each kind of
resource. The datasets structure and the resources to be matched are described in two
files. This descriptions in fact corresponds to a small ontology containing only resources of
interest and the properties to be used in the matching process. Another configuration file
describes post-processing parameters such as the threshold for generating links, as well the
fusion parameters in case of a fusion. The tool works with local copies of the datasets and
is implemented in Java.

3.10 Zhishi.links

Zhishi.links [45] is a general purpose data linking tool using a distributed framework to
reduce the elapsed time when matching large datasets. Resources are therefore indexed
before similarity calculations are performed. Two similarity comparisons are available, one
generic based on entities names (RDFS and SKOS lablels, aliases) and based on geographical

2http://aksw.org/Projects/limes
3http://limes.aksw.org/
4http://alignapi.gforge.inria.fr/format.html
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location. Then a semantic matching technique is used to increase the similarity of instances
sharing same property-value pairs. Candidates are finally sorted by their similarity value
score, using an eventual new computation on their default label to disambiguate candidates
having the same score. The system also uses abbreviations list for persons, locations and
organizations (ie ”Jr” for junior).

3.11 Serimi

Serimi [2] interlinking tool use a two phases approach, selection and disambiguation. In
a first phase, traditional information retrieval strategies with high recall but low precision
are applied to select candidate resource to be linked. More precisely, entity labels of the
source dataset are used to search for entities in the target dataset. This step is to reduce
the comparison space for the next step. In a second phase, candidates matches sharing
same labels are disambiguated using an algorithm that identifies which of the candidates
is more likely to be the correct one. This technique is based on an analysis of resources
descriptions, by identifying property sets shared by instances. Classes of interest are thus
formed. Instances of the same class in the source dataset are finally linked to instances of the
same class of interest in the target dataset. The Serimi method could be applied in various
domains, for is is claimed that it could find matching instances regardless of prior knowledge
on context and schema. But this interlinking method has its risk. The string matching used
in first step has high recall and low precision, so the selected instance candidate sets may
ignore certain similar instances. For the comparison in second step is based on the selected
triples coming from the first step, so the interlinking result might ignore false negative
matches.

3.12 Summary

As we can see in tables 3.1, 3.2, and 3.3, varying data linking techniques are implemented
by the studied systems.

It seems obvious that internal data level techniques are implemented in every system
for value matching as they are the basic operation for comparing instances values. Only
two systems use translation services to translate strings before comparing them. This can
surely be explained by the fact a large majority of the data available on the Web of data is
in English. External knowledge sources are commonly used to compute similarity between
instances values. Most tools use similarity aggregation in order to combine similarity over
many attributes of the matched instances, but few tools make use of existing links (data
level, external techniques). As the density of links on the Web of data increase, reusing
existing links or computing transitivity closures might be useful. It is however crucial to
consider links quality in order to prevent the propagation of incorrect links. Three tools only
consider the ontology axioms when computing the similarity of two instances. One reason
behind this is that few vocabularies on the Web of data actually have these axioms. As more
work will be done on increasing vocabularies quality, data linking using ontological axioms
will become more and more important. Dataset matching techniques are the least used ones.
Indeed they rely on the previous set of techniques and thus are the most advanced ones.
One tool only makes use of third-party schema mappings. This can be seen as very low
given that reconciling schemas greatly facilitates the matching task. Semi automated tools
actually solve this problem by implicitly letting the user to specify the schema alignment
when configuring the tool for a specific matching task.
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Table 3.1: Systems value matching techniques

Value Matching
Data level Knowledge Level

System Internal External
LN2R string matching Wordnet

synonyms dictionnary
ObjectCoref string matching
OKKAM ENS string matching translation entity names vocab.

service
RKB-CRS string matching
LD Mapper string lookup search
Silk string matching taxonomic distance

numerical similarity
LIMES string matching

on metric spaces
KnoFuss string matching
RDF-AI fuzzy string matching translation taxonomic distance

service Wordnet
Zhishi.links string matching abbreviations lists
Serimi string matching

Table 3.4 shows that the tools require different levels of manual input. While most of
the tools require manual input, two tools only are fully automated: LN2R and LD Mapper.
These two tools can only be used on datasets sharing a same ontology, with LD mapper being
specialized for the MusicOntology. Another tool, ObjectCoref, does not need to be configured
but instead takes as input a training set that it will use to find the best appropriated
configuration. The other tools require a user specification that varies in syntax, but have
similar content: what kind of entities are linked, which properties are compared and which
similarity computation methods are used. RKB CRS follows this scheme but includes built-in
heuristics making it more efficient for linking university and conferences related datasets.

We will next discuss techniques that could be used to make tools more efficient and more
automated.
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Table 3.2: Systems individual matching techniques

Individual matching
Data level Knowledge Level

System Internal External Internal
LN2R maximum weighed sameAs

average InverseFunctional
FunctionalProperty
cardinality
maxCardinality

ObjectCoref attribute-based existing links sameAs
similarity InverseFunctional
(learned) FunctionalProperty

cardinality
maxCardinality

OKKAM ENS similarity
combination
techniques
(listed in paper)

RKB-CRS domain-specific
metrics for citations existing links

LD Mapper sum
Silk many
LIMES
KnoFuss weighted average sameAs cardinality

transitive closure disjointness
functionality

RDF-AI weighted average
Zhishi.links geographical distance functional

inverseFunctional
Serimi
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Table 3.3: Systems dataset matching techniques

Dataset matching
Data level Knowledge level

System Internal Internal External
LN2R iterative sim. ??schema aware”

sim. propagation
ObjectCoref
OKKAM ENS
RKB-CRS
LD Mapper
Silk
LIMES
KnoFuss Dempster-Shafer third-party

sim. propagation schema mappings
RDF-AI sim. propagation
Zhish.links
Serimi classes of

interest

Table 3.4: Systems usability

Usability/Manual input
LN2R Automated, works only if datasets share the same ontology
ObjectCoref Needs a training set, then automated
OKKAM ENS Must be run on one entity type at a time

(eg. Persons, places, etc.)
RKB-CRS A Java class has to be implemented for each pair of datasets
LD Mapper Automated, works only for for datasets described

using the MusicOntology
Silk Link specification language: used techniques,

implicit schema alignment, aggregations need to be described
LIMES Link specification language, Web service and Web GUI
KnoFuss Dataset description ontology needs to be written

ontology alignments can be reused
RDF-AI Dataset, techniques, pre-, and post-processing config. files

need to be written
Zhishi.links Information not available
Serimi Automated, command line parameters.
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4. Open problems and directions

As discussed in Section 1, in the field of data linking a clear and widely accepted definition
of the meaning of mappings is still missing. On one side we have a wide spectrum of
different techniques, capable of discovering different kinds of possible links between object
descriptions, ranging from weak correspondences to strong relations of identity. On the other
side, we still use (or abuse) the owl:sameAs relation for representing all these different links,
in spite of the original meaning of this specific OWL relation. Concerning this point, a lot of
work is possible towards a finer definition of the relation of identity and a richer vocabulary
for representing it. Both UMBEL and SKOS can be seen as useful starting points for the
definition of a shared vocabulary concerning identity and mappings. However, covering
the range of possible meanings for a mapping is just part of the problem: in fact, we also
need to clarify and study the correspondence between the different techniques available for
instance matching and the possible meanings of their resulting mappings. To this end, some
preliminary work has been proposed in (author?) [36], where the authors discuss a solution
that allows the extraction of isomorphic statements from data without requiring their direct
assertion and propose a Identity Ontology for the representation of identity. However, an
analytic inquiry about the formal properties of instance matching techniques with respect
to identity is still missing.

There are several potentially promising research directions concerning the development
of novel matching techniques. We can particularly point out two of them. First, the growth
of the Linked Data cloud provides unique possibility to use large volumes of already existing
data as information sources. Moreover, the task of data linking itself becomes transformed
from the traditional scenario which focuses on finding sets of mappings between two datasets
to the more open task of discovering mappings within a network of many datasets. This
makes the dataset matching techniques particularly important. Two examples of tools tar-
geting these issues are idMesh[13] and ObjectCoref[26]. Second, given the variety of used
schema vocabularies, methods able to overcome semantic heterogeneity and deal with infor-
mation expressed using different ontologies are especially valuable.

With regards to the tools we see that there is still room for improving their automation.
Most tools are semi-automated and require an extensive amount of configuration for each
data linking task, while automatic tools works only in predefined domains. We identify three
types of input:

• schema alignments

• matching techniques

• keys

We propose here three possible improvements to automate existing tools:

• Schema alignment could be shared using a server. By doing so they could be reused
for every data linking task involving the aligned schemas.

• The selection of matching techniques is depending on the kind of data needed to be
matched as some techniques are better working than others on specific data types.
Information about the techniques to use could be directly attached to the schemas and
thus would not need to be specified for each data linking task.

• A good amount of input is needed to specify what properties need to be compared
for identifying the identity of two instances. This set of properties ensures that there
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is not two instance sharing the same combination of values for these properties, they
are as a key in a relational database. Statistical analysis could be used in order to
automatically mine keys in RDF datasets.
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5. Conclusion

After defining the data linking problem, we have presented a comprehensive survey of tech-
niques helping to solve it. We have classified these techniques according to the criterias of
granularity, type of evidence, and source of the evidence. We have presented eleven data
linking systems and classified them according to which technique they use. We observed
that the studied systems leave room for improvement, particularly at the dataset level of
granularity. Based on these observation, we propose in deliverable D4.2 a set of techniques
for the interlinking module of the Datalift platform.
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