
 i

Proceedings of the

3rd International Workshop on

Evaluation of
Ontology based

Tools

(EON 2004)

 ii

Organization Committee
York Sure (Contact Person), Institute AIFB at University of Karlsruhe (DE)
Oscar Corcho, Intelligent Software Components, S.A. (ES)
Jérôme Euzenat, INRIA (FR)
Todd Hughes, Lockheed Martin (US)

Program Committee
Dean Allemang, TopQuadrant, Inc. (US), dallemang_@_topquadrant.com
Bill Andersen, Ontology Works, Inc. (US), andersen_@_ontologyworks.com
Sean Bechhofer, University of Manchester (UK), seanb_@_cs.man.ac.uk
Richard Benjamins, Intelligent Software Components, S.A. (ES), rbenjamins_@_isoco.com
John Davies, BT (UK), john.nj.davies_@_bt.com
AnHai Doan, University of Illinois (US), anhai_@_cs.uiuc.edu
Christian Fillies, SemTalk (DE), cfillies_@_semtalk.com
Fausto Giunchiglia, University of Trento (IT), fausto_@_dit.unitn.it
Asunción Gómez-Pérez, Universidad Politécnica de Madrid (ES), asun_@_fi.upm.es
Kouji Kozaki, Osaka University (JP), kozaki_@_ei.sanken.osaka-u.ac.jp
Natasha F. Noy, Stanford University (US), noy_@_smi.stanford.edu
Henrik Oppermann, Ontoprise (DE), oppermann_@_ontoprise.de
Norman Sadeh, Carnegie Mellon University (US), sadeh_@_cs.cmu.edu
Heiner Stuckenschmidt, Vrije Universiteit Amsterdam (NL), heiner_@_cs.vu.nl
Rudi Studer, University of Karlsruhe (DE), studer_@_aifb.uni-karlsruhe.de
Raphael Troncy, INA (France), for Institute National of Audiovisual,
Raphael.Troncy_@_ina.fr
Mike Uschold, Boeing (US), michael.f.uschold_@_boeing.com
Takahira Yamaguchi, Keio University (JP), yamaguti_@_ae.keio.ac.jp

Sponsorship
This workshop is sponsored by the EU thematic network of excellence Knowledge Web
(http://knowledgeweb.semanticweb.org) and the EU integrated project SEKT
(http://sekt.semanticweb.org).

Copyright remains with the authors, and permission to reproduce material printed here should
be sought from them. Similarly, pursuing copyright infringements, plagiarism, etc. remains
the responsibility of authors.

 iii

Introduction

In the series of “Evaluation of Ontology-based Tools” workshops we intend to bring together
researchers and practitioners from the fastly developing research areas “ontologies” and
“Semantic Web”. Currently the semantic web attracts researchers from all around the world.
Numerous tools and applications of semantic web technologies are already available and the
number is growing fast. However, deploying large scale ontology solutions typically involves
several separate tasks and requires applying multiple tools. Therefore pragmatic issues such as
interoperability are key if industry is to be encouraged to take up ontology technology rapidly.

The main aim of this workshop is therefore to encourage and stimulate discussions about the
evaluation of ontology-based tools. For the future this effort might lead to future benchmarks
and certifications.

This workshop follows the previously held EON2002 (held at the EKAW 2002) and
EON2003 (held at the ISWC 2003).

The EON workshops are associated with experiments. Initially they corresponded to the
OntoWeb SIG on tools discussions, now this evolved into the Knowledge Web, in particular
the workpackage on Heterogeneity for the experiment for this workshop. The general question
is how to evaluate ontology related technologies. To break down this rather complex task into
a pragmatic one, the group decided to focus first on ontology engineering environments
(OEE) as a starting point in EON2002 and EON2003. These tools are rather common and
widely used by the Semantic Web Community and some of the participating members were
even tool provider themselves. During the first experiment, design issues and limitations of
state-of-the-art OEEs were being evaluated. This time the focus was on ontology alignment,
all participants were challenged to provide a set of mappings between given ontological
fragment. The aim was to compare the alignments given by all participants to give an
overview on state-of-the-art ontology alignment tools and their abilities.

Further information about the workshop and the experiment can be found at:
http://km.aifb.uni-karlsruhe.de/ws/eon2004/

We thank all members of the program committee, additional reviewers, authors, experiment
participants and local organizers for their efforts.

We are looking forward to having fruitful discussions at the workshop!

York Sure, Oscar Corcho, Jérôme Euzenat, Todd Hughes

 iv

Table of Contents

Part I: Accepted Papers

A Benchmark Suite for Evaluating the Performance of
the WebODE Ontology Engineering Platform
Raúl García-Castro, Asunción Gómez-Pérez

A Formalization of Ontology Learning From Text
Michael Sintek, Paul Buitelaar, and Daniel Olejnik

DOODLE-OWL: OWL-based Semi-Automatic Ontology Development
Environment
Takeshi Morita, Yoshihiro Shigeta, Naoki Sugiura, Naoki Fukuta, Noriaki Izumi,
Takahira Yamaguchi

Collaborative Ontology Building with Wiki@nt
- A Multi-agent Based Ontology Building Environment
Jie Bao and Vasant G Honavar

Part II: Experiment Contributions

Introduction to the Experiment
Jerome Euzenat

Ontology Alignment – Karlsruhe
Marc Ehrig, York Sure

Ontology Alignment with OLA
Jerome Euzenat, David Loup, Mohamed Touzani, Petko Valtchev

A Semantic Category Matching Approach to Ontology Alignment
Tadashi Hoshiai, Yasuo Yamane, Daisuke Nakamura, Hiroshi Tsuda

Using Prompt Ontology-Comparison Tools in the EON Ontology Alignment
Contest
Natalya F. Noy, Mark A. Musen

A Benchmark Suite for Evaluating the Performance of
the WebODE Ontology Engineering Platform

Raúl García-Castro, Asunción Gómez-Pérez

Ontology Engineering Group, Laboratorio de Inteligencia Artificial.
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{rgarcia,asun}@fi.upm.es

Abstract. Ontology tools play a key role in the development and maintenance
of the Semantic Web. Hence, we need in one hand to objectively evaluate these
tools, in order to analyse whether they can deal with actual and future
requirements, and in the other hand to develop benchmark suites for performing
these evaluations. In this paper, we describe the method we have followed to
design and implement a benchmark suite for evaluating the performance of the
WebODE ontology engineering workbench, along with the conclusions
obtained after using this benchmark suite for evaluating WebODE.

1. Introduction

In order for the Semantic Web to consolidate steadily, it needs the support of
technology that allows to create and to maintain it. The continuous development of
ontology editors and ontology tools for managing ontologies is an indication of this
fact. These tools implement different knowledge models with different underlying
knowledge representation paradigms, manage large upper level and general
ontologies, and range from standalone to web-based applications. To be able to
decide what ontology tools are needed for fulfilling actual and future requirements,
we need to objectively evaluate them with regard to their quality attributes.

Evaluation studies and benchmark suites for ontology technology are still a bit
scarce. For this reason, we think that there is a need to construct benchmark suites for
ontology tools, in order to be able to objectively assess their quality and to allow for a
better integration of this technology into other information systems.

The volume of ontologies and the amount of users that work concurrently with
ontology tools increases continuously. Therefore, the performance of these tools
emerges as one of the quality attributes to take care of.

As the development activity is one of the main ontology life cycle activities [1],
we will first deal with the appraisal of ontology development tools. In this work, we
focus on the WebODE ontology engineering workbench [2], evaluating its
performance in terms of execution efficiency [3]. WebODE’s global performance is
inferred from the performance of the methods of its ontology management API,
which allow managing the ontology components defined in the WebODE knowledge
model (concepts, relations, instances, axioms, constants, bibliographic references, and
imported terms).

The contents of this paper are the following:
Section 2 presents the state of the art in evaluating ontology development tools.

Sections 3 to 7 describe the method that we have followed to design and
implement a benchmark suite for evaluating WebODE’s performance and the analysis
performed after executing it.

Section 8 presents the conclusions obtained and the related future work.

2. Related Work

Ontology technology has improved enormously since the creation of the first
environments in the mid-1990s. In general, ontology technology hasn't been the
object of evaluation studies but, as the use of this technology spreads, in the last few
years many studies involving ontology tools evaluation have been performed. Most of
these studies deal with the evaluation of ontology development tools.

Some authors have proposed a general framework for the evaluation of ontology
development tools. To this group belongs the work presented by: Duineveld and
colleagues [4], the deliverable 1.3 of the OntoWeb project [5], the experiments
performed in the First International Workshop on the Evaluation of Ontology-based
Tools (EON2002) [6], and Lambrix and colleagues [7].

Other authors have focused in specific criteria regarding ontology development
tools: Stojanovic and Motik [8] analyzed the ontology evolution requirements
fulfilled by the tools, Sofia Pinto and colleagues [9] evaluated the support provided
by the tools in ontology reuse processes, the experiments of the Second International
Workshop on Evaluation of Ontology-based Tools (EON2003) [10, 11, 12, 13, 14]
involved the interoperability of the tools, and Gómez-Pérez and Suárez-Figueroa [15]
evaluated the ability of the tools to detect taxonomic anomalies.

As a general comment, evaluation studies concerning ontology development tools
have been of qualitative nature. To be able to objectively assess and compare these
tools, evaluation criteria must be defined and benchmark suites must be developed in
order to perform formal experiments that deal with quantitative data.

3. Evaluating WebODE

WebODE is a scalable workbench for ontological engineering that provides services
for editing and browsing ontologies, importing and exporting ontologies to classical
and semantic web languages, evaluating ontologies, mapping ontologies, etc. [2].

Because of the lack of work that deals with evaluating the performance of
ontology development tools, the motivations for carrying out this study have been:
• To define a method for evaluating WebODE’s performance.
• To obtain a benchmark suite for evaluating WebODE.
• To evaluate WebODE using the benchmark suite.

All these motivations converge in a single long-term goal: to achieve a
continuous improvement in the platform’s quality.

The method we have used to evaluate the performance of WebODE is composed
of the following steps:
• To identify the evaluation goals, elements, and metrics.
• To design and implement the benchmark suite.
• To run the benchmark suite.

• To analyze the results obtained after running the benchmark suite.

4. Identification of the Evaluation Goals, Elements, and Metrics

In order to identify the elements and metrics that will be considered in the evaluation
we have chosen the Goal/Question/Metric (GQM) paradigm1 [16]. The idea beyond
the GQM paradigm is that any software measurement activity should be preceded by
the identification of a software engineering goal, which leads to questions, which in
turn lead to actual metrics.

The WebODE ontology management API provides methods to insert, update,
remove, and query the components of the WebODE knowledge model2. As the
services provided by WebODE use these methods for accessing WebODE ontologies,
the performance of these services strongly depends of the performance of the API
methods. Therefore, our goal is to evaluate the performance of the methods
provided by the WebODE ontology management API. Table 1 presents the
questions and the metrics derived from this goal according to the GQM paradigm.
The analysis of the results of executing the benchmark suite will provide answers to
these questions.

Table 1. Questions and metrics obtained through the GQM approach

Question Metric
Q1: Which is the actual performance of the
WebODE API methods?

Execution time of each method

Q2: Is the performance of the methods stable? Variance of the execution times of each method
Q3: Are there any anomalies in the performance
of the methods?

Percentage of execution times out of range in
each method’s sample

Q4: Do changes in a method’s input parameters
affect its performance?

Execution time with parameter A = Execution
time with parameter B

Q5: Does WebODE’s load affect the
performance of the methods?

WebODE’s load versus execution time
relationship

In summary, the elements to evaluate are the 72 methods of the WebODE

ontology management API, and the metric to use is the execution time of the
methods over incremental load states.

5. Design and Implementation of the Benchmark Suite

Several authors have enumerated the desirable properties of a benchmark suite [17,
18, 19]: generality, representativeness, transparency, interpretability, robustness,
scalability, portability, accessibility, and repeatability. These properties have been the
basis of the requirements definition for the benchmark suite.

1 Other approaches are Quality Function Deployment [20] and Software Quality Metrics [21].
2 http://kw.dia.fi.upm.es/wpbs/WebODE_API_methods.html

5.1. Requirements for the Benchmark Suite

In order to have a generic and representative benchmark suite, the benchmarks that
compose it use every WebODE API method, performing current operations over
WebODE ontologies.

To be able to compare each method’s execution time, the methods must be
executed under the same conditions. Therefore, we have defined the execution
environment and the load state of WebODE, having fixed both before running each
benchmark.

The benchmarks and their results must be transparent and interpretable. Each
benchmark executes just one method and stores the wall clock time elapsed while
running the method. The only other operation performed by a benchmark is to restore
the load state of WebODE in case it changed during the benchmark execution.

Furthermore, as each method has its input parameters, one or more benchmarks
have been defined for each method according to variations in these input parameters.
So, from the 72 API methods we got 128 benchmarks3.

As the benchmarks must be robust and scalable, they have been parameterized
according to two parameters:
• Load factor (X). The load factor of WebODE’s load state when executing a

benchmark.
• Number of iterations (N). The number of consecutive executions of a method in

a single benchmark. This parameter defines the number of sample measurements
obtained after executing a benchmark.
For example, from the method insertTerm(String ontology, String term, String

description), that inserts concepts in an ontology, we defined two benchmarks
regarding the different input values of the method. These benchmarks were
parameterized according to the load factor (X) and the number of executions (N):
• benchmark1_1_08. It inserts X concepts in an ontology. This is repeated N times.
• benchmark1_1_09. It inserts 1 concept in X ontologies. This is repeated N times.

In order to have a portable benchmark suite, the benchmarks have been
implemented in Java, using only standard libraries and with no graphical components.

The benchmark suite must also be accessible and repeatable, anyone should be
able to replicate the experiments and achieve the same conclusions. Therefore, the
benchmark suite source code and the results obtained in this evaluation are published
in a public web page4.

5.2. Definition of the Execution Environment

As the workload used in the evaluation must be characterized accurately [22], we
have defined the execution environment with the variables that influence the
execution time of a method: hardware configuration, software configuration,
computer’s load, and WebODE’s load.

The WebODE’s load variable has been the only one whose values have been
altered. As we are not interested in the other three variables’ effect in the execution
times, these variables have taken fixed values during the execution of the
benchmarks. Furthermore, in order to avoid other non-controlled variables that may

3 http://kw.dia.fi.upm.es/wpbs/WPBS_benchmark_list.html
4 http://kw.dia.fi.upm.es/wpbs/

affect the results, the computer used for executing the methods has been isolated:
without network connection nor user interaction. Next, we define these variables and
the values that they took when running the benchmarks.
• Hardware configuration. It is the hardware configuration of the computer

where WebODE is running. The computer was a Pentium 4 2.4 Ghz
monoprocessor with 256 Mb. of memory.

• Software configuration. It is the configuration of the operating system and of
the software needed to execute WebODE. It was the following, using each
system’s default configuration: Windows 2000 Professional Service Pack 4; SUN
Java 1.4.2_03 (the benchmarks were compiled with the default options); Oracle
version 8.1.7.0.0 (the Oracle instance’s memory configuration was changed to:
Shared pool 30 Mb., Buffer cache 80 Mb., Large pool 600 Kb., and Java pool 32
Kb.); Minerva version 1 build 4; and WebODE version 2 build 8.

• Computer’s load. It is the load of the computer where WebODE is running. This
load was the corresponding to the computer just powered on, with just the
programs and services needed to run the benchmarks.

• WebODE’s load. It is the underlying database’s load where WebODE
ontologies are stored. The generation of this load is explained in the next section.

5.3. Workload Generation

We mentioned before that WebODE’s load state must be the same for every
benchmark execution. This common load state must also allow to execute the
benchmarks with different load factors (X) and with no errors. Therefore, WebODE’s
initial load state has been worked out from each benchmark’s execution needs.

Each benchmark’s minimum load state has been defined as the minimum
ontology components that must exist in WebODE in order to execute the benchmark
with no errors. For example, considering the four benchmarks whose methods insert
and remove concepts in an ontology, Table 2 shows each of these benchmark’s
minimum load state, being X the load factor, and Table 3 shows the minimum load
state of the four benchmarks.

Table 2. Minimum load states of the benchmarks whose methods insert and remove concepts

Benchmark Operation Minimum load state
benchmark1_1_08 Inserts X concepts in an ontology 1 ontology
benchmark1_1_09 Inserts a concept in X ontologies X ontologies
benchmark1_3_20 Removes X concepts from an ontology 1 ontology with X concepts
benchmark1_3_21 Removes a concept from X ontologies X ontologies with one concept

Table 3. The minimum load state of the benchmarks shown in Table 2

Benchmarks Minimum load state
benchmark1_1_08, benchmark1_1_09,
benchmark1_3_20, and benchmark1_1_21

1 ontology with X concepts and
X ontologies with1 concept

Therefore, the benchmark suite initial load state5, used when executing all the

benchmarks, has been defined as the union of all the benchmarks’ minimum load
states, and is composed of all the ontology components that must exist in WebODE in
order to execute every benchmark with no errors.

5 http://kw.dia.fi.upm.es/wpbs/WPBS_workload_generation.html

6. Execution of the Benchmark Suite

The 128 benchmarks that compose the benchmark suite have been run ten times with
increasing load factors (X=500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and
5000) and with a number of iterations (N) of 400.

With the aim of checking that 400 iterations is a valid sample size, we have run
several benchmarks with higher and lower number of iterations and we have
confirmed that the results obtained are virtually equivalent. We haven’t used a higher
sample because the slight precision improvement would mean a much higher duration
of the benchmark suite execution.

As with a load factor (X) of 5000 we obtained enough data to be able to
determine the methods’ performance, the benchmarks haven’t been executed with
higher load factors.

The results of running a benchmark are N (in this case 400) measurements of the
execution time of the method used in a benchmark. These results are stored in a text
file in a hierarchical measurement data library, so as to access them easily.

7. Analysis of the Results

The conclusions obtained when analyzing the results of a benchmark suite execution
are usually temporarily limited [23]. As the API methods will undergo changes, the
results just inform about WebODE’s current performance, not its future one.

In order to obtain information that can be used to make decisions, we must apply
statistical analysis techniques to the execution results [24]. From the N measurements
of the execution time of a method in a benchmark we can obtain:
• Graphs that show the behavior of the execution time.
• Statistical values worked out from the sample of N measurements.

Observing the graphs of the execution times measured in a benchmark, we saw
that execution times are usually constant. One example of this can be seen in Figure
1, where the execution times of benchmark1_3_20 when running the method
removeTerm 400 times with a load factor of 5000 are shown.

Figure 1. Execution times of benchmark1_3_20 with X=5000 and N=400

The next issue was to find which statistical values could be used to describe the
execution times’ samples. First of all, we ran normality tests over the measurements
obtained after executing the benchmarks. As the distributions of the measurements
were non-normal, we could not rely on usual values like mean and standard deviation
for describing these measurements. Therefore, we used robust statistical values like

the median, the upper and lower quartiles, and the interquartile range (upper
minus lower quartile).

To obtain the number of measurements out of range, we calculated the
percentage of outliers in each sample. The traditional method is to consider as
potential outlier values the measurements beyond the upper and lower quartiles
adding and subtracting respectively 1.5 times the interquartile range [25]. As the Java
method used for measuring time (java.lang.System.currentTimeMillis()) in the
Windows platform has a precision of tens of milliseconds, in the results we frequently
encountered interquartile ranges of zero milliseconds. This caused to be considered as
outliers every determination that differed from the median. With the objective of
fixing this precision fault, we have augmented the interquartile range when
calculating the outliers to include half the minimal granularity (5 milliseconds) in
both boundaries.

An example of the statistical values obtained can be seen in Table 4. This table
shows the values obtained for the four benchmarks whose methods insert and remove
concepts in an ontology. All the statistical values and graphs can be looked up and
downloaded from the benchmark suite web page.

Table 4. Statistical values of the benchmarks whose methods insert and remove concepts

 Load N UQ LQ IQR Median % Outliers Function
benchmark1_1_08 5000 400 60 60 0 60 1,25 y=62,0-0,0090x
benchmark1_1_09 5000 400 912 901 11 911 1,75 y=910,25-0,0030x
benchmark1_3_20 5000 400 160 150 10 150 1,25 y=155,25-0,0030x
benchmark1_3_21 5000 400 160 150 10 151 0,25 y=154,96-0,0010x

Next, we show the conclusions drawn after analyzing the data, answering the

questions previously proposed in Table 1.

7.1. Finding out Methods’ Performance

In order to be able to clearly differentiate the execution times, we have analyzed the
data obtained from running the benchmarks with the maximum load factor used,
X=5000, and with a number of iterations (N) of 400. We use the median of the
execution times of a method in a benchmark as an indicator of its performance.

The medians of the execution times of all the API methods range from 0 to 1051
milliseconds. Figure 2 shows the histogram of these medians, where we clearly see a
group of values higher than the rest. The execution times of this group belong to 12
benchmarks that execute 8 methods (as different benchmarks have been defined for
each method). These 8 methods, with a median execution time higher than 800 ms.,
have been selected for the improvement recommendations. The rest of the methods
have median execution times lower than 511 ms., being most of them around 100 ms.

Bearing in mind the kind of operation that the methods carry out (inserting,
updating, removing, or selecting an ontology component), we did not find significant
differences between the performances of each kind of method.

Taking into account what kind of element of the knowledge model a method
manages (concepts, instances, class attributes, instance attributes, etc.), in the slowest
methods’ group are present almost every method that manages relations between
concepts. Methods that manage instance attributes also have high execution times,
and the rest of the methods behave similarly, only standing out the methods that
manage imported terms and references as being the ones with lower execution times.

Figure 2. Histogram of the medians of the

execution times

Figure 3. Histogram of the interquartile

ranges of the execution times

Figure 4. Histogram of the percentage of

outliers of the execution times

Figure 5. Evolution of the execution times

when increasing WebODE’s load

Regarding the spread of the execution times of the methods, we analyzed the

interquartile range (IQR) of the execution times of the methods. Figure 3 shows the
histogram of the IQRs of the execution times. Almost every method has an IQR from
0 to 11 ms. Having into account that the granularity of the measurements is of 10
milliseconds, we can state that the execution times have a low spread. The only
exceptions are removeTermRelation (benchmark1_3_09) with an IQR of 19,
addValueToClassAttribute (benchmark1_1_14) with an IQR of 30, and
getAvailableOntologies (benchmark1_4_01) with an IQR of 160. This last method
has been selected for the improvement recommendations due to its atypical IQR
value.

In order to detect anomalies, we generated the histogram of the percentage of
outliers in the execution times of the methods, shown in Figure 4. Most of the
benchmarks have from 0 to 3.75% of outliers. These values confirm the lack of
anomalies except the peaks in the execution times that can be seen in the graphs. The
only methods to emphasize are openOntology (benchmark2_01), with 11.5% of
outliers, and addValueToClassAttribute (benchmark1_1_15), with 7% of outliers.
These two methods have been selected for the improvement recommendations.

Studying whether changes in a method’s parameters affect its performance, we
have observed that in 21 methods the performance varies when changing its input
parameters. This variation is lower than 60 milliseconds except in five methods that
show a difference in their execution times when changing parameters from 101 to 851
ms., and have been selected for the improvement recommendations.

7.2. Establishing Load-Performance Relationship

To study WebODE’s load effect in performance, we analyzed the medians of the
execution times of the methods from a minimum load state (X=500) to a maximum
load state (X=5000), and with a number of iterations (N) of 400. We estimated the
function that these medians define by simple linear regression and considered its
slope in order to examine the relationship between the load and the execution time of
the methods.

Figure 5 shows the plot of every benchmark’s median execution time with the
different load factors. As can be seen, the 8 methods whose execution times are
higher than the rest are also the methods whose performance is more influenced by
the load. To be precise, the slope of these methods’ function is greater than 0.15, and
the slope of the rest of the methods’ function ranges from 0 to 0.1. As we stated
before, these methods have been selected for the improvement recommendations.

7.3. Development of Improvement Recommendations

Once the data has been analyzed, the next step is the development of the
improvement recommendations. These recommendations include those methods
whose execution times:
• Have a median execution time higher than 800 ms.
• Have an interquartile range greater than 150 ms.
• Have more than a 5% of outlier values.
• Vary more than 100 ms. when modifying its input parameters.
• Increase when augmenting load with a slope greater than 0.15.

Table 5 shows the 12 of the 72 WebODE’s API methods included in the
improvement recommendations, and the reasons for their inclusion.

Table 5. Methods in the improvement recommendations

 Execution
time >
800 ms.

Interquartile
range >
150 ms.

Outlier
values >
5%

Execution time
variation >
100 ms.

Slope when
increasing load
> 0.15

removeTermRelation X X
getInheritedTermRelations X X
insertTerm X X X
insertRelationInstance X X X
openOntology X X X
getAdHocTermRelations X X
getTermRelations X X
getAvailableOntologies X X X
addValueToClassAttribute X
insertConstant X
updateSynonym X
getInstances X

8. Conclusions and Future Work

In this paper we have set out the method we followed to develop a benchmark suite
for assessing the temporal performance of the WebODE ontology engineering

workbench. We have also stated how we executed this benchmark suite and the main
conclusions obtained after analyzing the collected results.

The main achievement obtained after performing this study is that we have
precisely determined WebODE’s performance, identifying:
• The slowest methods.
• The methods with high spreaded execution times.
• The methods with anomalies in their execution times.
• The effect of changing a method’s parameters in its performance.
• The link between WebODE’s load and its methods’ performance.

The analysis of the results showed that changes in a method’s input parameters
significantly affected its performance. This fact must be taken into account when
defining benchmark suites, either for WebODE or for other systems.

Besides being able to evaluate WebODE’s performance, the benchmark suite
that we have developed will allow us to:
• Monitor WebODE, being able to observe the performance of critical elements

and how changes in the platform affect its performance.
• Diagnose future problems in WebODE.

The benchmarks that compose the proposed suite just execute one method and
store its execution time. One way of improving the study could be making these
benchmarks execute different kinds of synthetic requests to WebODE, in order to
study not just the stability of the methods but the stability of the whole platform.

Once we know the performance of WebODE regarding its ontology management
API, we could work out the approximate performance of the services and applications
that use this API. This could be done either by empirically obtaining the frequency of
use of real services and applications or by defining use frequencies for each different
kind of application.

In this work we have just evaluated the execution efficiency of the WebODE API
methods. There are many other WebODE attributes that we would be interested in
measuring like reliability, usability, or functionality (to cite just a few samples); and
future studies will focus in them.

Although this benchmark suite has been designed specifically for WebODE, we
plan to extend it to other ontology engineering platforms (KAON, OntoEdit, Protégé-
2000, etc.). This could be done either by finding commonalities between the ontology
management APIs of the different platforms or by means of a common management
API such as OKBC [26].

Acknowledgments

This work is partially supported by the IST project KnowledgeWeb (IST-2004-
507482) and by the IST project Esperonto (IST-2001-34373).

References

1. [Fernández-López et al., 1997] M. Fernández-López, A. Gómez-Pérez, N. Juristo.
METHONTOLOGY: From Ontological Art Towards Ontological Engineering.
Spring Symposium on Ontological Engineering of AAAI. Stanford University,
California, 1997, pp 33-40.

2. [Arpírez et al., 2003] J.C. Arpírez, O. Corcho, M. Fernández-López, A. Gómez-
Pérez. WebODE in a nutshell. AI Magazine. 24(3), Fall 2003, pp. 37-47.

3. [IEEE, 1991] IEEE-STD-610 ANSI/IEEE Std 610.12-1990. IEEE Standard Glossary
of Software Engineering Terminology. February 1991.

4. [Duineveld et al., 1999] A.J. Duineveld, R. Stoter, M.R. Weiden, B. Kenepa, and
V.R. Benjamins. Wondertools? a comparative study of ontological engineering tools.
In Proceedings of the 12th International Workshop on Knowledge Acquisition,
Modeling and Management (KAW'99), Banff, Canada, 1999. Kluwer Academic
Publishers.

5. [Ontoweb, 2002] Ontoweb deliverable 1.3: A survey on ontology tools. Technical
report, IST OntoWeb Thematic Network, May 2002.

6. [Angele and Sure, 2002] J. Angele and Y. Sure (eds.). Evaluation of ontology-based
tools. In Proceedings of the 1st International Workshop EON2002, Sigüenza, Spain,
September 2002. CEUR-WS.

7. [Lambrix et al., 2003] P. Lambrix, M. Habbouche, and M. Pérez. Evaluation of
ontology development tools for bioinformatics. Bioinformatics, 19(12):1564-1571,
2003.

8. [Stojanovic and Motik, 2002] L. Stojanovic and B. Motik. Ontology evolution within
ontology editors. In Proceedings of the International Workshop on Evaluation of
Ontology-based Tools (EON2002), Sigüenza, Spain, October 2002.

9. [Sofia Pinto et al., 2002] H. Sofia Pinto, Duarte Nuno Peralta, and Nuno J. Mamede.
Using Protégé-2000 in reuse processes. In Proceedings of the International Workshop
on Evaluation of Ontology-based Tools (EON2002), Sigüenza, Spain, October 2002.

10. [Corcho et al., 2003] O. Corcho, A. Gómez-Pérez, D.J. Guerrero-Rodríguez, D.
Pérez-Rey, A. Ruiz-Cristina, T. Sastre-Toral, and M.C. Suárez-Figueroa. Evaluation
experiment of ontology tools' interoperability with the WebODE ontology
engineering workbench. In Proceedings of the 2nd International Workshop on
Evaluation of Ontology-based Tools (EON2003), Florida, USA, October 2003.

11. [Isaac et al., 2003] A. Isaac, R. Troncy, and V. Malais. Using XSLT for
interoperability: DOE and the travelling domain experiment. In Proceedings of the
2nd International Workshop on Evaluation of Ontology-based Tools (EON2003),
Florida, USA, October 2003.

12. [Calvo and Gennari, 2003] F. Calvo and J.H. Gennari. Interoperability of Protégé 2.0
beta and OilEd 3.5 in the domain knowledge of osteoporosis. In Proceedings of the
2nd International Workshop on Evaluation of Ontology-based Tools (EON2003),
Florida, USA, October 2003.

13. [Fillies, 2003] C. Fillies. Semtalk EON2003 semantic web export / import interface
test. In Proceedings of the 2nd International Workshop on Evaluation of Ontology-
based Tools (EON2003), Florida, USA, October 2003.

14. [Knublauch, 2003] H. Knublauch. Case study: Using Protégé to convert the travel
ontology to UML and OWL. In Proceedings of the 2nd International Workshop on
Evaluation of Ontology-based Tools (EON2003), Florida, USA, October 2003.

15. [Gómez-Pérez and Suárez-Figueroa, 2004] A. Gómez-Pérez and M.C. Suárez-
Figueroa. Evaluation of RDF(S) and DAML+OIL import/export services within
ontology platforms. In Proceedings of the Third Mexican International Conference
on Artificial Intelligence, pages 109-118, Mexico City, Mexico, April 2004.

16. [Basili et al., 1994] V.R. Basili, G. Caldiera, D.H. Rombach. The Goal Question
Metric Approach. Encyclopedia of Software Engineering, 2 Volume Set Willey,
1994, pp 528-532.

17. [Bull et al., 1999] J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, R.A. Davey. A
Methodology for Benchmarking Java Grande Applications. EPCC, June 1999.

18. [Shirazi et al., 1999] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B.
Yanamula, R. Brucks, E. Huh. DynBench: A Dynamic Benchmark Suite for
Distributed Real-Time Systems. IPDPS 1999 Workshop on Embedded HPC Systems
and Applications, San Juan, Puerto Rico, April 1999.

19. [Sim et al., 2003] S. Sim, S. Easterbrook, and R. Holt. Using benchmarking to
advance research: A challenge to software engineering. In Proceedings of the 25th
International Conference on Software Engineering (ICSE'03), pages 74-83, Portland,
OR, 2003.

20. [Dean, 1992] E.B. Dean. Quality Function Deployment for Large Systems.
Proceedings of the 1992 International Engineering Management Conference,
Eatontown NJ, October 1992, pp 317-321.

21. [Boehm et al., 1976] B.W. Boehm, J.R. Brown, and M. Lipow. Quantitative
Evaluation of Software Quality. In Proceedings of the Second International
Conference on Software Engineering. San Francisco, 1976, pp 592-605.

22. [Dongarra et al., 1987] J. Dongarra, J.L. Martin, J. Worlton. Computer
benchmarking: paths and pitfalls. IEEE Spectrum, Vol. 24, N. 7, July 1987, pp 38-43.

23. [Gray, 1993] J. Gray. The Benchmark Handbook for Database and Transaction
Systems (2nd Edition). Morgan Kaufmann, 1993.

24. [Fenton, 1991] N.E. Fenton. Software Metrics A Rigorous Approach. Chapman &
Hall, London, UK, 1991.

25. [Mendenhall and Sincich, 1995] W. Mendenhall and T. Sincich. Statistics for
Engineering and the Sciences, 4th Edition. Englewood Cliffs, NJ. Prentice Hall, 1995.

26. [Chaudri et al., 1997] V.K. Chaudhri, A. Farquhar, R. Fikes, P.D. Karp, J.P. Rice.
The Generic Frame Protocol 2.0. Technical Report, Stanford University, 1997.

A Formalization of Ontology Learning From Text

Michael Sintek1, Paul Buitelaar2, and Daniel Olejnik2

1 DFKI GmbH
Knowledge Management Department

Erwin-Schrödinger-Str., Bldg. 57
D-67663 Kaiserslautern, Germany

sintek@dfki.uni-kl.de
2 DFKI GmbH

Language Technology Department
Stuhlsatzenhausweg 3

D-66123 Saarbrücken, Germany
{paulb,olejnik}@dfki.de

Abstract. Recent developments towards knowledge-based applications
in general and Semantic Web applications in particular are leading to an
increased interest in ontologies and in dynamic methods for developing
and maintaining them. As human language is a primary mode of knowl-
edge transfer, ontology learning from relevant text collections has been
among the most successful strategies in this work. Such methods mostly
combine a certain level of linguistic analysis with statistical and/or ma-
chine learning approaches to find potentially interesting concepts and
relations between them. Here, we discuss a formalization of this process
(in the specific context of the OntoLT tool for ontology learning from
text) in order to arrive at a better definition of this task, which we hope
to be of use in a more principled comparison of different approaches.
As ontology representation formalisms we will consider those that have
a model-theoretic semantics, with OWL (and subsets of OWL) being
appropriate candidates.

Keywords: ontologies, ontology learning from text, linguistic analysis, OWL,
formalization, ontology entailment, model-theoretic semantics

1 Motivation

Recent developments towards knowledge-based applications such as Intelligent
Question-Answering, Semantic Web Services and Semantic-Level Multimedia
Search are also leading to an increased interest in ontologies. Additionally, as
ontologies are domain descriptions that tend to evolve rapidly over time and
between different applications, there has been an increased interest also towards
developing and maintaining ontologies dynamically (see also [1]).

As human language is a primary mode of knowledge transfer, ontology learn-
ing from relevant text collections has been among the most successful strategies

in this work. See, for instance, the overview of ontology learning systems and
approaches as discussed by the OntoWeb deliverable 1.5 [2]. Some recent ex-
amples of systems for ontology learning from text are: ASIUM [3], TextToOnto
[4], Ontolearn [5], OntoLT [6]. All of these combine a certain level of linguistic
analysis with statistical and/or machine learning approaches to find potentially
interesting concepts and relations between them.

In order to allow a principled comparison of these approaches and to define
evaluation environments, we propose a formalization of ontology (and knowledge
base) learning from text. Since the systems we want to concentrate on mainly
use ontology representation languages that are frame systems or (subsets of)
description logics like OWL [7], we developed a formalization approach which
is suited for this class of ontology languages, namely those that have a model-
theoretic semantics which we use as a basis for operations on ontologies. The
OntoLT [6] tool for ontology learning from text will be used to clarify the various
details of this formalization.

2 Ontology Learning From Text

A typical approach in ontology learning from text first involves term extraction
from a domain-specific corpus through a statistical process that determines their
relevance for the domain corpus at hand. These are then clustered into groups
with the purpose of identifying a taxonomy of potential classes. Subsequently,
relations can be identified by computing a statistical measure of “connectedness”
between identified clusters.

In the context of this paper we assume a similar approach, but we addition-
ally aim at a more direct connection between ontology learning and linguistic
analysis. Through such an approach, relations may be identified additionally
on the basis of linguistic analysis of the “dependency structure” between terms
and connecting or modifying words (i.e., verbs, prepositions, adjectives) in their
context.

2.1 OntoLT

The OntoLT plug-in for Protégé implements this approach through the definition
of mapping rules with which classes and properties can be extracted automat-
ically from linguistically annotated text collections. Through the use of such
rules, linguistic knowledge (context words, morphological and syntactic struc-
ture, etc.) remains associated with the constructed ontology and may be used
subsequently in its application and maintenance, e.g., in knowledge markup,
ontology mapping, and ontology evolution.

The ontology extraction process is implemented as follows. OntoLT provides
a precondition language, with which the user can define mapping rules. Pre-
conditions are implemented as XPath [8] expressions over XML-based linguistic
annotation of relevant text collections (see Section 2.2 below). If all constraints

are satisfied, the mapping rule activates one or more operators that describe in
which way the ontology should be extended if a candidate is found.

Predefined preconditions select for instance the predicate of a sentence, its
linguistic subject or direct object. Preconditions can also be used to check certain
conditions on these linguistic entities, for instance if the subject in a sentence
corresponds to a particular lemma (the morphological stem of a word).

Selected linguistic entities may be used in constructing or extending an on-
tology. For this purpose, OntoLT provides operators to create classes, slots and
instances. According to which preconditions are satisfied, corresponding opera-
tors will be activated to create a set of candidate classes and slots that are to
be validated by the user (see Fig. 1). Validated candidates are then integrated
into a new or existing ontology.

Fig. 1. OntoLT Screenshot

For example, OntoLT includes the following two mapping rules:

– HeadNounToClass ModToSubClass: maps a head-noun to a class and in
combination with its modifier(s) to one or more sub-class(es)

– SubjToClass PredToSlot DObjToRange: maps a linguistic subject to a class,
its predicate to a corresponding slot for this class and the direct object to
the range of this slot

Consider the following sentence to which these rules can be applied:

This disease is characterized primarily by impaired mental function
caused by damage to the brain.

Result for the HeadNounToClass ModToSubClass rule:
Class(’impaired mental function’) subClassOf Class(’function’)

Result for the SubjToClass PredToSlot DObjToRange rule:
Property(’characterize’) domain Class(’function’) range Class(’disease’)

2.2 Linguistic Analysis and Annotation

We consider linguistically annotated text corpora, using an XML-based annota-
tion format, which integrates multiple levels of linguistic and semantic analysis in
a multi-layered DTD with each analysis level (e.g., morphological, syntactic and
dependency structure) organized as a separate track with options of reference
between them via indices.

Linguistic annotation is currently provided by SCHUG, a rule-based system
for German and English analysis [9] that implements a cascade of increasingly
complex linguistic fragment recognition processes. SCHUG provides annotation
of part-of-speech (through integration of TnT [10]), morphological inflection and
decomposition (based on Mmorph [11]), phrase and dependency structure (head-
complement, head-modifier and grammatical functions).

In Fig. 2, we present a tree representation of the linguistic annotation for
(part of) the following sentence (German with translation in English):

An 40 Kniegelenkpräparaten wurden mittlere Patellarsehnendrittel
mit einer neuen Knochenverblockungstechnik in einem zweistufigen
Bohrkanal bzw. mit konventioneller Interferenzschraubentechnik femoral
fixiert.

(In 40 human cadaver knees, either a mid patellar ligament third with
a trapezoid bone block on one side was fixed on the femoral side in a
2-diameter drill hole, or a conventional interference screw fixation was
applied.)

The linguistic annotation for this sentence consists of part-of-speech and
lemmatization information in the <text> level, phrase structure (including head-
modifier analysis) in the <phrases> level and grammatical function analysis in
the <clauses> level (in this sentence there is only one clause, but more than
one clause per sentence is possible).

Part-of-speech information consists of the correct syntactic class (e.g., noun,
verb) for a particular word given its current context. For instance, the word
works will be either a verb (working the whole day) or a noun (all his works
have been sold).

Morphological information consists of inflectional, derivational or compound
information of a word. In many languages other than English the morphological
system is very rich and enables the construction of semantically complex com-
pound words. For instance the German word Kreuzbandverletzung corresponds in

English with three words: cruciate ligament injury. Phrase structure information
consists of an analysis of the syntactic structure of a sentence into constituents
that are headed by an adjective, a noun or a preposition. Additionally, the in-
ternal structure of the phrase will be analyzed and represented, which includes
information on modifiers that further specify the head. For instance, in the nom-
inal phrase neue Technik (new technology) the modifier neu further specifies the
head Technik.

Clause structure information consists of an analysis of the core semantic
units (clauses) in a sentence with each clause consisting of a predicate (mostly a
verb) with its arguments and adjuncts. Arguments are expressed by grammatical
functions such as the subject or direct object of a verb. Adjuncts are mostly
prepositional phrases, which further specify the clause. For instance, in John
played football in the garden, the prepositional phrase in the garden further
specifies the clause “play (John, football).”

All such information is provided by the annotation format that is illustrated
in Fig. 2. For instance, the direct object (DOBJ) in the sentence above covers the
nominal phrase p2, which in turn corresponds to tokens t5 to t10 (mittlere Patel-
larsehnendrittel mit einer neuen Knochenverblockungstechnik). As token t6 is a
German compound word, a morphological analysis is included that corresponds
to lemmas t6.l1, t6.l2, t6.l3.

Fig. 2. Linguistic Annotation Example

3 Formalizing Ontology Learning From Text

In this section, we will describe our general approach for formalizing ontology
learning from text and instantiate this for the OntoLT system. The general

approach and the OntoLT system do not only apply to ontologies, but also to
knowledge bases (i.e., ontologies together with instances), but we will mainly
concentrate on ontology learning in the following.

For describing the problem of ontology learning from text, we consider a sug-
gestion function σ which maps a text corpus C, an ontology O, and (background)
knowledge K to suggestions S:

σ : C ×O ×K → S

The background knowledge will often contain mapping specifications that
map a part of the corpus (e.g., one sentence) to some suggestions. It might also
contain results of statistical analyses of the text corpus (like the distribution of
nouns), thesaurus information (like WordNet), etc.

The suggestions will usually be a (possibly weighted) set of operations chang-
ing the ontology. They will be presented to the user who can select, possibly
correct, and then apply them to the old (possibly empty) ontology. This process
can be repeated as new documents come in, or as new background knowledge
has been defined.

3.1 Operations on Ontologies

In order to specify suggestions, we will consider a minimal set of operations on
ontologies, namely + and −:

+ : O ×O → O

− : O ×O → O

Their semantics will be defined without referring to concrete ontology lan-
guages, which allows our formalization to be applied to a wide range of systems.
The only thing we require is that the ontology language has a model-theoretic
semantics. This approach is radically different from approaches like ontology
algebrae (e.g., [12]) which seem not to be applicable to such a wide range of
ontology languages as our approach.

We define the semantics of + and − with the help of ontology entailment. An
ontology O1 is said to entail an ontology O2, written O1 |= O2, if every model
for O1 is also a model for O2 (cf. [13]).

Two ontologies O1 and O2 are said to be semantically equal (O1
.= O2) iff

O1 |= O2 and O2 |= O1.
An ontology O is said to be a most general ontology for a condition C if

O fulfills C and there exists no other ontology O′ 6 .= O which fulfills C and for
which O |= O′ holds. Note that, in general, more than one most general ontology
for a condition exists. A least general ontology for a given condition is specified
analogously.

We now define + and − as follows:

O1 + O2 is a most general ontology O with O |= O1 ∧O |= O2.
O1 −O2 is a least general ontology O with O1 |= O ∧O 6|= O2.

Note that, in general, the result of O1 + O2 and O1 −O2 is not well-defined,
depending on the choice of the ontology language. Furthermore, + and − are not
symmetric: + adds all of O2 to O1, while − removes only a minimal portion of
O2 from O1. While + is usually well-defined since most ontology languages allow
the statements that are used to define ontologies to be joined in some simple way,
− is usually not well-defined, thus leaving several choices to the user. This does,
however, not cause any problems in our scenario since the user has to interact
with the suggestions anyway.

3.2 Ontology Language

As ontology language, we consider in OntoLT a simple subset of standard de-
scription logics where we only allow “subclass of” axioms C v CE where C is
a class name and CE a class expression that uses only class names, intersection
(u), and range restrictions (∀P.C). > is the superclass of all classes.

Because of {C v C1 u C2} .= {C v C1, C v C2} we will in the following
only consider axioms without intersection, i.e., we allow only axioms of the form
C1 v C2 and C1 v ∀P.C2, where Ci are class names and P is a property name.

This results in a description logics that is the subset of OWL Lite [7] with
the expressiveness of frame systems like RDF Schema [14] and Protégé [15]

In the OntoLT system, we also take instances into account. The extensions
necessary for this are straight-forward and will not be further described here.

Note that the proposed formalization allows the use of any other ontology
(or knowledge-base) language as long as it has a model-theoretic semantics,

3.3 Suggestions

For suggestions, we consider sequences of ontology operations, written as
±{a1, a2, . . .}, {b1, b2, . . .}, . . . where ± is either + or − and ai and bi are ax-
ioms as described above. For ±{a}, we also write ±a.

The current implementation of OntoLT only handles suggestions for ontology
extensions, so we only need the + operation. For ontology languages based on
description logics, where an ontology is a set of axioms, + directly maps to set
union ∪:

O1 + O2
.= O1 ∪O2

Note that even in the case of our simple ontology language, the − operator
is not well-defined. Nevertheless, this would not be a big problem in a concrete
tool, as the user could then be presented with several choices of how to remove
a certain axiom from the ontology, as he will have to choose which suggestions
to apply anyway.

3.4 Mapping Rules

OntoLT uses a set of mapping rules R(Σ) that maps a single sentence (which is
the parameter Σ for the rule set) from the text corpus to a set of suggestions.
These rules are of the following form:

P 7→ S

P is the precondition and expressed as a formula in FOL. S is a sequence of
ontology operations as defined above, or, to allow a shorthand for alternatives,
an expression of the form S1 | S2 | . . . where Si is a sequence of operations.
S will usually share some variables with P ; these variables must be introduced
with a common forall quantifier:

∀V1, . . . , Vn P (V1, . . . , Vn) 7→ S(V1, . . . , Vn)

We also allow the specification of Horn rules [16] (with FOL syntax) H ← B
that can be accessed in the precondition.

The predicate xpath(X, E, V) applies an XPath [8] expression E to an XML
fragment X and enumerates the results in V . This predicate is used to extract
information from the corpus (by applying it on Σ).

The preconditions of the mapping rules and the bodies of the Horn rules may
also access the ontology. For this, DL axioms (C1 v C2, C1 v ∀P.C2) can be
used as literals.

In OntoLT, we also allow access to thesauri, in particular WordNet, via ad-
ditional builtin predicates.

3.5 Enactment

For the enactment of rules, all mapping rules are transformed into Horn rules,
as shown in the following table:

P 7→ S sugg(S′)← P
sugg(S′1)← P

P 7→ S1 | S2 | . . . sugg(S′2)← P
. . .

Here, S′ is a representation of an ontology operation sequence S with FOL func-
tion symbols. Quantifiers and other syntactic constructs which are not allowed
in normal Horn rules are removed with the Lloyd-Topor transformation [17], just
as has been done in SiLRI [18] and TRIPLE [19], allowing the resulting rules to
be enacted by a standard PROLOG engine (with some additional builtins).

A set of mapping rules R(Σ) can now be enacted for a sentence s by executing
the query ∀S ← sugg(S) for the set of Horn rules obtained from the above
transformation (and after replacing Σ with s in the rule set).

To evaluate the mapping rules for the whole text corpus C, we simply have
to evaluate R(Σ) for each sentence s from the text corpus, thus obtaining a set
of suggestions that will be presented to the user.

3.6 Example

The following example are the rules for turning the subject of a sentence to a
class and the predicate to a slot with the direct object as range:

∀S subject(S)←
xpath(Σ, ”.//phrase[@id=...[@type="SUBJ"]/@phrase]/head”, S)
∧

∀P predicate(P)←
xpath(Σ, ”.//phrase[@id=./../..//clause/@pred]”, P)
∧

∀O directObject(O)←
xpath(Σ, ”.//phrase[@id=...[@type="DOBJ"]/@phrase]/head”, O)
∧

∀S, P, O subject(S) ∧ predicate(P) ∧ directObject(O) 7→
+ {S v >, O v >, S v ∀P.O}.

The first three rules simply define how to find subjects, predicates, and direct
objects in sentences with the help of some XPath expressions. The fourth rule
generates the suggestion that S and O should become classes (S v >, O v >)
with P a property on S with range O (S v ∀P.O}).

4 Conclusions

Automatic methods for text-based ontology learning have developed over recent
years, see, e.g., the proceedings of the ECAI-20003, IJCAI-20014 and ECAI-
20025 workshops on Ontology Learning. Still, a remaining challenge is to evalu-
ate how useful or accurate the extracted ontologies are. In fact, we believe this
to be a central issue as it is currently very hard to compare methods and ap-
proaches, due to the lack of a shared and formal understanding of the task at
hand. By the work described in this paper, we hope to have contributed to such
a shared understanding by providing a formal definition of the OntoLT approach
to ontology learning from text. We believe that such a formal definition will al-
low for a better comparison with similar approaches, not so much on the level of
specific methods, but rather on the level of preconditions, inputs, and results.

5 Acknowledgements

This research has in part been supported by EC grants IST-2000-29243 for the
OntoWeb project and IST-2000-25045 for the MEMPHIS project, and by bmb+f
grant 01 IMD01 A for the SmartWeb project.

3 http://ol2000.aifb.uni-karlsruhe.de/
4 http://ol2001.aifb.uni-karlsruhe.de/home.html
5 http://www-sop.inria.fr/acacia/WORKSHOPS/ECAI2002-OLT/

References

1. Maedche, A.: Ontology Learning for the Semantic Web. Volume 665 of Interna-
tional Series in Engineering and Computer Science. Kluwer (2003)

2. Gomez-Perez, A., Manzano-Macho, D.: A survey of ontology learning methods and
techniques. Technical Report Deliverable 1.5, OntoWeb Project (2003) Available
from http://ontoweb.aifb.uni-karlsruhe.de/.

3. Faure, D., Nédellec, C., Rouveirol, C.: Acquisition of semantic knowledge using
machine learning methods: The system ASIUM. Technical Report ICS-TR-88-16
(1998)

4. Maedche, A., Staab, S.: Semi-automatic engineering of ontologies from text. In:
Proceedings of the 12th International Conference on Software Engineering and
Knowledge Engineering. (2000)

5. Navigli, R., Velardi, P., Gangemi, A.: Ontology learning and its application to
automated terminology translation. IEEE Intelligent Systems (2003)

6. Buitelaar, P., Olejnik, D., Sintek, M.: A Protégé plug-in for ontology extraction
from text based on linguistic analysis. In: Proceedings of the European Semantic
Web Symposium (ESWS). (2004)

7. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinnes, D.,
Patel-Schneider, P., Stein, L.: OWL web ontology language reference (2004)
http://www.w3.org/TR/owl-ref/.

8. Clark, J., DeRose, S.: XML path language (XPath) (1999)
http://www.w3.org/TR/xpath.

9. Declerck, T.: A set of tools for integrating linguistic and non-linguistic information.
In: Proceedings of the SAAKM workshop at ECAI. (2002)

10. Brants, T.: TnT — a statistical part-of-speech tagger. In: Proceedings of the 6th
ANLP Conference. (2000)

11. Petitpierre, D., Russell, G.: MMORPH — the Multext morphology program. Tech-
nical Report Deliverable for task 2.3.1, Multext Project (1995) Available from
ISSCO, University of Geneva.

12. Mitra, P., Wiederhold, G.: An ontology-composition algebra. Springer Series:
International Handbooks on Information Systems (2004) 93–113

13. Horrocks, I., Patel-Schneider, P.: Reducing OWL entailment to description logic
satisfiability. In: Proceedings of the International Semantic Web Conference. (2003)

14. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF Schema
(2004) http://www.w3.org/TR/rdf-schema/.

15. Knublauch, H.: An AI tool for the real world: Knowledge modeling with Protégé.
JavaWorld (2003) Protégé is available from http://protege.stanford.edu/.

16. Lloyd, J.: Foundations of logic programming. Springer-Verlag New York, Inc.
(1984)

17. Lloyd, J., Topor, R.: Making Prolog More Expressive. Journal of Logic Program-
ming 3 (1984) 225–240

18. Decker, S., Brickley, D., Saarela, J., Angele, J.: A query and inference service
for RDF. In: QL’98 — The Query Languages Workshop, Boston, USA, World-
WideWeb Consortium (W3C) (1998)

19. Sintek, M., Decker, S.: TRIPLE—A query, inference, and transformation language
for the Semantic Web. In: 1st International Semantic Web Conference (ISWC2002).
(2002)

����������� ������	
� �

������
����

�������� �
�
���

�� �������

��

������� ��	�
��� �������	�
����
��� �����
����	��� ����� ����
���
��	���� ������� ��� ������	� ����������

� �������� �	�
��
���� ����� ������� �������
�� �������� ��������� ����	�
���������	
�	���	�
������	�
	���

���������	�������
���	���
� �����	�� �	
������ � !��"� �����#� !���� $������� "����� ����	

� $��� �	�
��
���� ����� ����
��� $��������� %��������
��� $�	�&�'�� ����	

��������� �	 ���
 ������ '� �����
� �	 �	����&� (�
������	�
������
�	
���	��	� �� ��� ����	��) *�+, "�� �(
�	��&� � ��� �	
���	��	� �

 �)�
�	& ��� -������ ��.	���	� ���
� � �	����&�)�	
���)���	, "����&�
�	����)��
�
������ �� ��.	�	& ��� �	����� �	����&�� /*0�0��� ��
�� �	�
����&�� '��)�)�	
�
�
 � ��1�	���) �������	
���
 2)��

 �
�+)��

 ���
�����	
���3 �	(�	���1�	���) �������	
���
 2(�.	�(�
 ��������3� �

)�	
���)��(�4�)��
���, "�� �	
���	��	� ��
� ���
�(�

������������)
&�	������	 � ��� �	����� �	����&�,

� ���������	��

���
����
�� ��� ��� �� ��� ��
��	��� �

��
���� �	�� 	����	���	� �� ���� �	���
 ����� �����
��� !��
�"��
�#
�
�� ��� ���
��
�� ���
��	� ����
� �	� ��$�
�
����	�
��� ��� �%�� ����	 ��� 	����	���� �� 	��$��� ���� &�	������
�� 	�$� ��
��
�$����� �'� �� ��&�	
��
 ��
�	�� �� ���	��� ������ ����	�
������ �����
��
� &��&$� ��� ���
��	� ����
� �(�� �� ����$���� �������	���)�$� ��
�$�����
��%� ���� ��%�$�&�� ��	 &�	
���$�	 ����$���� �*�
�� ����$*
� 	���� ������
����$����� +�
�� �
��	 ����� ��	
��
����
�� ���� ��
�$����� �	� ����
	��
��
�� ���
	���
�� &$���� �	 ������� ���
��� ��&&�� ���� �
��	� ��	
��� &�	&����
�
 �� �� ��&�	
��

���
� 	��$��� � ���
��	� ��%�	�����
 ��	 	�&�� ����
	��
��� ��
��
�$����� ��	 ���� ������� ����	��
�� ��"
��",* ��
�$��* ����
	��
���� ���*
	����	���� �	� �������� �� ��
���
�� ��
�$��* ����
	��
��� �	�� �-��
��� ���
	����	���� ���� �� ���
����	���� �* ������� &	�������� ��
� �����&
 �-
	��
���
�$��	�
���� .���%�	� ��&������ �� ������� !� $�� ������ �
��#�
�� ��&�	
��

�����&
� ����� �����/
 ����	 �	�0���
$* ��
�� 	����	��� ��* �� 	�0��	��
� ��
����� �* ���� ��	 ��
�$��* ����
	��
���� �� ���� � ������� �� � ���	 �����/

��
�	%���� ����
	��
��� ��
�$����� �����
 	����$* �� ����� 1������	��� ���� ��
"
��
���� �� ��$��%�
��

�� ���
 ��&�	
��
 ��&��
 ��
�� ��"
��",* ��
�$��*
����
	��
��� ��
��
 ��� �Æ����
$*
�� ���	 �� ��$�
� ���&$�
� ������
�� ��"

�$��* ��	
��
����
�� ��� ���
��
� �%��$��$�
�
�� &��$��� ��	
��� 	������
��
�$����� ����$� �� ����
	��
�� ��
 ��$$* ��
���
���$$*� ��

�	���� ��
�	��
�%�
��&&�	
 �* ���
��	� ��%�	�����
 �	��
�� ��	$* �
��� �� ��
�$��* ����
	��
����

 $
����� �
 ��* ����
� �� ���
	����
��� ��
�	�� �� �Æ�����*�
��
�
�$ ���

�� ��
�$��* ����
	��
��� ���$� ������ $���
��� ��
���
�� ����
	��
��� ����� ��

�� ��
�$��* �� ����
	��
�� ��
� ��	���$ ��
�	��
��� ��
����
�� �*�
�� ���
��
���	� $��� ����"����
	��
��� ��$$ �� ��&&����� �
 �$�� �����
��
 ����"0��$�
*
��
�$��* ���$� �� ����
	��
���

��
��� &�&�	� �� &	�&��� � ���
��	� ��%�	�����
 ��	 ���	"���
�	�� ��"
��",*
��
�$��* ����
	��
��� ����� 2+2234"+�3 !2����� +�
�$��* 	�&�2 2�%�3"
�&���
 4�%�	�����
 " +�3 �5� �-
������#� ��� �	���
��
�	� �� 2+2234"+�3
�� 	�"�������� ����� �� 2+2234"�� �6��
�� ��	��	 %�	���� �� 2+2234"+�3�
2+2234"+�3 ���
�� ��$$�����)%� ����$��7 ��&�
 ����$�� 1���
	��
���
����$�� 8�)�����
 ����$�� 9����$���
��� ����$�� ��� �	���$�
��� ����$��
4�&����$$*�
� 	��$���
�� ���	"���
�	�� ��%�	�����
� 2+2234"+�3 ������
��

�
�� 8�)�����
 ����$�� �
 ����$�� ��
� ��%�$�& ��
�$����� ��
� ��
�	��
�%�
������
��� �� ����� &�	
 �� ��
�$��* ����$� �� 	�)���� 2+2234"+�3 ��&&�	
�

�� ����
	��
��� �� ��
�
�-������ 	�$�
������&� ��� ���"
�-������ 	�$�
���"
���&� �� ��
�$������
���� 2+2234"�� ��� ���� ���$
 ��	 ��
�$��* ����
	��
���
��
 ��	
��
����
�� ��� ��
 ��	
&���$ ����$���� ��
���� �
 ����� ���� �-
��"
����� ��	
��
����
�� ��� ���� �� +�3 !��� +�
�$��* 3�������# �5� �-&�	

����$�
*� 2+2234"+�3 ���
	���
��
�� �%�$�
��� �� ��
�$��* ����
	��
��� ���

��
����
�� ����

 ��
 ���������� ����	�
����

����	� � �����
�� �%�	%��� �� 2+2234"+�3� ��� ���� ���
�	� �� 2+2234"
+�3 ���
�� ��$$�����)%� ����$��7 ��&�
 ����$�� 1���
	��
��� ����$�� 8�"
)�����
 ����$�� 9����$���
��� ����$�� ��� �	���$�
��� ����$�� ��� ��&�

����$��
�� .��	�	��* 1���
	��
��� ����$�� ���
�� .��	�	��* 8�)�����

����$� �	� ���$���� �� 2+2234"�
� ��&&�	
 � ���	
� ����
	��

�-������
	�$�
������&� ��� 8�$�
������& 1���
	��
��� ����$� ���
�� 8�$�
������& 8�"
)�����
 ����$� ��	� ����� �� 2+2234"�� ��%�$�&���

��
 ��&&�	
� ���"
�
	��
��� ��
�
�-������ ��� ���"
�-������ 	�$�
������&�� ��� 9����$���
���
����$� ���
�� �	���$�
��� ����$� �	� ���$* ��%�$�&�� �� 2+2234"+�3

� �-
��� ����
����$�
��� ��	
��
����
�� ��� ���� �� �-&�	
��� ����
	��
��
��
�$��* �� +�3 ��	��
� .�	�� �� ������
��

��	� �	� ��� �	 ��	� ������
�&���)� �������
�� ��� �� �$�� ������
��

�� ���	 ��� ��$��
 ��&�	
��

�	��

��
 �	� ������
� ����
	��
 � ������ ��
�$��*� ��	�
�
�� ���	 ��$��
� ��&�

�����&
� !��&�	
��

�	��# ��
�� ��&�
 ����$�� ��
�� 1���
	��
��� ����$��
2+2234"+�3 ����	�
��
�� ����� ��
�� ��
�$��*� �� ���
��$ �����&
 ���	�	��*
��� ��
 �� �����&
 &��	�� ����� �� ��&�
 �����&
� �* 	���		���
� ��	���
 �:�
�� �� �82 !������� 8�����$� 2��
����	*# ��� �������
�� � ���
��$ �����&

���	�	��* �� ����
	��
�� �� �� �
" ���	�	��* ��
�	���
�
 �� �����&
 &��	�
�	� �-
	��
�� �* ����� ��"����		���* ����� �
�
��
�� ��
����� ����� &��	� �	�
�������	��
� �� �$���$* 	�$�
�� ���
��
 ��$$ �� ���� �� �������
��
� 	�)��
��� ��� ���"
�-������ 	�$�
����� ��� ���	 ����
�)�� ���� 	�$�
������& ��
����
�����&
� ��
�� &��	�� ��
�� 8�)�����
 ����$��
�� ���
��$ ��
�$��* &	������

�*
�� 1���
	��
��� ����$� �� 	�)��� �*
�� ���	
�	���� ��
�	��
�%� ��&&�	

�* 2+2234"+�3� �� �	��	
� 	�)��
�� ���
��$ ��
�$��*� �� ������ �����&

�	��
 ��� �%�$��
� ��
 �� �����&
 &��	��
����
�� ���
��$ �����&
 ���	�	��* �� ���"
�
	��
�� �	�� � ����	�$ ��
�$��*� �� ����
� ��;��

�� ���
��$ �����&
 ���	�	��*

�
�� �&���)� ������ �������	��� �� ����� ��$$�� 1����&
 2	��
� �
 �����
��

�� &���
��� �� &�	
���$�	 �����&
� ������� ��&������ ��
�� ������� ��	 ���"
��&
 �	��
 ���������
� 2+2234"+�3 �&&$���
�� �
	�
�����7 ��
���� 8���$

 ��$*��� ��� �	����� 8���$
 ��$*���� ����� �
	�
����� �	� ����	���� �� ��	
��	��	 �
��* �6��

�� ����
	��
��� &���� �� �����&
 �&���)��
���
��&$�
�
�	�� ��
 �� �����&
 &��	� ����	�
�� �*
�� 1���
	��
��� ����$�� 2+2234"
+�3 ����� � �	�
�	���
� �%�$��
� �����)���
 �����&
 &��	�� �� �6��
�� �
�
��
���
����� ��
���� �	� ��%��
���
��7
�� %�$�� �� ���
�-
 ����$�	�
* �* ��	�
&���
��
��� �<� ���
�� %�$�� �� ���)����� �*
�� �������
��� 	�$� $��	��	 �=�� �����
��
���� ��� %�$��� ����� �� ��"����		���* �� �����&
� ��	� ��$$ ��
�	�� ��
���� ��� !�� ��
 ��&��� �� ���� &�	
���$�	 �������#� �
� ���
 �� &	�&�	�
����
��� ��
�$��* ����
	��
�� �* 2+2234"+�3 ��� �� �-&�	
�� ��
�
�� 	�&	����"

�
��� �� +�3� ����$$*� ��� !��
�"����$ ���������
 ����� �� 82�!
�>�
8�%����� 8�,��
���# ��?� �� ������
�� ��
� 2+2234"+�3 ��� ��	�� ��
� ��
82�!
# �	�&����$ ���
�	�

statistic
methods

matching
& trimming

Relationship
Construction

WordNet

Construction Module

Set of Concept Pairs

Input Concept Selection

Hierarchy
Construction

Refinement Module

Association Rule WordSpace

Concept
Specification

Template

Documents

Visualization
Module

A Domain Ontology
(OWL-Lite)

Input Module

Initial Concept Hierarchy

Relationship
Refinement

Meta-LearningMatched Result
Analysis

Hierarchy
Refinement

Trimmed Result
Analysis

Translation
Module

�	
� �� 5/5506�/*0 �
��
��'

� ����
�
����	��

��
��� ���
���� �� ����	���
�� �*�
�� �	���
��
�	� �	��
�� ��&��
 �� �*�
��
��&$����
�
���� 2+2234"+�3 �� 	��$���� �� ���;���
��� ��
� ��

� ��?��

Java VM
JGraph Jena 2 Semantic Web Framework

MR3: Meta-Model Management Tool

MR3

Graphical Editor
Plug-ins

Plug-in Interface

DODDLE-OWL

Ontology
Development

Visual
Representation

Connection with
other tools

through Jena Model

�	
� �� 5/5506�/*0 ��)����)����

��
� �� �� 82�!
# �	�&����$ ���
�	 ��
� ��
�"����$ ���������
 ����$�
* ����

�� ������
���* �������� �� �$����� ��� � ����$ �� �����
���� �$����� �	� ���� ��

��
*&� �� ���
������ ����	� ' �����
�� 	�$�
������& ��
���� 2+2234"+�3
��� ��� ��
�	�� �� �*�
�� ��&$����
�
���� @�
� ��� ��� 2+2234"+�3
�	� ��&$����
�� �� A�%� $�������� ��� �� ��&$����
�� ����� AB	�&� ����
��	 82�!
# �	�&� %����$���
���� ��� A��� '
����
�� ��� �	�����	� ��'� ��	
����$���
�� ��� ��
����
�� ��� �
����	�� ���� �� 82�� 82�
� �"
	�&$� ���
+�3� @* �����
���� $��	�	���� ��� �� ��&$����
�� �� �� ��%�	�����
 ��	
�	�&����$ 	�&	����
�
��� ��
��
����
�� ��� ���
��
�� ���
����$$*� ��� �$��
��� &$��"�� ����$�
*
� �-
��� �
� ����
����$�
*�

����	� (����� �
*&���$ ����� �� 2+2234"+�3� 2+2234"+�3/� ���	
��
�	���� ������
� �� ��&�
 ����$�� 1���
	��
��� C 8�)�����
 ����$�� ��	 .�"
�	�	��*� 1���
	��
��� C 8�)�����
 ����$�� ��	 8�$�
������&�� 9����$���
���
����$� ��� � ��� �	���$�
��� ����$� ��
� +�3"3�
�� ��	�
�
�� ���	 �&���
� �������
 !!�# �� ����	� (#� ����� ��
�� ��&�
 ����$� !!'# �� ����	� (#�

�� ���	 ��� ��� ����
�	��
��
 ���� �& ��	
�� �	�0���
$* ��
�� �������
�
��� ���	 ��$��
� ����
�	�� ��
�� ��&�
 �	��
�� ����
�	��� � ��&�
 ��
2+2234"+�3�
�� ���	 �������
��
����
�	�� ��
� �����&
� �* 	���		��� D
��
��	���
 �����&
�E �� !'# �� ����	� (� ��	 �-��&$��
�� ���	 ������ ����� D���"
��&
E !���� �*���
 �� ��	���
�� ���
��$� ��	
��
�	� D&�	
E� @ 	���		���
�

�� �*���
 ���
�	�/� ��)��
����
�� ���	 ��$��
� �� �&&	�&	��
� �����&
 ��	
��
��	� D&�	
*E� �
�	 ��&&���
�	�� ���
���	 �*���
�� �� ���
��$ �����&
 ���	�	"
��* �� &	������� $�� ��
 �� �����&
 &��	� �	� �-
	��
�� �* �
�
��
�� ��
���� ����
�� ��	�
&��� ��
��� ���
�� �������
��� 	�$� $��	��	 �* �����$
 &�	���
�	�� !(#
�� ����	� (�����
�� 1���
	��
��� C 8�)�����
 ����$�� ��	 .��	�	��*� ����
����$� ������
�� ���� �	��&� �� �����&
� ��
��
�-����* ��
��

�� ���	 ���
������ ����� &�	
 ����$� �� 	�)���� !5# �� ����	� (�����
�� ���&$�* �� �����&

�	��
 ���������
 ��
�� 9����$���
��� ����$� ��

� � !6# �� ����	� (�����

�� 1���
	��
��� C 8�)�����
 ����$�� ��	 8�$�
������&�� ���� ����$� �� ����
��	 ��

��� &�	���
�	� ���� ��
�� ��	�
&��� ��
��� ���
�� �������
��� 	�$�
$��	��	
� �&&$*
� �������
� �� �	��	
� ����	�
� �����)���
$* 	�$�
�� �����&

&��	�� �� ��	�
&��� ��
����
��	� �	� &�	���
�	� ���� ��
�� �	�� �����	 !��"

Visualization Module: MR3(4)

Externalize Ontology (4)

(2)

Taxonomy

Document

(1) Open a document
List of noun terms from a document

WordNet Concepts

Input Module(2)

Concept Drift Management

Taxonomy

Construction & Refinement
Modules for Hierarchy

WordSpace parameters

Association Rule parameters

Significant Related Concept Pairs

Non-taxonomic relationships

Construction & Refinement
Modules for Relationships

A Domain Ontology in OWL formatA Domain Ontology in OWL format

(6) Translation Module into
OWL-Lite

(3)

(5)

�	
�
� ! ����)�� �
�&� � 5/5506�/*0

���$
 �	�� �����	 �� ���	#� ������� �"�	�� ����
 !
� �-
	��
 ����"�	�0����*
�	��� ��$*#� �	��
 ���&� ��� ������ ���&� ��
��
�-
� ��
�� �������
��� 	�$�
$��	��	� ������� ���)����� ��� ������� ��&&�	
 �	� ��
 �*
�� ���	� � �
	���$
�
�� ���	 ��
 � ������ ��
�$��* �� !:# �� ����	� (�

� ���
 ����	
�

�� �	��	
� �%�$��
� ��� 2+2234"+�3 �� ����� �� � &	��
���$)�$�� ���� �
�����
��%� ���� ���� �� &�	
���$�)�$� �� ��������� ��� &�	
���$�)�$� �� �������� ��
��$$�� DF�3 1����� @������� 3��	�	*E!-1@3# ��(��

��� � ���� �	
��
� 	�� �
�
���� �
���

���
	 	����
� 	�� ���� �	
�� �
	� ���� ���$� � ����� ��&�

�	��
��
��� ���� �
��*� ���* �	� 6< ��������
�	�� �-
	��
�� �* � ���	 �	�� -1@3
2������
 8���	����� ��� ���	 �� ��
 � �-&�	
 ��
 ��� �������� ����$�����

����� �� ��&	�.)�	� �7 8�)���
 �	 1890
���������� �	
������ ����
�� ���
���
�
�� ���
����
����
 ����	� ����
��� �������
 ����
���� ���
��
� �������� ������	�
��� �����
��
���
���
��
��
�
	� ������	� 	����
���
���
��
���
��
���
�
��
��� �����
�� ��
�������� �����	� �����
�
��
 �
	��
���
�� ��
���
 ��
�� �����
����
 ������� ��

�� �� �
�� �

�� �
�����
�
����� ��
����� ��
����� �	
������ ��
����� �
��
 �����
��
������
�� �����
���
��
�����
��
������

����
��
������� �������� �����
 ��
�
��
��
���
 ������ �����
�
 ������ ��

� ��
��
�
������
�� ���

����� �� "�� 8��	&� � ��� ���+�� � 8�)���
 �	(�� "�1�	���) :������	
��� !)�
-��
�
��	

;�(�� �	��� "���
 �	����� ;�(�� "�����(;�(�� 8�)��� ������)��

< 8�)��� �7 ��� �� ��

�������
� ����	
����
� ���

�
	
�� ���$� ' �����
�� �����	 �� �����&
�
�� ���� ����$ ����	
�-������ 	�$�
������& ��0����
��� ���
��$� (�����
��
�%�$��
��� ��
�� �
	�
����� �*
�� ���	� ��� 	���$$ &�	 ���
	�� �� ��	�
��� ?�6
��� �� ����� ��� &	������� ���
�� 	���$$ &�	 &�
� �	� $���
��� ?�(��� �	� ��
 ��
����� ��
 ����
 =? G &�	
��� ��
�-������ 	�$�
������&� ��	� ����
	��
�� ��
�
.��	�	��* 1���
	��
��� ����$� ��� .��	�	��* 8�)�����
 ����$� ��&&�	
�

��� �������
� ����	
����
� �����
�!

�� �������	�
�� �� ���
���	�

.���"�	�0����* 5"�	��� !��
� �� ���	 ��	��
��
 ��"����	
�	�"�*"
�	�# ��	�
�-
	��
�� �	�� -1@3 2������
 2���	�&
��� !����
 '�6?? ��	��# �
����	� ��	�
���%�	���� 	���%�� ��&$���
���� ��� �'5? ����� �� 5"�	��� ��	� ��
������ ��
�	��	
� ���& �����
* �� � ��$$���
��� ��
	�- �����
�� �-
	��
��� �	�0����* ��
5"�	��� ���
 �� ��;��
�� ����	����
�
�� ���$� ��
�-
 ��	&��� �� �	��	
�
����
	��
 � ���
�-
 %��
�	� � ��� �� 5"�	�� %��
�	� �	���� �&&��	���� &$���
��	�����	���� �� ���� �� 6< �����&
� ��� ��$��$�
��� �� �	��	
� ����
	��
 �
���
�-
 ���&� �	�� ���� 5"�	���� �
 ������
� �� &�

���
���
��	 �? 5"�	���
����	�
�� 5"�	�� ��� �? 5"�	��� ��
�	
�� 5"�	��� ����&�����
$* �� $���
� �� �
���
����� ��	 ���� �� 6< �����&
��
�� ��� �� ���
�-
 %��
�	� �� �$$
�� �&&��	����
&$���� ��
�� �����&
 �� -1@3 ��� ��$��$�
��� ���
�� %��
�	 	�&	����
�
���� ��

�� �����&
� ��	� ��
������ ��� ��
 ��
���� %��
�	� �� ���� �� ��	�
&���
�
�-
	��
 �����&
 &��	� ��
� ���
�-
 ����$�	�
*� .�%��� ��$��$�
��
�� ����$�	�
*
�	��
�� ����	 &	����
 ��	 �����&
 &��	� ����� �� �$$
�� �������
��� �� 6<
�����&
�� 5? �����&
 &��	� ��	� �-
	��
���

�����
� =��)�
��	 �	(:�)��� �	 ��� 8�
� ���(� '��� 1890

=��)�
��	 :�)��� :�)���
��� =��� ��� ��+����

;��)��(:�
��� �,� 2�>��3 �,�? 2�>�73 �,7� 2�>73

"�����(:�
��� �,�� 2�>?3 �,�� 2�>��3 �,� 2�>�3

����� �� 6
�������	 +� ��� �
�� '��� 1890 (�.	����	
��
������ ����
��
�� !�� "�
� ��
#��$ %���� # %$ �� ��� %

� ��������� �	
���� ����
 &' �())
� �������� �	
���� ����
 �' �' �(
� �������� �	
���� ����
 �' �(�*

�
��
�
�� '+*, #�'-&'$ '+,� #�'-�'$ '+,(#�(-))$

178 2

11 914

Accepted by the User
(39)

Extracted
by WordSpace

(40)

Extracted by
Associate Rule Algorithm

(39)

�	
� �� "'� 5�4���)� ���
 � 8�)��� =���
 ��� *� �	(!: �	(8�)��� ���
 ��
�
:������	
���

�� �����
����
� �������	�
�� ��
���

2+2234"+�3 �-
	��
�� (> &��	� ��
�	�� �	��
�-
 ��	&�� �����
�� ���%�"
���
����� �������
��� 	�$� �$��	�
��� ���	� �	� �(&��	� ��
 ��
��� �� � ��
 ��
����$�	 �����&
 &��	� �-
	��
�� ����� ��	�
&���� ����� 2+2234"+�3 ���"
�
	��
�� �����&
 �&���)��
���
��&$�
�� �	��
�� ��
� �� �����&
 &��	� �-
	��
��
�* ��	�
&��� ��� ������
�� 8�$� �$��	�
���
�� �������
�� �� ������� �� �����
����
� ��������� ��
���

��� ���	 �%�$��
��
�� ��$$�����
�� ��
� �� �����&
 &��	�7 ��� �� �-
	��
�� �*�

!��	�
&���# ���
�� �
��	 �� �-
	��
�� �* 8 ! ������
��� 8�$� �$��	�
��#�
����	� 5 �����
�� ��H�	��
 ��
� �� �����&
 &��	� �	�� �
 ��� 8� �
 �$��
����� &�	
��� �� �-
	��
�� �����&
 &��	�
��
 ��	� ����&
�� �*
�� ���	� ���$�
5 �����
�� ��
��$� �� �%�$��
��� �*
�� ���	� ���&�
��� &	������� ��$*�
����

�� ���	 ����/
 ��)�� �����&
 ��)��
��� �� ��%����� �� ��� ��
 ���&�
� 	���$$�
3������ �

��)�$� �� &	������� �� ���$� 5�
�� &	������� �	�� �
 �� �����	
���
�
��	�� ���
 �� �����&
 &��	� ����� ��%� 	�$�
������&� ��	� �-
	��
�� �* �
�
��� &�	���
��� �� ����
 <<G !(?I(>#� @�

��	� �	� ���� �����&
 &��	� �����
��	� ��
 �-
	��
�� �* �
� ���	���	�
�����
�� ;��� �� �
 ��� 8 ��
�� ���

��
���
� ��&&�	
 � ���	
� ����
	��
 ���"
�-������ 	�$�
������&��

��" ���
�	� ��� #$��
�	
�� �% ���� �	
�
��

�� 	���	��
� ��&&�	
 �� ����
	��
���
�-������ 	�$�
������&��
�� &	������� ���
	���$$ �	� $���
��� ?�(��
�� ���� �
��*� B���	�$$*� <? G �	 ��	� ��&&�	
 �����
�	�� .��	�	��* 1���
	��
��� ����$� ��� .��	�	��* 8�)�����
 ����$�� ���

��	�
��� ��$� &�	
��� ��
��)��$ ������ ��
�$��* 	���$
� ��
�� ����	��
���
�-
	��
�� �	�� ��	���
�
����
��
�� �
	�
����� ;��
 ��&$*
�� &�	
 ���	�
�����&
 �	��
 ��* ���� �&�
�� &�	
 ����	�
�� �*
��� ��� $�� ���&����

	�
�� ��� ����
 (? G ��
 	�
���
� ��� ��
 ��
�	�� ������
���� ����� ��
��

�� �
	�
����� ��	� ��$$ �� �	��	
� ������ �����&
 �	��
� ���
�� �
	�
�����
��� ��
���� ���
	����� 	���$
��
��	���	� ����� �� �
	��
�	�$ ����	��
��� ��
�� �82 ��$*�
�� ��
 	�
�� �	� ��
 �� ���� �� �	��	
� ������ �����&
 �	��

���	
$*� �� ��* ����
� ��� ��	� �����
�� ����	��
���
��
 �� ��
 ���*
� ����
�& �� ��%���� ��
�� �
	�
������ ��� �� �$�� ��* ����
� ��� ������ �&���)�

�-
 ��	&�� ��� �
��	 ����	��
��� 	����	��
� ��&	�%� ��&&�	
��� � ���	 ��
����
	��
���
�-������ 	�$�
������&��

�� 	���	��
� ����
	��
��� �� ���"
�-������ 	�$�
������&��
�� &	������� ��

�� ���� �
��* ��
� -1@3 �� ����� B���	�
��� ���"
�-������ 	�$�
������&� ��
�����&
� �� ��	��	
��� �����*��� ��� ��$�
���
���� ���	���	�� 2+2234"
+�3 ��&&�	
�
�� ���	 �� ����
	��
��� ���"
�-������ 	�$�
������&��

 �
�	 ���$*���� 	���$
� �� ���� �
������ �� ��%�
�� ��$$����� &	��$����
�� &�	���
��	
�� �% � ���������'��	����$� ��
�� ���
�-
 ����$�	�
* �������
�� �H��
�%� %�$�� ��
� ���� ������� �
 �� ��	�
� ��
 �&
�� ���
 �H��
�%� %�$��
�� ��%�����
"� ����
(��	
�� �% � ������	 ����	
��' 1����&
 �&���)��
���
��&$�
��
��%� ��$* �����&
 &��	� ����� ��
�� ���
�-
 ����$�	�
*� �
 	�0��	�� �
�$$ ���� ���

� �&����* 	�$�
������&� ��
����
���� �
 �� ������
� ��&&�	
 �&���)��
��� ��
�����&
 	�$�
������&� ��
��� �*�
�� ��
�� ��
�	� ��	��
)� ��*
!

	� �% +
�	
��� ����
����!�' ��	 �-��&$��
��
�	� D
	������"
����E �� ���� ��
�� ��������� D
	���������� !�� �����#E ��� D
	���������� !��
���������
���#E� �� � �������
� ��
 2+2234"+�3 �������	�
����
�	�� ��

�� ���� ��� �	��
�� ��	�
&��� �� �
 ��� ���	���	� ����
	��
�� %��
�	 �-&	��"
���� ��* ��
 �� �-��
� �� �	��	
� �-
	��
 ��	� �����$ �����&
 &��	�� �����
��
�&����$���
��� �� � ��$
������ ��	� �� �������	*� ��� �
 ����$� �� �������	��
��

�� 5"�	��� ��
� ���� �&&��	���� ��� ��H�	��
 ������� �	� ��H�	��
 5"�	����

� �
���
� ���

��%��$� �
��$� &	�&���� +�
�3��	� ��5��
��
 ��&&�	
� ������ ��
�$��* ����
	��"

��� �* ����� �-��
��� ��
�$����� ��� ��
�	�$ $������� &	��������
�����0���� ��

���	 �&&	����� �-��
��� �����&
� �	�� ��	���
 �	� ��	����� ��� &	����
�)

�� ������ �����&
� �* ����� �3J !��
�	�$ 3������� J	��������#
�����0����
���* �	���
��

�� ��
���
���$$* ����
	��
�� ��
�$����� �	� &	��
���$$* ����$�
��
�� ���� �
��* �� �
�	����$��*
	���$�
��� �&&$���
���� .���%�	�
��* ���
��
 ���� ��* �%�$��
���� ��
�� ����	�
�� ��
�$�����
�����$%��
��
 ����
 ��
���� �* ������ �-&�	
�� $
����� � $�
 �� �����$ ����	��
��� �� ��
�� �������
	�����$� ���
����	��� ��� �������
� ��
�� �&&$���
��� ������� ���� �����
��$
�����&
� ��� ����$���� �	� �
�$$ ��
�� ����� �� ������ �-&�	
�� �� ��� ��
 ���"
�	�
�
�� ��
�$�����
�����$%�� ��
���
���$$*� ��
 ������
� 	�$�%��
 �$
�	��
�%��

�
�� ����� �-&�	
� ��
�	��
�%�$* ���$�
�� �-&�	
�/ ����
	��
��� �� ������
��
�$������ �� ���
��	 ���� �
��* ��6�� �� ��� �� �-&�	�����
��
 �%�� ��
��
�����&
� �	� ��
�� �82 !������� 8�����$� 2��
����	*#�
��* �	� ��
 ��Æ����

� ���� ��
�� ���� �
��*� ���� &�	
� �� ���	�	�����$ 	�$�
���� �	� ����
�	�������
��
����
�� ����	�� ��
�$��* !��	���
���
�� ������ ��
�$��*� ����� �	�
��$$�� D1����&
 2	��
E� ��
��
 ����� &	����
��� ��
���
���$$* ����	�
�� ��
�$"
��*
��
 ���
���� �����&
 �	��
� ��* ����� ��������� �� ������ �-&�	
�� ��
�	���
��

�� ���
��
�%� ����$� �� ��&
 ��
 ��
�� �������� ��
 ��
�� ����

��
�� ������ �-&�	
� �

�� ������ ��
�$��* ����
	��
��� &����� ���� ��
��
��H�	���� ��
���� ��	 �&&	���� ��� ��%��$�/�� +�	 �����"���
�	�� �&&	����
����$�� ��
� ���&�	�
� ��
� ����� �-&�	
�
���
$*�

�	��
��
�����$�����$ %���&���
�
��	� �	�
�� ��H�	��
 	�$�
�� 	����	�� �	"
���� ��
�� 	����	�� ����� %�	�"�	���
�� ��
����
�� 	�$�
��� �� � %�	� ��� �����
����)�� ��
� �
 �� ����	����� ���
�� �����&
 ��)��
��� �� ����
	��
�� �	��
���
����	��
��� !���� ��:�#� �� ��<��
�-������ 	�$�
������&� ���
����
���	���
���
�	��� �� %�	�� !
�# �	� �-
	��
�� �	��
�������$
�-
� ����� � ������� $��	����
��
���� ��� ����� ��
�� �	 ��	� ����� �� ��H�	��

� ��
�
�� ���� �	���"
���� ��� �$�
"���� �	� ��
��	�� �� ��� �����&
� ���� �$���� �� ��
�$��* ��
�
��$*
�-������ 	�$�
������&� �� ���$
 �* ��		*��� ��
 �$��
�	��� ��
�� ���� �$���
��	
��	� ��	��%�	� �� &�	�$$�$� 8��
	��
��� ��
�$��
��� !8
����� �� �$�
"%�$��
��
� �� �$�� 	�&$���� ��
�
�� �����&
 ��
� ����� �
 �� ��
��)�� ���
��
��
��
��
.���%�	� &	�&�	 �%�$��
��� �� ��
 *�
 �����
����
� 	�&	����
�
�� �*�
��
�� 	�"
$�
������&� ��
���� %�	� ��� �����
�� �
�& ��	
�� ���%�	����
� ���"
�-������
	�$�
������&� �� �������	*�

+�
�� �
��	 ����� �� ��
�$��* $��	���� ����� ��
�"������ ��
���� �����%�	"
��� ���"
�-������ 	�$�
������&� ����� �� �������
��� 	�$� �$��	�
�� �� &	�&����
�* ��=�� ���* �-
	��
 �����&
 &��	� ����� ��
�� ����)��
��� ����	��
��� ��"

����
�	�� ��$��
�� ��
� &�	����� ��� ����
�� �����&
 &��	� �
	�����
����

@* ����� ���	��
��� ��
� ���$$��
�-
 &	���������
�� ����	�
��� �� �
	���"
��
��� ��	� 	�,��
�
�� �*�
�- ��
�-
�� ��	��%�	� 83 � ����� ��
���	 �	�����$
$��	���� ����	��* �� ���"
�-������ 	�$�
������&� �����
�� �-��
���
�-������
	�$�
����� �� &	�&����� ��� �����&
 &��	 �-
	��
��� ��
��� �� ��	 &�&�	 ����
��
 ���� &�	����� ��� �
 ��� �$�� 	�� �H ���
�-
 ����$�	�
* ��
����
��
�	��
�&&��	�� �&�	
 ���� �
��	 ��
�-
� �	 ��
 �����
�� �*
�� ���� %�	��

! �������	��

��
��� &�&�	� �� &	����
�� � ��&&�	
 ��%�	�����
 ��	 ��
�$��* ����
	��
���
����� 2+2234"+�3� ����� ���� �
 �
�
�$ ��&&�	
 ��%�	�����
 ��	 ���	"
���
�	�� ��"
��",* ��
�$��* ����
	��
���� �
� ���� &	����&$� ��
��
 ����"$�%�$
��&&�	
 ��	 ���	�
�	���� ��
�	��
���� ��	�
�
�� ���	 ��$��
� ����
�	�� ��
��
��&�
 ��
�� ��&�
 ����$�� �����
�� 1���
	��
��� ����$� ����	�
��
�� �����
�� ��
�$��* ��
�� ��	�� �� �� ���
��$ �����&
 ���	�	��* ��� ��
 �� �����&
 &��	��
�* 	���		���
� ��	���
 �� �� �82 ��� � �������
� ��� 8�)�����
 ����$�
&	�%���� ���������
 ����$�
��� ��	 �����&
 �	��
 ��
��
�-����* ��� ����
��*���
�����)���
 ��
 �� �����&
 &��	� �� �-
	��
�� 	�$�
�� �����&
 &��	�� ���	����
�
���� �
������ �
 �� ��&�	
��

� ��$��
 �������
���� �� �$��	�
���
� ��
 ��

�	
�������
� �� ��
 �� �����&
 &��	�� ����$$*�
�� �	���$�
��� ����$� &	������ ��
+�3"3�
�)$�� ����� �� ��$�
� &�
 �� &��$�� �� �
����
�� ��� ��
�$��*�

��
����
��
 ��
�"$��	���� ������ ��� �� �&&$���
�
�� 8�)�����
 ���"
�$� �� 2+2234"+�3� 1 �34� ��>�� � ����
	��
�%� ��
�"$��	���� ������ ���
���� &	�&����
��
 ��� 	�����
	��
 $��	���� �$��	�
��� �	�� ��
��� $�%�$� ����

�&&	���� ��$$ ��$&
� ��
�	���� ����� $��	���� �$��	�
��
� ��� �� �-
	��
���
��
 �� �����&
 &��	� �� ���� �������

�
"
�
��
�

�, 9��	��
�0��� ",� ��	(���� �,� 0�

���� /,@ "�� ����	��) *�+, �)��	��.) !����)�	
2����3

�, ���A
�� B,C,@ "�� :��� � /	����&��
 �	 $	�'��(&� 6	&�	����	&, 5�,���
�
� �	��

��
��� � !�
���(�� 2�??�3

�, 5�	&� %,� D��� �,@ /	����&� :�
���)� �	(5�
������	�� =��� � E � :�
��' �
/	����&�, ����	�� � �	 �������	 �)��)� 2����3 ��,���E��#

�, ;�)���� $, ������ 8,*,� ;)B��		�

� 5,0,@ /*0 *�+ /	����&� 0�	&��&� B��(�
2����3 ����@>>''','�,��&>":>�'��&��(�>,

�, ��&����� �,� �� ��,@ ! 5����	 /	����&� 6	&�	����	& "��� '��� B�	���� /	����&��

�	("�1� 8����
, =��)��(�	&
 � ��� �	(*���
��� �	 6
�������	 � /	����&�
+�
�("���
 2����3 ��,7�E��

#, B,!,;�����@ *��(���@ ! 0�1�)�� 5���+�
� �� 6	&��
�, !8; 2�??�3 ��,�?E��
7, ;���� !, ����
�� �,�,@ 8�
������	& � 0�1�)�	 �� 9����� ���� � 8���������	��

"�
�, 8����
 =��)�

�	& �� 0�1�)�� !)-��
����	 2�??#3 ��,77E?#
�, !&��'��� :,� �����	�� :,@ D�
� ��&������
 �� ��	�	& �

�)�����	 ����
, =��)��(�	&

� C059 8�	 ���)� 2�??�3 ��,��7E�??
?, 9��)����� 5,� B���� :,@ :5D C�)�+����� 5�
)������	 0�	&��&� �,�@ :(�)����,

*�8 =����
�(:�)����	(����	 2����3 ����@>>''','�,��&>":>����>:68��(�

)�������������>,

��, "���
�� ;������ ������� ������ ����� D����� �	("������� %���&�)��@ ���@
;����;�(�� ;�	�&���	� +�
�(�	 :5D
 :�
�
��	 :�F�)���	, =��)��(�	&
 � ���
#�� ���	� 8�	 ���)� �	 $	�'��(&��9�
�(�� �'��� 6	&�	����	& 2�8$9�63 2����3
��,���E��#

��, !�(��� B,@ �&����, 2����3 ����@>>''',A&����,)��,
��, �= 0�+
@ ��	� ����	��) *�+ D����'���, 2����3

����@>>A�	�,
���)� ��&�,	��>(�'	���(
,����,
��, /	�� 8,@ 21)+�@1��)����	 +�
�	�

 ��+����3 ����@>>''',1)+�,��&>,
��, ��
�&��� :,� =���� C����(�@ !�������) !(�������	 � *��(��� �� 5����	
, =���

)��(�	&
 � �	���	����	�� *���
��� �	 /	����&��
 �	(0�1�)�� $	�'��(&� 9�
�

2����3

��, %���&�)��� ",@ 8�	
���)��	& (����	 �	����&��
 +�
�(�)�)��� (�� � �	���
�
,
=��)��(�	&
 � ��� ��8!�?? *���
��� �	 /	����&��
 �	(=��+��� ���
�	& �����
�(
2$::�3 2�???3

�#, ���	� �,� �)�	����	&��&� $,@ "�'��(��1� �	�'��(&� �	&�	����	&, !!!��?� ����
)��(�	&
 2�??�3 ��,���E���

�7, D����� 5,� �G�(����)� 8,@ $	�'��(&� !)-��
����	 � =��(�)��� !�&���	� ����)����

 ��� "�)�	�)�� "�1�
, =��)��(�	&
 � �	���	����	�� 8�	 ���)� �	 $	�'��(&�
6	&�	����	& �	($	�'��(&� ;�	�&���	� 2�???3

��, ;��()��� !,� ����+� �,@ 5�
)�
���	& 8�)������ :������	
 ��� "�1�, =��)��(�	&

� ���� 6������	 8�	 ���)� �	 !���.)��� �	�����&�)� 2����3 ��,���E���

�?, ��(�	�� !+� �	("������� %���&�)��@ 8�	
���)��
� ���������	�	& '��� ��)��	�
����	�	& �����(����
������
, �	 =��), � ��� �7�� �	���	����	�� 8�	 ���)� �	
�	(�
����� �	(6	&�	����	& !����)����	
 � !���.)��� �	�����&�)� �	(61����� ��
�
���
 2�6!>!�63 2����3 ��,���E���

Collaborative Ontology Building with Wiki@nt
- A Multi-agent Based Ontology Building Environment

Jie Bao and Vasant G Honavar

Artificial Intelligence Research Laboratory
Department of Computer Science

Iowa State University, Ames, IA 50011-1040, USA
{baojie,honavar}@cs.iastate.edu

Abstract. Collaborative ontology building requires both knowledge in-
tegration and knowledge reconciliation. Wiki@nt is an ontology building
environment that supports collaborative ontology development. Wiki@nt
is based on a language extension to SHOQ(D) with O (partial order on
axioms) and P (localized axioms in package) constructors. Wiki@nt sup-
ports integration and reconciliation of multiple independently developed,
semantically heterogeneous, and very likely inconsistent ontology mod-
ules. A web browser based editor interface is provided, with features to
support team work, version control, page locking, and navigation.

1 Introduction
1.1 Ontology Editing is a Knowledge Integration Process
Semantic Web aims to support seamless and flexible access, use of semanti-
cally heterogeneous, networked data, knowledge, and services. The success of
the semantic web enterprise relies on the availability of a large collection of do-
main specific ontologies and mappings between ontologies to allow integration
of data [12]. However, by its very nature, ontology construction is a collabora-
tive process which involves direct cooperation among domain experts, knowledge
engineers or/and software agents, or indirect cooperation through reuse or adap-
tation of previously published, autonomously developed ontologies.

In such settings, typically, different participants have only partial knowl-
edge of the domain, and hence can contribute only partial ontologies of the do-
main.Common tasks involve refinement of a predefined ontology, and integration
of several such partial ontologies to obtain a coherent ontology. Semantic mis-
matches and logical inconsistencies between independently developed ontologies
are unavoidable. Thus, there is an urgent need for principled approaches and flex-
ible tools for allowing individuals to collaboratively build, refine, and integrate
existing ontologies as needed in specific contexts or for specific applications.
1.2 Proposed Approach
While there has been a great deal of work on ontology languages, inference mech-
anisms, as well as ontology editing environments, relatively little attention has
been paid to the development of principled approaches and tools for collabora-
tive ontology building. Existing ontology editing and discovery tools are mostly
focused on stand-alone ontology development rather than collaborative construc-
tion of ontologies. In this paper, we propose Wiki@nt, a general architecture of
an ontology editing, ontology refinement, and ontology integration environment.
Wiki@nt exploits OSHOQP(D), a modular ontology representation language

2

with preference partial order on axioms; a light-weight, browser-based ontol-
ogy editor which requires minimal user effort and allows concurrent editing and
integration of ontologies, is presented.

2 Collaborative Ontology Building as Knowledge
Integration and Reconciliation

We start with a brief discussion of the theoretical basis of Wiki@nt including
logical foundations of ontology languages. We then introduce a modular repre-
sentation of ontologies and discuss some problems in inconsistency reconciliation
with modular ontologies.
2.1 Description Logic as a Knowledge Representation Language

Ontologies are typically described using ontology languages, such as DAML+OIL
or OWL. Description logic(DL) can be used to express the formal semantics of
an ontology written in those languages. A description logic consists of a Tbox
and an Abox, where the Tbox is a finite set of terminological axioms such as
C v D, and the Abox is a finite set of assertional statements such as C(a) or
R(a, b). In particular, SHIOQ(D) is the formal background DL for OWL. A
complete list of SHIOQ(D) and OWL/DL constructors can be found in [10].

However, ontology languages with I (i.e. inverse roles) constructor suffers
from complexity and/or intractability problems when combined with O or (D).
Hence, we use a subset of SHIOQ(D), SHOQ(D), as the basis for a collabo-
rative ontology development environment.

We assume that we have an abstract domain 4I , and a set of data types D
and associate with each d ∈ D, a set dD ⊆ 4D where 4D is the domain of all
types. An example Animal Ontology is given here:

SubClassOf(Dog , Carnivore)
SubClassOf(Dog , Pet)
SubClassOf(Carnivore, Animal)
restriction(eats allValueFrom(Animal))

ObjectProperty(eats) domain(Animal)
individual (billy type(Dog))

2.2 Package-Extended Ontology
Collaborative ontology building demands modularized ontology representation
by its very nature. Current ontology languages like OWL, while offer some de-
gree of modularization using XML namespaces, fail to fully support modularized
semantics. In our previous work [3], we have argued for package based ontology
language extensions to overcome these limitations. In the resulting ontology lan-
guage SHOQP(D), a package is an ontology module with clearly defined access
interface. Mapping between packages is performed by views which define a set
of queries on the referred packages. Semantics are localized by hiding semantic
details of a package with appropriately defined interfaces (special views). Pack-
ages provide an attractive way to compromise between knowledge sharing and
knowledge hiding in collaborative design and use of ontologies.

Table 1 gives the syntax and semantics of P constructors. Let P be the set of
all packages. We define 4P as the domain of P . We assume that the domain of

3

interpretation of all packages 4P is disjoint from the concrete datatype domain
4D, the abstract concept domain 4I , the abstract role domain 4I ×4I and
concrete role domain 4I×4D. The resulting package-extended description logic
language is called SHOQP(D) where P stands for “package-extended”.

Table 1. Syntax and semantics of P Constructors

Constructor Syntax Semantics

Package p pP ∈ 4P

View v vI ∈ 4P

Global Pkg p0 p0 ∈ 4P

InPackage RP RIP ⊆ 4I
T ×4P

HomePackage HP (t) HP (t)I = {p|(tI , p) ∈ RIP }
NestedIn ∈N ∈IN∈ 4P ×4P , ∈IN= (∈IN)+

SLM SLM(t, p) p ∈ 4P can access t ∈ 4I
T iff SLM(t,p)=true

public(t, p) ∀p, public(t, p) = true
private(t, p) ∀p, private(t, p) := (p = HP (t))

protected(t, p) ∀p, protected(t, p) := (p = HP (t) or p ∈N HP (t))
Import im(P1, P2) P2 is imported into P1

2.3 Ontology Reconciliation

As noted earlier, semantic mismatches and possible logical inconsistencies be-
tween independently developed ontology modules make the combining of such
modules a challenging task. Specifically, in the case of two ontology modules α,
β, it is possible that although α ² t, the module resulting from combining α and
β may not entail t i.e., {α, β} 2 t That is, any system for collaborative ontology
building has to provide mechanisms for handling nonmonotonicity.

An example (adapted from [9]) illustrates this problem. A dog is carnivore;
however, a sick dog sometimes eats grass. Formally, we add new axioms to the
Animal Ontology:

DisjointClasses(Plant,Animal)
SubClassOf(SickDog, Dog)

restriction(eats someValueFrom(Plant))

The resulting knowledge base will be inconsistent because a sick dog (which is
a dog) now can eat grass (which contradicts the assertion that dogs are carni-
vores). Several techniques have been developed to reconcile inconsistent ontology
system, such as default logic [2] and defeasible logic [13] [9]. Here we extend our
SHOQP(D) with the OSHOQ(D) [13]. An axiom is said to be defeasible if
some other axiom could defeat (or override) it. The resulting ontology language
is called OSHOQP(D) where O denotes a strict partial order on the axioms.
Definition 1 A OSHOQP(D)-knowledge base is a tuple 〈T , <〉, where T is a
SHOQP(D)-knowledge base and < is a strict partial order between axioms of
T . For each pair a1 < a2, a2 is said to be defeasible while a1 is a (possible)
defeater of a2

For example, if we revisit the Animal Ontology in OSHOQP(D), The ter-
minology T could be rewritten as

4

package(1) package(2)
(1a) public(Dog, 1) (2a) im(2, 1) ; import package 1

(1b) 1 : Dog v 1 : Carnivore (2b) public(Plant, 2)
(1c) 1 : Dog v 1 : Pet (2c) 2 : Plant u 1 : Animal v⊥
(1d) public(Animal, 1) (2d) 2 : SickDog v 1 : Dog
(1e) public(eats, 1) u∃1 : eats.2 : Plant
(1f) 1 : Carnivore v 1 : Animal
(1g) 1 : Carnivore v ∀1 : eats.1 : Animal
(1h) {1 : billy} v 1 : Dog

A simple combination of packages 1 and 2 is inconsistent on (1g) and (2d).
However, with a partial order <, this logical inconsistency can be eliminated.
One such possible partial order is (2d)<(1g) (read as axiom (2d) is stronger
than axiom (1g)). In this case, a specific axiom (2d) defeats the general rule
(1g). When there is a logical conflict between a pair of axioms, the weaker of
the two is discarded. More details of OSHOQP(D) and its reasoning problems
could be found in the unabridged version of this paper [4]

3 Architecture

OSHOQP(D) gives us an expressive language to build ontology from au-
tonomous, distributed, and possibly inconsistent ontology modules. Wiki@nt is
the implementation of an ontology editor based on OSHOQP(D) to support
collaborative ontology building by a community of autonomous domain experts,
organizations, or even software agents.

The name ”Wiki@nt” suggests that it has a wiki-like editing environment.
Wiki is originally a collaborative documentation writing/website building tool.
Typical wiki system includes a script language (usually a simplified subset of
HTML tags), a set of wiki pages written in the script language and shown in
translated HTML pages, a RCS version control system to record modification of
contents, an user profile and concurrent conflict management system to enable
multiple user editing the same contents, a content navigation system such as
showing link-in and link-out pages, and a simple-to-use, browser-based editing
environment to generate or modify content on the fly.

We find that those features are quite desirable in a collaborative ontology ed-
itor. While most widely-used ontology editors, such as Protege and OilEd, work
very well for developing a single ontology module, they do not lend themselves
to collaborative ontology building. This is due to the lack of a built-in formal-
ism to support modular ontology representation, and the lack of support for
communication and cooperation among multiple individuals in editing a shared
ontology consisting of multiple, independently developed modules. To overcome
those deficiencies, we propose using wiki to edit OSHOQP(D) ontology. An
ontology module is composed of one or more wiki pages; multiple users can edit
the same content, with version control and transaction management; ontology
are loaded into or uploaded from a set of wiki pages and managed by an ontology
repository. Figure 1 shows the architecture of Wiki@nt.
3.1 Wiki Engine
A wiki engine should do the tasks of

5

Jena Ontology

Model

Wiki
File(s)

DB

or

C

D

E

F

G

H

Users

Wiki Storage

K

AgnetInf

Agents

Users or Agents

I J

Import/Export

L

Fig. 1. The Architecture of Wiki@nt

– Provides a web interface for ontology editor and browser.
– Translates the ontology markup script to HTML for the web browser.
– Manages the storage of wiki pages, in plain file or database.
– Provides version control. When a modification for an axiom is submitted,

the previous version is stored and could be restored when the committed
version is found incorrect or impropriate.

– Provides transaction management.
– Generates reference report for wiki pages. Terms be used in an axiom group,

and other groups that referring this group, are listed for browsing purpose.
– Generates a RSS feed for ontology repository updates.

The wiki engine we utilized is based on the JSPWiki(http://www.jspwiki.org)
and implemented in Java and JSP.
3.2 Agent Management
Each participant in Wiki@nt is considered as an agent. Agent is assigned with
different privileges, such as ontology administrator and package manager. Agent
could join the editing of any existing ontology module or create new module.

Although our current design of Wiki@nt does not include concrete design of
software agents, we do reserve an RPC interface that enables agents to commu-
nicate with Wiki@nt. The reason is while fully automatic ontology construction
or mapping are still impossible, software agents can assist humans in several
aspects of collaborative ontology development e.g., finding useful concepts and
relations among concepts from original data sources. Small pieces of ontologies,
such as consistent concept (term) in data or concurrence of two concepts, can
be generated by software agents. The results may be subjected to review of do-
main experts, or even other software agents. Thus, in principle, it is possible for
software agents to participate in collaborative ontology building using Wiki@nt.
3.3 Ontology Markup Script

We defined a set of markup script tags to correspond to the syntax of the on-
tologies. When a wiki page is under editing, its wiki markup script is loaded and
translated to user friendly text, such as HTML web page. The syntax is a ex-
tension to OWL to support package and partial order on axioms. Wiki markup
script is a human readable syntax equivalent to the N-Triple syntax. N-Triple
syntax is an alternative to the RDF/XML syntax and each line in N-Triple
serialization is a triple statement with subject, predicate and object.

6

For example, axiom SubClassOf(Dog,Carnivore) in the Animal Ontology
could be represented by N-Triple syntax as: <http://mydomain.org/animal#Dog>
<http://www.w3.org/2000/01/rdf-schema#subClassOf> <http://mydomain.org/
animal#Carnivore>, or in short form <animal:Dog> <rdfs:subClassOf> <animal:Carnivore>.
It’s wiki script is [animal:Dog] [rdfs:subClassOf][animal:Carnivore]

Each axiom is assigned a URI (uniform resource identifier) as label. Thus, for
example, http://mydomain.org/animal/package1#Dog represents Dog v Carnivore
in package(1), Animal Ontology.

User can create a new page or modify the source script of an existing page.
The editing action is assisted by several wizards (such as class creating wizard)
and a browser (eg. Show subclass and superclass of the class in question).

3.4 Memory Management
While most of the popular ontology editors have in-memory model for edited on-
tology, Wiki@nt doesn’t maintain in-memory model for each resident ontology
for several reasons: An in-memory model limits the scalability of the system with
respect to both the axioms number in one ontology and the number of ontolo-
gies in the Wiki@nt ontology repository; In-memory model implicitly assumes
the existence of a global ontology during the ontology development process and
requires monotonic behavior of the ontology - neither of these assumptions is
desirable in a collaborative ontology building scenario. In short, creating a cen-
tralized ontology model in memory defeats the very purpose of having a modular
ontology

Note that that even when the size of the ontology in question is huge, usu-
ally only a small fraction of its axioms are involved during an editing action.
Hence, we store the ontology as a set of separate, possibly distributed blocks
in Wiki@nt. Each block is serialized to external storage when it’s not being ac-
tively edited, and being loaded into the memory only if it’s edited or referred.
A (local or remote) partial ontology model will be dynamically loaded into local
memory in a reasoning process only if it is needed. The partial model could be a
package, a small part of a package, or even an axiom. This is inspired by widely
used techniques of database memory management where partial content of the
database is dynamically loaded and unloaded to allow manipulation of of a much
larger volume of data than can fit in limited memory.

Another technique to reduce memory burden on Wiki@nt server is to build
the dynamically loaded model on client side instead of server side. This is reason-
able since the dynamically loaded model is just a local-interested part of whole
ontology. Technically, this is done by offering a Java Applet interface to read
and update Wiki@nt pages.

3.5 Modularization of Ontology
Ontology stored in Wiki@nt is managed on package level and block level. A
package is a logic module for an ontology, usually from a single participant.
An ontology could be composed by several packages, and one package could be
reused by multiple ontologies.

A block is a set of related axioms inside a package, and will be physically
mapped to a wiki page. A package will include one or more such blocks(pages).

7

Although different decompositions of an ontology package are logically equiva-
lent, the size of each ontology block will affect the convenience and efficiency of
ontology editing and reasoning. It should not be too big (i.e. the whole package),
or too small (e.g., a single triple). In Wiki@nt, we choose axiom groups as ontol-
ogy blocks. Each axiom group contains triples with same subject. For example,
the axiom groups in Animal Ontology package(1) will be Dog, Carnivore, eats,
and billy. Restrictions and anonymous classes, are assigned to the terms from
where they are referred. Each axiom group is translated to wiki markup script
and stored as a wiki page. An ontology could be stored distributedly in multiple
pages, physically in file or database, and could be dynamically, partially loaded
when necessary.

3.6 Ontology exporting/importing
When an ontology is needed e.g., for reasoning, we export wiki pages as a single
ontology file or read an ontology file into Wiki Ontology Repository. The relevant
portion of an ontology is extracted or assembled from the wiki pages. We use the
Jena toolkit to create the in-memory model and as parser/writer for ontology
files.

Each loaded ontology is assigned a unique name, eg. http://mydomain.org/animal/,
and it’s member packages, eg. http://mydomain.org/animal/package1, are reg-
istered to that ontology. It’s also possible that packages from different ontologies
could be reassembled into a new ontology, thus provide a flexible way for ontology
reuse and integration.

3.7 Reconcile the Inconsistency
Inconsistency among modules should be resolved when integrate those modules.
In Wiki@nt, we assume each package should be consistent. A partial order can be
specified on package level, eg. [Package1] [wiki:stronger][Package], which means
all axioms in Package1 are stronger than Package2; it can also be specified on
axiom level, like [Package1:1g] [wiki:stronger][Package2:2d].

The specification of the partial order < among modules and axioms may be
based on principles of:

– reliability of the source of module/axiom
– the social order of the author of module/axiom
– A more recent module/axiom may be preferred over an earlier one;
– exceptions are stronger than the general rules.

Wiki@nt defined two default defeating rules if user not specifies otherwise.
First, ut assigns higher priority to local package axioms relative to axioms from
imported packages in cases where a local package can be seen as an extension
or an exception to a general ontology. Other partial order assignment policies
is based on the social order of the agents in the Wiki@nt community, such as
ontology administrator, package manager and common user.

3.8 Transaction Management
Transaction management is to ensure consistency of module and protect critical
resource from multiple access. It is widely used in DBMS and certain ontology

8

editor, such as OntoEdit [14]. However,OntoEdit only allow locking of concept
hierarchy.

Wiki@nt denies the write-access of agents to a page and related pages if it is
locked by some other agents. Following strategies are used for determining what
pages should be locked:

– If a concept is under editing/locking, its superclasses in the class hierarchy
will be locked.

– If a property is under editing/locking, its superproperties in the property
hierarchy will be locked.

– If a instance is under editing/locking, its belonging class will be locked.
– If a concept, property or instance is under editing/locking, all other concepts,

properties or instances in the same page(axiom group) will be locked.
– If a package is state as being locking, all importing package will be locked.

Locking could be propagated by recursively apply above-mentioned strate-
gies.

4 Summary and Discussion

4.1 Related Work
Collaborative Ontology Editor A number of ontology editors have been re-
ported in the literature [6,11]. However, most existing ontology editors including
the most widely used ontology editors Protege and OilEd provide little support
for collaborative ontology development. Representative editors that support col-
laborative ontology editing include CODE [8], KAON [5], OntoEdit [14], On-
tolingua [7], and WebODE [1] . Most of them provide concurrent access control
with transaction oriented locking, and in some cases, even rollback. However,
none of the existing ontology editors, to the best of our knowledge, provides
principled approaches for manipulating independently developed, semantically
heterogeneous ontology modules or for reconciling logical inconsistencies between
such modules.

One advantage of Wiki@nt over reported editors is its truly distributed nature
for storage of ontology modules. While most editors requires in-memory model
for current-editing ontology, Wiki@nt dynamically load partial model only when
it is necessary, and/or share the memory burden between the server and clients.

Another distinct feature of Wiki@nt is its wiki-based design thus enable it
borrow many well-stablished feature of wiki system, each as user-friendly and
easy-to-use interface, version control, user management, page locking, translating
from script to HTML, and persistent storage in relational database.

Collaborative Knowledge Base Construction Some collaborative knowl-
edge base construction projects, although not focused on ontology building, ad-
dress similar problems. Nooron(http://www.nooron.org) is a knowledge pub-
lishing system and has a wiki for ontology browsing. MnM [15] is an annotation
tool which provides both automated and semi-automated support for annotating
web pages with semantic contents. MnM integrates a web browser with an ontol-
ogy editor and provides open APIs to link to ontology servers and for integrating

9

information extraction tools. However, it doesn’t have concurrent access control.
FoaF(http://www.foaf-project.org/) is an acronym for ”Friend of a Friend” , an
experimental project and vocabulary for the Semantic Web. The project is open
and allows participants to add their own information. The result is an RDF based
knowledge base containing contact and acquaintance information about the par-
ticipants. WikiPedia (http://en.wikipedia.org/) is a wiki-based open-content
encyclopedia that is editable by participants. Articles in WikiPedia are written
in natural language, and the relation between items is not formal. Neverthe-
less, articles can be seen as concepts and links between them seen as properties
among them, in a informal sense.Open Directory Project or called DMOZ
(http://www.dmoz.org/) is an online, open, collaborative taxonomy building
project for web catalog. Now it has a taxonomy tree of over 590,000 categories
and over 4 million classified sites. The relations between DMOZ concepts is strict
”subClassOf”.

Although these projects lack formalized and full-fledged ontologies, they offer
interesting demonstrations of the feasibility of collaborative ontology develop-
ment. Wiki@nt proposed in this paper is inspired by the success of DMOZ and
WikiPedia, and aims to provide support for such efforts using a formal ontology
language to facilitate machine interpretable annotations of data.

4.2 Summary and Outlook

In this paper we have described

– The ontology representation formalism to support modularity and axiom
order.

– A distributed ontology representation and storage methodology based on
wiki.

– A Light-weight ontology editor to support collaborative ontology building.
– Important issues in wiki-based ontology editing, such as transaction manage-

ment, memory management, agent management, modularization of ontology
and inconsistency reconciliation.

Some interesting directions for future work include:

– Incorporation of more advanced transaction management and incorporation
of safe mechanisms for handling simultaneous editing and modification of
ontologies

– Investigation of useful policies for assigning partial order among axioms, in-
cluding those that are base on machine learning or probabilistic approaches.

– Applications of collaborative ontology building environments for informa-
tion integration from autonomous, distributed, semantically heterogeneous
information sources.

– Detailed study of scalability of Wiki@nt, test it with big ontologies such as
WordNet.

Acknowledgments

This research is supported in part by grants from the NSF (0219699) and the
NIH(GM 066387) to Vasant Honavar

10

References

1. J. C. Arpirez, O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez. Webode: a
scalable workbench for ontological engineering. In Proceedings of the international
conference on Knowledge capture, pages 6–13. ACM Press, 2001.

2. F. Baader and B. Hollunder. Embedding defaults into terminological knowledge
representation formalisms. Technical Report RR-93-20, 1993.

3. J. Bao and V. Honavar. Ontology language extensions to support localized se-
mantics, modular reasoning, and collaborative ontology design and ontology reuse.
Technical report, TR00000341, Computer Sicence, Iowa State University.

4. J. Bao and V. Honavar. Collaborative ontology building with wiki@nt - a multi-
agent based ontology building environment. Technical report, TR00000343, Com-
puter Sicence, Iowa State University, 2004.

5. E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik, D. Oberle,
C. Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer, G. Stumme, Y. Sure,
J. Tane, R. Volz, and V. Zacharias. Kaon - towards a large scale semantic web. In
K. Bauknecht, A. M. Tjoa, and G. Quirchmayr, editors, E-Commerce and Web
Technologies, Third International Conference, EC-Web 2002, Aix-en-Provence,
France, September 2-6, 2002, Proceedings, volume 2455 of Lecture Notes in Com-
puter Science, pages 304–313. Springer, 2002.

6. M. Denny. Ontology building: A survey of editing tools. Technical report, O’Reilly
XML.com, November 06, 2002.

7. A. Farquhar, R. Fikes, W. Pratt, and J. Rice. Collaborative ontology construction
for information integration, 1995.

8. P. Hayes, R. Saavedra, and T. Reichherzer. A collaboration development environ-
ment for ontologies. In Proceedings of the Semantic Integration Workshop, Sanibel
Island, Florida,, 2003.

9. S. Heymans and D. Vermeir. Using preference order in ontologies, 2002.
10. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to

OWL: The making of a web ontology language. Journal of Web Semantics, 1(1),
2003.

11. Ontoweb. Deliverable 1.3: A survey on ontology tools.
12. J. A. Reinoso-Castillo, A. Silvescu, D. Caragea, J. Pathak, and V. G. Honavar. In-

formation extraction and integration from heterogeneous, distributed,autonomous
information sources - a federated ontology-driven query-centric approach. In Pro-
ceedings of the IEEE International Conference on Information Reuse and Integra-
tion, 2003.

13. D. V. S. Heymans. A defeasible ontology language. In e. a. E. R. Meersman, Z. Tari,
editor, On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and
ODBASE : Confederated International Conferences CoopIS, DOA, and ODBASE
2002, Lecture Notes in Computer Science, volume 2519, pages 1033–1046. Springer-
Verlag Heidelberg, 2002.

14. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative ontology development for the semantic web. In Proceedings of the
first International Semantic Web Conference 2002 (ISWC 2002), June 9-12 2002,
Sardinia, Italia. Springer, LNCS 2342, 2002.

15. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna.
Mnm: Ontology-driven tool for semantic markup. In S. Handschuh, N. Collier,
R. Dieng, and S. Staab, editors, Proceedings Workshop on Semantic Authoring,
Annotation and Knowledge Markup (SAAKM 2002), pages 43–47, 2002.

Introduction to the EON Ontology alignment context

Jérôme Euzenat

INRIA Rhône-Alpes,
Jerome.Euzenat@inrialpes.fr

The EON so-called “Ontology alignment contest”1 has been designed for provid-
ing some evaluation of ontology alignment algorithms. This is an introduction, rather
than a synthesis, because we have not had enough time to draw real conclusions from
the results provided by the participants. It will however provide the context for this
evaluation.

1 Goals

The goal of the contest was firstly to illustrate how it is possible to evaluate ontology
alignment tools.

The medium term goal is to set up a set of benchmark tests for assessing the
strengths and weaknesses of the available tools and to compare them. These tests are
focussing the characterisation of the behaviour of the tools rather than having them
compete on real-life problems. It is expected that the set of tests could be a first version
of a reference benchmark that tool developers can run in order to improve their tools
and measure where they are.

Because of its emphasis on evaluating the performances of tools instead of the com-
petition between them, the term contest was not the best one.

2 Method

The evaluation methodology consisted in publishing a set of ontologies to be compared
with another ontology. The participants were asked to run one tool in one configuration
on all the tests and to provide the results in a particular format. In this format2, an
alignment is a set of pairs of entities from the ontologies, a relation supposed to hold
between these entities and a confidence measure in the aligned pair. The tools could
use any kind of available resources, but human intervention. The participants were also
asked to provide a paper, in a predefined format, describing their tools, their results and
comments on the tests. These are the papers that are compiled here.

Along with the ontologies, a reference alignment was provided (in the same format).
This alignment is the target alignment that the tools are expected to find. The reference
alignment has all its confidence measures to the value 1 and most of the relations were
equivalence (with very few subsumption relations). Because of the way the tests have
been designed (see below), these alignments should not be contested. The participant

1
http://co4.inrialpes.fr/align/Contest

2
http://www.inrialpes.fr/exmo/software/ontoalign/

were allowed to compare their results to the output of their systems and the reference
alignment and to chose the best tuning of their tools (overall).

The full test bench was proposed for examination to potential participants for 15
days prior to the final version. This allowed participants to provide some comments
that could be corrected beforehand. Unfortunately, the real comments came later.

The results of the tests were expected to be given in terms of precision and recall of
correspondences found in the produced alignment compared to the reference alignment.
No performance time measures were required.

Tools were provided for manipulating the alignments and evaluate their precision,
recall and other measures2.

3 Test set

The set of tests consisted in one medium ontology (33 named classes, 39 object proper-
ties, 20 data properties, 56 named individuals and 20 anonymous individuals) to be com-
pared to other ontologies. All ontologies were provided in OWL under its RDF/XML
format.

This initial ontology was about a very narrow domain (bibliographical references).
It was designed by hand from two previous efforts. This ontology took advantage of
other resources whenever they were available. To that extent the reference ontology
refers to the FOAF (Friend-of-a-friend) ontology and the iCalendar ontology.

There were three series of tests:

– simple tests such as comparing the reference ontology with itself, with another irrel-
evant ontology (the wine ontology used in the OWL primer) or the same ontology
in its restriction to OWL-Lite;

– systematic tests that were obtained by discarding some features of the initial ontol-
ogy leaving the remainder untouched. The considered features were (names, com-
ments, hierarchy, instances, relations, restrictions, etc.). This approach aimed at
recognising what tools really need. Our initial goal was to propose not just one
feature discard but all the combinations of such. Unfortunately, we were unable to
provide them before the launch of the contest.

– four real-life ontologies of bibliographic references that were found on the web and
left untouched.

All the ontologies and reference alignments were produced by hand in a very short
time. This caused a number of problems in the initial test base that were corrected later.

4 Results

As a first note, we expected five participants but finally only four entered. This is few,
especially with regard to all the alignments algorithms out there. We hope that these
four participants are the pionneer who will induce the others to put their work under
comparison.

We would have liked to have a clear picture of the results before commenting. It
happened that we were not able to get all the results in the appropriate format to compile

a table of the results based on similar ground for all participants. We expect to provide
this on our web site and at the EON workshop (with certainly more participants).

The best way to learn about the results so far is to read what follows. The partic-
ipants made their best to highlight why their tools were weak or strong and how to
improve them.

5 Lesson learned

The first good thing that we learnt is that it is indeed possible to run such a test.
Another lesson that we have learnt is that OWL is not that homogeneous when tools

have to manipulate it. Parsers and API for OWL (e.g., Jena and OWL-API) are not
really aligned in their way to handle OWL ontologies. This can be related to very small
matters which can indeed render difficult entering the challenge. It is our expectation
that these products will improve in the coming year. For the moment we modified the
files in order to avoid these problems.

People appreciated to be given tools to manipulate the required formats. It is clear
that in order to attract participants, the test process should be easy.

We also realised that the production of an incomplete test bench (not proposing all
combinations of discarded features) had an influence on the result. As a matter of fact,
algorithms working on one feature only were advantaged because in most of the tests
this feature was preserved.

Another lesson we learned is that asking for a detailed paper was a very good idea.
We have been pleased of how much insight can be found in the comments of the com-
petitors.

6 Future plans

We have shown that we can do some evaluation in which people can relatively easily
jump in, even within a short span of time. The results given by the systems make sense
and certainly made the tool designers think. So we think that such an evaluation is
worthwhile and must be continued.

We plan to merge the two events which occurred this year:

– The Information Interpretation and Integration Conference (I3CON), held at the
NIST Performance Metrics for Intelligent Systems (PerMIS) Workshop which fo-
cused on "real-life" test cases and compare algorithm global performance3.

– This Ontology Alignment Contest at the 3rd Evaluation of Ontology-based Tools
(EON) Workshop.

The combination of these events can feature a benchmark series like the one proposed
at this workshop in order to calibrate the systems and some medium- to large-scale
experiment, possibly made on purpose but supposed to reproduce real-life situation
(with no reference alignment published).

3
http://www.atl.external.lmco.com/projects/ontology/i3con.html

However, people coming from different views with different kind of tools do not
naturally agree on what is a good test. In order to overcome this problem, the evaluation
must be prepared by a committee, not from just one group.

Finally, in order to facilitate the participation to the contests, we must develop tools
in which participants can plug and play their systems. In addition to the current eval-
uators and alignment loaders, we could provide some iterators on a set of tests for
automating the process and we must automate more of the test generation process.

7 Acknowledgements

We warmly thanks each participant of this first contest. We know that they worked hard
for having their results ready and they provided good papers presenting their experience.
The evaluation improved a lot from their comments.

Heiner Stuckenschmidt and Liz Palmer proposed some variation of the tests (Natasha
Noy proposed a couple of others in her paper).

We also thanks York Sure and Oscar Corcho, organisers of the EON workshop, for
proposing to run this contest in the framework of EON.

Finally, Todd Hughes, who organized the I3Con competition, has always been sup-
portive of this one and at clarifying their goals and relations.

Montbonnot, October 1st, 2004

Ontology Alignment - Karlsruhe

Marc Ehrig and York Sure

Institute AIFB, University of Karlsruhe

1 Introduction

This short paper accompanies the EON Ontology Alignment Contest at the International
Semantic Web Conference 2004 in Hiroshima. First, it describes the system as used in
Karlsruhe. The results of the actual experiments follow. Then we have a short discussion
and interpretation of the results. In the end we provide a link to the actual results.

2 System

2.1 Alignment Process

We introduce the process of ontology alignment we use for theexperiments here. The
general process and an efficient algorithm for it have been presented in [ES04b,ES04a].
The presented approach is only capable of extracting semantical identity. Subsumption
or complex alignments are currently not supported.

To find out whether two entities can be aligned we rely on ruleswhich indicate
support for an alignment. A rule consists of two main parts: an entity feature, and a
comparison function. The result is a value between 0 and 1.

An entity is described through features which are represented in the ontology. A fea-
ture can be as simple as the label of entity. It can include intensional structural elements
such as super- or sub-concepts for concepts, or domain and range for relations. Further
we use extensional elements: a concept is described throughits instances. Instance fea-
tures can be instantiated attributes. According to our assumption we restrict our focus
on these simple features, where simple means that only directly connected relations are
respected, i.e. we do not consider the relations of a sub-concept of a super-concept of a
concept. The following example will clarify the used features.

<owl:Class rdf:about=‘‘automobile’’/>
<owl:Class rdf:about=‘‘car’’/>
<rdf:Description rdf:about=‘‘porsche’’>

<rdf:type rdf:resource=‘‘automobile’’>
<rdf:type rdf:resource=‘‘car’’>
<auto:speed rdf:resource=‘‘fast’’>

</rdf:Description>
<rdf:Description rdf:about=‘‘mercedes’’>

<rdf:type rdf:resource=‘‘automobile’’>
<auto:speed rdf:resource=‘‘fast’’>

</rdf:Description>

Example 1.Two entities with the similar super-concepts.

In Example 1 bothPorsche and Mercedes have the featuretype. Extracting
the instantiation of the feature we receiveautomobile andcar, respectively only
automobile. Further as stated before also domain-ontology features can be included
through this step e.g.auto:speed, which isfast for both the first and second entity.

Next, the comparison of objects can normally be expressed through exact logical
rules. Equality can easily be checked by comparing the unique resource identifiers
(URI); for sets one can use the Dice-coefficient [CAFP98]. According to our assump-
tion this is not suitable for the alignment case. We need inexact heuristical ways of
comparing objects. These are functions expressing similarity on strings [Lev66], ob-
ject sets [CC94], checks for inclusion or inequality, rather than exact logical identity.
The heuristics can also make use of additional background knowledge e.g. the use of
WordNet [Fel99] when checking the identity of labels of entities. Returning back to our
example we use a similarity function based on the instantiated results, i.e. we check
whether the two concept sets parent concepts ofPorsche (automobile andcar)
and ofMercedes (only automobile) are the same. In the given case this is true to
a certain degree, effectively returning a similarity valueof 0.5. Extending the approach
of previous work, we do not only compare the same features of two entities, but also
allow different ones, e.g. comparing sub-concepts of one concept with super-concepts
of another one (which have to be disjunct to support the equality of two entities).

Finally the individual feature-heuristic combinations indicating an alignment are
combined to calculate the overall support function. This can be achieved through a
simple averaging step, but also through complex aggregation functions. Thereafter the
value is interpreted and the algorithm decides whether the entity pair actually aligns
i.e. the two entities are semantically identical. The weights for the combination and the
interpretation threshold are set manually once i.e. they are the same for every mapping
run.

Further we iterate over the whole process in order to bootstrap the amount of struc-
tural knowledge. In the given approach we perform five rounds.

2.2 System

The presented approach has been implemented in Java using the capabilities of the
KAON1-framework. The framework uses its own KAON-ontology format, but can han-
dle RDFS imports. Using KAON allows for easy use and extension of ontology tech-
nology.

2.3 Adaptations for the Contest

There were no substantial adaptations to the actual system for the contest. Minor adap-
tations were needed for input and output.

The input ontologies had to be transformed into a plain RDF(S)-ontology-format
only. For the given case this meant the following steps:

– Transformation of owl:Class into rdfs:Class

1 http://kaon.semanticweb.org

– Replacement of owl:Restriction through rdfs:Class. This meant that every restric-
tion is treated as an own (anonymous) class.

– Transformation of owl:ObjectProperty and owl:DatatypeProperty into rdf:Property.
– Further, blank nodes originating from restrictions or unions were materialized. Oth-

erwise they would have not been internally alignable, thus reducing the alignment
quality of derived classes.

For the output the saving method was adjusted in the following way:

– Deletion of KAON internal constructs, mostly language identifiers.
– Export of alignments conforming to the given alignment format.

3 Results

In this section we present the results of the individual alignment experiments. As the
system can neither handle OWL constructs nor alignments beyond identity, we expect
to lose quality in comparison with systems that do handle both.

3.1 Experiments

Please note, that we have not performed every ontology pair of the experiment. Consid-
ering the presented algorithm and the restrictions of RDF(S), the skipped experiments
were either identical to others or only provided very marginal differences. Additionally
the used KAON system adds own language constructs which werefiltered out for the
evaluation.

3.2 Measures

We use standard information retrieval metrics to assess thedifferent ontology pairs
(cf. [DMR02]):

Precision p = #correct found alignments
#found alignments

Recall r = #correct found alignments
#existing alignmentss

F-Measuref1 = 2pr
p+r

, the harmonic mean of precision and recall
Depending on the application scenario different evaluation values can be of impor-

tance. The following results therefore always indicate theresults for the best possible
precision, the best possible f-measure, and the best possible recall.

Nevertheless to allow strict comparability across the EON tests and with other al-
gorithms we provide the numbers for a fixed similarity threshold across all tests, in our
case this was 0.148. The threshold has been determined through a big number of tests
beyond this EON experiment. If no other information about the application is given
these numbers can be seen as the most objective and comparable ones.

3.3 101 concept test: ID

precision recall f-measure
best precision 1.0 1.0 1.0
best f-measure 1.0 1.0 1.0
best recall 1.0 1.0 1.0
fixed threshold 1.0 1.0 1.0

The system loads the ontologies. If the URIs of two entities are identical, which is
the case here, this automatically means that the entities are identical. No alignment is
required for this.

3.4 102 concept test: ?

precision recall f-measure
best precision undefined undefined undefined
best f-measure undefined undefined undefined
best recall undefined undefined undefined
fixed threshold undefined undefined undefined

No alignments were retrieved by the system. Having no outcome it is not possible to
calculate the presented evaluation measures. This is the expected outcome when trying
to align two ontologies of completely different domains.

3.5 201 systematic: no names

precision recall f-measure
best precision 1.0 0.2826 0.4407
best f-measure 0.9057 0.5217 0.6621
best recall 0.9057 0.5217 0.6621
fixed threshold 0.9524 0.4348 0.5971

This represents one of the most difficult runs. The entry point of our process is iden-
tification of equal entities through similar labels. Only then further alignments can be
extracted via the structure. This is especially a problem for our system, because apart
from the labels we do not consider further documentation or comments.

3.6 204 systematic: naming conventions

precision recall f-measure
best precision 1.0 1.0 1.0
best f-measure 1.0 1.0 1.0
best recall 1.0 1.0 1.0
fixed threshold 1.0 1.0 1.0

Smaller differences in label naming are either already filtered out by the used syntactic
similarity of strings based on the edit distance. Apart fromthis entity pairs experience
massive structural identity support from neighboring entity pairs, who have previously
been identified as equal.

3.7 205 systematic: synonyms

precision recall f-measure
best precision 1.0 0.1196 0.2136
best f-measure 0.8730 0.5978 0.7097
best recall 0.8261 0.6196 0.7125
fixed threshold 0.8710 0.5870 0.7012

Synonyms are more challenging than the inexact naming of theprevious data set. Our
system can only identify alignments based on similar labelsat first. Currently we do
not use any dictionary. Having completely different words means no matches in the
first place.

3.8 206 systematic: foreign names

precision recall f-measure
best precision 1.0 0.0109 0.0215
best f-measure 0.9677 0.6522 0.7792
best recall 0.9677 0.6522 0.7792
fixed threshold 0.98 0.5326 0.6901

There is basically no difference for the system of not knowing a synonym term or not
knowing a term because it is written in a different language.It seems that French ex-
pressions are more similar to the basic English ontology than the English synonyms
are.

3.9 223 systematic: expanded hierarchy

precision recall f-measure
best precision 1.0 0.9783 0.9890
best f-measure 1.0 0.9783 0.9890
best recall 0.9891 0.9891 0.9891
fixed threshold 0.9891 0.9891 0.9891

The additional classes in the hierarchy don’t affect the system very much. Obviously
the labeling is strong enough to not be distracted by additional classes.

3.10 224 systematic: no instances

precision recall f-measure
best precision 1.0 1.0 1.0
best f-measure 1.0 1.0 1.0
best recall 1.0 1.0 1.0
fixed threshold 1.0 1.0 1.0

Again the labels seem to be strong enough themselves. Removing instances doesn’t
affect the outcome. However, it will though when the labels become less reliable as in
the synonym or foreign language case.

3.11 230 systematic: flattening entities

precision recall f-measure
best precision 1.0 1.0 1.0
best f-measure 1.0 1.0 1.0
best recall 1.0 1.0 1.0
fixed threshold 1.0 1.0 1.0

Removing some entities doesn’t affect the evaluation. Besides the fact of having less
alignments, all aligning is still correct.

3.12 301 real ontology: BibTeX/MIT

precision recall f-measure
best precision 1.0 0.0806 0.1471
best f-measure 0.9231 0.3871 0.5455
best recall 0.9231 0.3871 0.5455
fixed threshold 0.9231 0.3871 0.5455

The real interesting evaluations are, whether the system can automatically align two
different ontologies covering the same domain. Unfortunately the results are not too
promising. We do not receive high levels of quality. Even if we remove the special
alignment subsumption, which our system can’t extract, theresults are not too good.
Obviously the good labels are superposed by the big differences in structure. One con-
sequence could be to reduce the impact of structure. People describe their world through
natural language rather than through intensional structures. As another consequence one
could raise the question: Despite the same labels, are the entities actually the same, as
they have a very different intensional structure?

3.13 302 real ontology: BibTeX/UMBC

precision recall f-measure
best precision 1.0 0.2 0.3333
best f-measure 1.0 0.2 0.3333
best recall 1.0 0.2 0.3333
fixed threshold 1.0 0.2 0.3333

The same comments as for the previous experiment still hold.Having a look at the
UMBC ontology one can see that they have many bibliographic properties pointing
from publications to literals/Strings. With the label being different and the range of a
property being different the system can not identify these relations as equal. The classes
on the other hand were well identified. Interesting for this one is the very high precision
with a very low recall. Our system obviously prefers losing information for the sake
of keeping the error number small. If the alignments are usedfor further mapping with
inferencing high error rates can seriously harm the results.

3.14 303 real ontology: Karlsruhe

precision recall f-measure
best precision 1.0 0.24 0.3871
best f-measure 0.9512 0.78 0.8571
best recall 0.9512 0.78 0.8571
fixed threshold 0.9286 0.78 0.8478

Karlsruhe and INRIA seem to have a closer understanding of the bibliographic world
than MIT and UMBC with INRIA.

3.15 304 real ontology: INRIA

precision recall f-measure
best precision 1.0 0.7692 0.8670
best f-measure 0.9867 0.9487 0.9673
best recall 0.9494 0.9615 0.9554
fixed threshold 0.9867 0.9487 0.9673

Comparing one INRIA ontology with another INRIA one yields very good results, as
one can expect.

4 General Comments

4.1 Lessons Learnt

From the experiments one can generally say that labels have ahigh value for the align-
ment process. If these labels are the same the probability that they actually indicate the
same is very high. Humans tend to express the same things through the same natural
language; structure is only modelled in the second place. When having two ontologies
where many labels are the same it might make sense to stop at this point or at least fix
the alignments before continuing with the structure.

On the other hand if the labels differ, just a little or even considerably, the struc-
tural elements become more important. Through structural similarity the differences in
labelling can be overcome to a certain degree.

4.2 Comments on the test cases

It is always difficult to create good test cases. The cases covered a wide range of dis-
crepancies occurring when having two ontologies. For the cases always one feature was
explicitly changed and the alignment algorithm had to coverthis. However in a real
world scenario, as presented by the last four test cases, theontologies vary in many
features at the same time. There will always be an optimal algorithm to circumvent one
feature of ontology mismatch. The real challenge is to manage many differences at the
same time. Focus should therefore lie more on real world ontologies.

4.3 Comments on measures

The measures always reflect the goal one wants to reach. In this paper the measures were
purely qualitative. And even there it is difficult to define agood result. For querying
retrieving more false answers is tolerable, as long as the correct answers are included
(high recall). If further inferencing is the goal, every mistake seriously changes the
whole result. Here we need a high precision. The used f-measure is a compromise to
handle both scenarios adequately. It might also make sense to measure several points
rather than just the f-measure.

Besides the qualitative measures it can also be interestingto measure scalability and
efficiency (e.g. for on the fly alignment in peer-to-peer systems).

5 Raw Results

The results presented in this paper can be downloaded at http://www.aifb.uni-
karlsruhe.de/WBS/meh/mapping/

Not all alignments in the result files are actually interpreted as an alignment; too low
values are removed through the cut-off measure. Nevertheless, for better interpretability
the whole files were put online.

For a better overview the results of all the tests are shown once more in one table,
each time using the fixed similarity threshold:

precision recall f-measure
101 ID 1.0 1.0 1.0
102 ? undefined undefined undefined
201 no names 0.9524 0.4348 0.5971
204 naming conventions 1.0 1.0 1.0
205 synonyms 0.8710 0.5870 0.7012
206 foreign names 0.98 0.5326 0.6901
223 expanded hierarchy 0.9891 0.9891 0.9891
224 no instances 1.0 1.0 1.0
230 flattening entities 1.0 1.0 1.0
301 BibTeX/MIT 0.9231 0.3871 0.5455
302 BibTeX/UMBC 1.0 0.2 0.3333
303 Karlsruhe 0.9286 0.78 0.8478
304 INRIA 0.9867 0.9487 0.9673

6 Conclusion

We can draw the following conclusion from the experiment. The Karlsruhe process
performs differently on the various kinds of ontology pairs. Even though the results
were not too bad in general, some optimization, possibly by performing different actions
for different alignment steps. Nevertheless ontology alignment will never yield 100%
correct results, and any application relying thereon should be aware of this.

References

[CAFP98] S. V. Castano, M. G. De Antonellis, B. Fugini, and C. Pernici. Schema analysis:
Techniques and applications.ACM Trans. Systems, 23(3):286–333, 1998.

[CC94] T. Cox and M. Cox.Multidimensional Scaling. Chapman and Hall, 1994.
[DMR02] H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. InPro-

ceedings of the second int. workshop on Web Databases (German Informatics Society),
2002.

[ES04a] Marc Ehrig and Steffen Staab. QOM - quick ontology mapping. In Proceedings of the
Third International Semantic Web Conference (ISWC-2004), Hiroshima, Japan, 2004.

[ES04b] Marc Ehrig and York Sure. Ontology mapping - an integrated approach. InPro-
ceedings of the First European Semantic Web Symposium, ESWS 2004, volume 3053
of Lecture Notes in Computer Science, pages 76–91, Heraklion, Greece, May 2004.
Springer Verlag.

[Fel99] Christiane Fellbaum.WordNet: An Electronic Lexical Database. 1999.
[Lev66] I. V. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-

sals.Cybernetics and Control Theory, 1966.

Ontology alignment with OLA
Jérôme Euzenat1, David Loup 2, Mohamed Touzani3, Petko Valtchev4

Abstract

Using ontologies is the standard way to achieve interoperability of heteroge-
neous systems within the Semantic web. However, as the ontologies underlying
two systems are not necessarily compatible, they may in turn need to be aligned.
Similarity-based approaches to alignment seems to be both powerful and flexible
enough to match the expressive power of languages like OWL. We present an align-
ment tool that follows the similarity-based paradigm, called OLA. OLA relies on
a universal measure for comparing the entities of two ontologies that combines in
a homogeneous way the entire amount of knowledge used in entity descriptions.
The measure is computed by an iterative fixed-point-bound process producing sub-
sequent approximations of the target solution. The alignments produce by OLA on
the contest ontology pairs and the way they relate to the expected alignments is
discussed and some preliminary conclusions about the relevance of the similarity-
based approach as well as about the experimental settings of the contest are drawn.

1 Presentation of the system

The ontology alignment tool OLA (forOWL-Lite Alignment) is jointly developed by the teams
at DIRO, University of Montréal and INRIA Rhône Alpes. Its main features are presented below
(see also [5, 6]).

1.1 General purpose statement

OLA is dedicated to the alignment of ontologies expressed in OWL, with an emphasis on its
restricted dialect, called OWL-Lite.

1.1.1 Functional specifications

More than a simple tool for automated alignment construction, OLA is designed as an environ-
ment for manipulating alignments. Indeed, in its current version, the system offers the following
services:

• parsing and visualization of (pairs of) ontologies,
• automated computation of similarities between entities from different ontologies,
• automated extraction of alignments from a pair of ontologies,
• manual construction of alignments,
• initialization of automated alignment construction by an existing alignment,
• visualization of alignments,
• comparison of alignments.

In the following sections we focus exclusively on the automated alignment construction and
the related services offered by OLA.

1 INRIA Rhône-Alpes,Jerome.Euzenat@inrialpes.fr
2 Université de Montréal
3 Université de Montréal
4 Université de Montréal,Petko.Valtchev@umontreal.ca

1.1.2 Basic assumptions

Universality : All the available knowledge about ontology entities should be taken into account
when aligning.

Automation : We required the alignment mechanisms to be of the highest possible automa-
tion degree. In other terms, although the entire alignment process may be set on a semi-
automated basis, the production of an alignment should not require user intervention at the
intermediate steps. Thus, we expect the user to provide a minimal set of parameters for the
alignment process whereas the tool will suggest one or more candidate alignments at the
end. This may be performed in a loop aimed at establishing the optimal parameters for a
specific case or domain. Automation may be used for optimal parameter learning as well.

Uniform comparison : Following the syntactic structure of the OWL language, entities are
divided into categories, e.g.,classes, objects, properties, relations, and only entities of
the same category are compared. Moreover, the entities of a category are compared using
the same similarity function and on the same feature space. In other words, for each pair
of entities of a given category, the same set of similarity factors are considered and the
respective contributions of those factors to the overall similarity of the pair are combined
in a way that depends only on the category.

Comparability of similarity results : To enable comparison of similarity scores between dif-
ferent alignment tasks, the values of the similarity measure are normalized. It is notewor-
thy that normalization is enforced throughout the entire iterative computation process via
an appropriate function definition. Moreover, useful properties of the function as proxim-
ity measure are ensured such aspositiveness, maximalness5, andsymmetry6.

1.1.3 Specific restrictions

• Primary focus is on a rather restricted sublanguage, OWL-Lite. However, some constructs
from the richer OWL-DL are also supported. As a long-term goal, the coverage of the
entire OWL-DL language will be sought.

• No inference is performed on the ontology, in particular inheritance is not used to ex-
pand entity descriptions. This choice has been motivated by efficiency considerations. It
could be easily altered by applying a limited form of reasoning to the available descriptive
knowledge as a pre-processing step.

• Only descriptive knowledge is taken into account: The similarity of an entity pair depends
on all the similarities of neighbor pairs whose membersdescribe the respective initial
entities. In other terms, given two neighbor entitiese1 ande2, e2 may appear in a similarity
expression fore1 if the link between both is considered as a part of the description ofe1.
For instance, we consider that a data type is not described by a property whose range the
datatype represents. Consequently, datatypes are compared in an ontology-independent
manner.

• Entity category separation is enforced in similarity definition: Only entities from the same
category are compared for similarity and hence for alignment. Thus, classes from the
first ontology are compared to classes from the second one, and datatypes to datatypes,
respectively7.

1.2 Specific techniques used

OLA relies on an all-encompassing similarity measure that is defined by a system of quasi-linear
equations. Its actual values are computed as the fixed point of an iterative approximation process
which starts with a lexical similarity measure and gradually brings in contributions from structure
comparing functions. The entire computation process is supported by a graphical representation
of the ontology structure, the OL-Graph of the ontology.

1.2.1 OL-Graph construction

To provide an easy-to-process inner representation of OWL ontologies, we use graph structure
that we called OL-Graph. An OL-Graph is a labeled graph where vertices correspond to OWL

5 With normalization, this amounts to forcing scores of 1 for identical entities within identical ontologies
6 The price to pay for symmetry is the impossibility of detecting subsumption by this purely numerical

procedure.
7 However, some test cases, e.g., the alignment of ontology 301, suggest that a class may be more advanta-

geously aligned to a datatype.

entities and edges to inter-entity relationships. As described in [6], the set of different vertex cat-
egories is: class (C), object (O), relation (R), property (P), property instance (A), datatype (D),
datavalue (V), property restriction labels (L). Moreover, distinction is made between datatype
relations (Rdt) and object relations (Ro), as well as between datatype properties (Pdt) and object
ones (Po).

The relationships expressed in the OL-Graph are:

• specializationbetween classes or relations (S),
• instanciation(I) between objects and classes, property instances and properties, values

and datatypes,
• attribution (A) between classes and properties, objects and property instances;
• restriction(R) expressing the restriction on a property in a class,
• valuation(U) of a property in an object.

The OL-Graph of an ontology is constructed after the ontology is parsed and its entities and
their relationships extracted. So far, we use the OWL API [1] for the parsing of OWL files, but
other possibilities remain open. It is noteworthy that OL-Graph supports well inference process.
For instance, the graphs of an ontology can be easily extended with the descriptive knowledge
derived by inheritance between classes or relations, or by saturation following the property types
(e.g., by adding transitivity arcs for aowl:TransitiveProperty). Further details on OL-Graph
construction will be given in [8]. It does not, however, scale to OWL-Full.

1.2.2 Integrative similarity measure

Our similarity model assigns a specific function to each node category in the OL-Graph. The
functions are designed in a way to cover the greatest possible part of the available descriptive
knowledge about a couple of entities. Thus, given a categoryX, the similarity of two nodes from
X depends on:

• the similarities of the terms used to designate them (may be URIs, labels, names, etc.),
• the similarity of the pairs of neighbor nodes in the respective OL-Graphs that are linked by

edges expressing the same relationships (e.g., class node similarity depends on similarity
of superclasses, of property restrictions and of member objects),

• the similarity of other local descriptive features depending on the specific category (e.g.,
cardinality intervals, property types)

Datatype and datavalue similarities are external to our model. As such, they are provided
by the user or measured by a standard function (e.g., string identity of values and datatype
names/URIs).

Formally, given a categoryX together with the set of relationships it is involved in,N (X),
the similarity measureSimX : X2 → [0, 1] is defined as follows:

SimX(x, x′) =
X

F∈N (X)

πX
F MSimY (F(x),F(x′)).

The function is normalized, i.e., the weightsπX
F sum to a unit,

P
F∈N (X) πX

F = 1. for the
computability For instance, for two classesc, c′ :

SimC(c, c′) = πC
L simL(λ(c), λ(c′))

+ πC
I MSimO(I(c), I′(c′))

+ πC
S MSimC(S(c),S ′(c′))

+ πC
Adt

MSimP (Adt(c),A′
dt(c

′))

+ πC
Ao

MSimP (Ao(c),A′
o(c

′))

The set functionsMSimY compare two sets of nodes of the same category. They are presented
in the next paragraph. Table 1 illustrates the set of similarities in our model.

1.2.3 Similarity-based matching of entity sets

In order to ensure equity between factors inSimX(n1, n2), all similarities of pairs linked with
the same type of links are combined into a unique value. This is achieved by means of a generic
set similarity functionMSim. Its arguments are two setsS1 andS2 of entities of the same
categoryY and the respective measureSimY . The result is an average of the similarities of a

Funct. Node Factor Measure
SimO o ∈ O λ(o) simL

a ∈ A, (o, a) ∈ A MSimA

SimA a ∈ A r ∈ R, (a, r) ∈ R SimR
o ∈ O, (a, o) ∈ U MSimO
v ∈ V , (a, v) ∈ U MSimV

SimV v ∈ V value literal type dependent
SimC c ∈ C λ(c) simL

p ∈ P , (c, p) ∈ A MSimP

c′ ∈ C, (c, c′) ∈ S MSimC

simD d ∈ D λ(r) XML-Schema
SimR r ∈ R λ(r) simL

c ∈ C, (r, domain , c) ∈ R MSimC
c ∈ C, (r, range , c) ∈ R MSimC
d ∈ D, (r, range , d) ∈ R SimD

r′ ∈ R, (r, r′) ∈ S MSimR

SimP p ∈ P r ∈ R, (p, r′) ∈ S SimR
c ∈ C, (p, all , c) ∈ R MSimC
n ∈ {0, 1,∞}, (p, card , n) ∈ R equality

Table 1. Similarity function decomposition (card = cardinality andall = allValuesFrom).

limited subset of the productS1 × S2. The subset represents a matching that optimizes the total
similarity [9]:

MSimC(S1, S2) =

P
〈c1,c2〉∈Pairing(S1,S2) SimC(c1, c2)

max(|S1|, |S2|)

wherePairing(S1, S2) is the optimal matching. For normalization reasons, the sum of the
similarities of the pairs inPairing(S1, S2) is divided by the size of the larger set.

1.2.4 Equation system definition and iterative resolution

As many of the relationships are both-ways, it may be impossible to follow standard procedures
in computing the similarity values. Indeed, the recursive definition of the similarity may easily
lead to circular dependancies of the similarity values for two or more node pairs. In such cases,
an equation system is composed (see [2, 9]) out of the similarity definitions where variables
correspond to similarities of node pairs while coefficients come from weights.

Because of the uncertainty due to the matching functions whose outcome cannot be fixeda
priori , the resulting system is not linear and therefore cannot be solved in a direct way. Instead,
an iterative method is used to approximate the solution (which always exist) as the fixed point
of a vector function. The process starts with the local similarity, i.e., the one computed without
looking at neighbor nodes. It then integrates neighbor similarities and lets them grow as a result
of mutual influence. The growth is steady at each step of the iterative process but is nevertheless
limited from above since neither of the functions from table 1 can reach values greater than 1.
Thus, the process necessarily ends with a vector fixed point whose components are the similarity
values sought.

1.2.5 Lexical similarity measures

OLA relies on WordNet 2.0 [7] for comparing identifiers. For that purpose, it applies a measure
of “relatedness” between two terms. Given a pair of identifiers, the lexical similarity mechanisms
retrieve the sets of synonyms (thesynsets) for each term. A normalized Hamming distance is then
applied to these sets. A variant of the substring distance is used to establish a default similarity
value for identifier pairs. Such a default mechanism allows identifiers that are not entries in
WordNet, e.g., compound identifiers or abbreviations, to be processed in a sensible way.

1.3 Implementation

OLA is implemented in JAVA . Its architecture follows the one of the Alignment API and the re-
cent implementation that was described in [4]. OLA relies on the OWL API [1] for parsing OWL
files. An entire subsystem is dedicated to the onstruction of OL-Graphs on top of the parsed on-
tologies. A set of further components offer similarity computation services: substring distances,
edit distances, Hamming distance, etc. A specific component extracts similarity values from the
limited WordNet interface provided by the JWNL library [3]. Similarity-based matching between
sets of entities is performed by another component. Similarity and matching mechanisms are in-
tegrated into the alignment producing subsystem which supports the entire iterative computation

process. Finally, the VISON subsystem provides a uniform interface to all the automated tools
and visualizes both the input data, i.e., the OL-Graphs, and the final result, i.e., the alignment.

1.4 Adaptation made for the proposal

Several changes have been made to fit the complexity of the comparison. The most noteworthy
one is the abandon of the requirement that all entities of the same category are compared along
the same feature space.

1.4.1 Adaptive description space

We found that the “uniform factor weights” condition tends to favor pairs of entities that have
complete descriptions, i.e., pairs where both the members are connected to at least one descrip-
tive entity for each of the similarity factors in the respective formula. Conversely, pairs where
a particular factor is void tend to score to lesser similarity values. The extreme case is the pair
of Thing classes which, if present, usually have almost no description. With fixed weights for
similarity factors, and hence universal feature space for comparison, theThing class pair will
be evaluated to a relatively weak similarity value and the chances are high for it to be skipped
from the alignment.

For the above reasons, we decided to limit the comparison of two entities to the strict set
of factors which are non void in both. This has been achieved in an uniform way, i.e., through
a division of the initial linear combination formula by the sum of the weights of all non-void
factors. Thus, for a categoryX, the similarity measureSim+

X : X2 → [0, 1] becomes:

Sim+
X(x, x′) =

SimX(x, x′)P
F∈N+(x,x′) πF

whereN+(x, x′) is the set of all relationshipsF for whichF(x) ∪ F(x′) 6= ∅ 8.

1.4.2 Lexical similarity measure

The initial straightforward similarity measure has been replaced by a more sophisticated one
that better accounts for semantic proximity between compound identifiers. Thus, given a pair of
identifiers, they are first “tokenized”, i.e., split into a set of atomic terms. Then, the respective
pairs of terms are compared using WordNet. In fact, their degree of relatedness is computed as
the ratio between the depth of the most specific common hypernym and the sum of both term
depths. Finally, a similarity-based match is performed to establish a degree of proximity between
the sets of terms.

1.4.3 Weight finding mechanism

To increase the level of automation in OLA, a weight-search mechanism was added to the initial
architecture. Indeed, it is far from obvious for a novice user how to weight the different similarity
factors. The underlying module performs several runs of the alignment producing subsystem
with various weight combinations. It keeps only the combination that has resulted in the best
alignment, i.e., the one of the highest total similarity between aligned entities. On the one hand,
this procedure is not realistic in a setting where reference alignments are not given. On the other
hand, if the tests a realistic, then what is learned is the best behaviour of the system in general.

2 Results

The test protocol was as follows. We first looked for the typical weight combinations with an
exhaustive search on a small subset of test cases. The resulting combinations were then applied
systematically to the rest of the ontology pairs. Whenever the results were unsatisfactory, ex-
haustive search was applied to the neighborhood of the best scoring typical combinations. Here
we provide some details on the combinations that were mined out by OLA as well as a brief
comment for every single test indicating the combination of parameters that led to the best scor-
ing alignment. A summary of the results obtained with equal weights for all factors in a category
is provided at the end as well.

8 That is, exists at least oney such that(x, y) ∈ F or at least oney′ such that(x′, y′) ∈ F .

2.1 Preliminary tests

The optimal weight searching engine of OLA was run on a small subset of ontologies that seemed
to represent the extreme cases. The resulting matchings were compared to the respective expected
alignments according to the contest guidelines. The underlying weight combinations and their
respective alignment scores were then analyzed to discover possible trends. For this preliminary
experiment, the step in the variation of the specific weight values was set to 0.2 while the total
of all weights in a category was set to 1. This value provided a good trade-off between the range
of variation for each single weight (i.e., a five-grade scale) and the number of combinations to
be tested. Actually, there are 8 categories with 3, 4 or 5 weights. To bring down the resulting
combinatorial explosion, we used the same weight combination for entity categories sharing the
same set of similarity factors, e.g., datatype and object properties.

The results of this step suggested that there were three weight combinations that can lead to
the best scoring alignment for a test case:

• equal or nearly equal weights for all factors,
• one factor is assigned the total weight of 1 while the other weights are set to 0,
• the total weight of 1 is divided into two non-zero parts assigned to two factors, the remain-

ing factors are given zero weights.

In what follows, we indicate for each test the weight combination that led to the best align-
ment with respect to precision and the lexical similarity used. To provide an idea about the
average performances of OLA, we include also a summary of the scores obtained with perfectly
equal weights in every entity category (i.e., 0.2-step constraint relaxed). It is noteworthy that the
overwhelming majority of the results where precision is below 1.0 are mere lower bounds and
may well be improved through an exhaustive search in the weight combination space. Moreover,
in each test, our tool aligned all the named entities of the basic ontology to the most similar entity
of the compared ontology. Therefore, the recall scores, which depend on the size of the proposed
alignment, are relatively low.

2.2 Concept

In this group of tests, the string distance was systematically used for lexical comparisons.

2.2.101 Identity

The best alignment was obtained with unit weight to lexical similarity and zero weights to the
remaining factors for all categories.

Precision Recall Fallout
1.0 0.611 0.0

2.2.102 Irrelevant ontology

OLA used equal weights to obtain the following result that proved best.

Precision Recall Fallout
1.0 N/A 0.0

2.2.103 Language generalization

The best combination assigns for each category 0.4 weight to the lexical similarity and 0.6 to the
factor representing the links to more general entities (e.g., the super classes of a class, the class
for an individual, the relation for a property restriction, etc.).

Precision Recall Fallout
1.0 0.611 0.0

2.2.104 Language restriction

The combination that scored best is identical to the one described in the previous paragraph.

Precision Recall Fallout
1.0 0.611 0.0

2.3 Systematic

2.3.201 No names

Equal weights were used together with string distance.

Precision Recall Fallout
0.714 0.436 0.286

2.3.202 No names, no comment

The same settings as in test 201 were used.

Precision Recall Fallout
0.626 0.383 0.374

2.3.204 Naming conventions

are used for labels.
The same settings as in test 201 were used.

Precision Recall Fallout
0.901 0.550 0.099

2.3.205 Synonyms

Equal weights and WordNet led to the best precision alignment.

Precision Recall Fallout
0.802 0.490 0.198

2.3.206 Foreign names

The settings used were identical to those of test 205.

Precision Recall Fallout
0.761 0.450 0.239

2.3.221 No hierarchy

The settings used were identical to those of test 205.

Precision Recall Fallout
1.0 0.611 0.0

2.3.222 Flattened hierarchy

The best combination is equal to the one for test 201, except for the class category where the 0.6
weight was assigned to the instance factor. String distance was used as well.

Precision Recall Fallout
0.945 0.577 0.055

2.3.223 Expanded hierarchy

The same settings as in test 222 were used, with the exception of the 0.6 weight in the class
category which was assigned to the datatype property factor.

Precision Recall Fallout
0.989 0.604 0.011

2.3.224 No instances

The same settings as in test 205.

Precision Recall Fallout
1.0 0.968 0.0

2.3.225 No restrictions

The same settings as in the test 222 were used.

Precision Recall Fallout
1.0 0.611 0.0

2.3.228 No properties

Once again, the winning combination had equal weights for all factors with string distance.

Precision Recall Fallout
1.0 0.375 0.0

2.3.230 Flattening entities

The winning weight combination was the one of test 222 but with WordNet-based similarity.

Precision Recall Fallout
0.946 0.476 0.054

2.4 Real ontologies

2.4.301 BibTeX/MIT

The exclusively lexical comparison, e.g., weight of 1.0 to the lexical similarity factors in all
categories, which was supported by WordNet produced the best alignment in this case.

Precision Recall Fallout
0.623 0.513 0.377

2.4.302 BibTeX/UMBC

Same settings as in the 301 test.

Precision Recall Fallout
0.542 0.245 0.458

2.4.303 Karlsruhe

The same settings as in test 205.

Precision Recall Fallout
0.5 0.311 0.5

2.4.304 INRIA

Same settings as in the 301 test.

Precision Recall Fallout
0.671 0.315 0.329

2.5 Summary of equal-weight results

Figure 1 summarizes the results obtained by OLA with equal weight combinations.

Test Nbr Name Lex. Sim. Precision Recall Fallout

101 Id SD 0.97 0.59 0.03
102 Irrelevant SD 1.0 N/A 0.0
103 Language Generalisation SD 0.901 0.550 0.099
104 Language Restriction SD 0.912 0.557 0.088

201 No Names SD 0.714 0.436 0.286
202 No Names, No Comments SD 0.626 0.383 0.374
204 Naming Conventions SD 0.901 0.550 0.099
205 Synonyms WN 0.802 0.490 0.198
206 Foreign Names WN 0.761 0.450 0.239
221 No Hierarchy WN 1.0 0.611 0.0
222 Flattened Hierarchy WN 0.901 0.550 0.099
223 Expanded Hierarchy WN 0.967 0.590 0.033
224 No Instances WN 1.0 0.968 0.0
225 No Restrictions WN 0.967 0.590 0.033
228 No Properties SD 1.0 0.375 0.0
230 Flattening Entities WN 0.92 0.463 0.08

301 BibTeX/MIT WN 0.607 0.493 0.393
302 BibTeX/UMBC WN 0.5 0.226 0.5
303 Karlsruhe WN 0.5 0.311 0.5
304 INRIA WN 0.618 0.439 0.382

Figure 1. Results of the alignment with equal weights. Lexical similarity codes: WN stands for similarity
based on WordNet and SD for (inverted) string distance.

3 General comments

3.1 Comments on the results (strength and weaknesses)

According to experimental results, our algorithm performs well when the structure of the com-
pared ontologies are closed or identical (tests 10X and 22X).

3.2 Discussions on the way to improve the proposed system

Many of the initial assumption and constraints have proven to be a hamper for the establishment
of precise alignments. Here is a discussion of points that could not be corrected during the test
period but that we shall look at in the aftermath.

3.2.1 Limited inference in OL-Graph construction

In the construction process of our inner representation of the ontology we plan to expand class,
relation and property nodes with the description knowledge they inherit from the super entities.
Similarly, in the case where class restrictions fix property values, these values will be brought
down to the descriptions of class instances.

3.2.2 Inter-category comparisons

An extended version of the similarity measure should allow the comparison of entities from
different categories:

• classes with data types,
• object properties with datatype ones,
• objects with values.

3.3 Comments on the test cases

We fond that the proposed testbed cases cover a large portion of the situations that may arise
in ontology alignment practice. However, the targeted variation of the test cases, i.e., on one
specific dimension at once, is a challenge for our algorithm. Indeed, it was designed to be robust

on all features, hence no single feature is favored by the collection of weights. This does not
seem to be a winning strategy with a test set that alters systematically a single feature: Whereas
an algorithm that puts the emphasis on a particular feature will be negatively affected only by the
test that puts noise on that feature, our own system experiences a systematic, albeit much lighter,
negative impact.

3.4 Comments on measures

The proposed measures are definitely a first step in the right direction. Applying information
retrieval metrics such as recall and precision seems to be a good approximation for the expecta-
tions of an alignment tool user. And the underlying model is simple enough to be understood by
an average user. However, there is a price to pay for the simplicity, in particular with similarity-
based alignment tool that grades the strength of an alignment cell. In fact, the counting of “hits”
and “misses” ignores completely the actual strength values which may vary in large ranges.

3.5 Proposed new measures

A possibility would be to integrate the strength of the cells in the precision computation, some-
thing that could be done at low cost (e.g., by adding up strength values instead of counting).

4 Raw results

4.1 Links to the set of provided alignments (in align format)

A .zip archive of all the mentioned results together with indication of the OLA settings used for
their extraction is provided at:
http://www.iro.umontreal.ca/ ∼owlola/align_files.html .

4.2 Matrix format

See section 2.5.

5 Conclusions

It is still too early to draw final conclusions on the capacity of our system and our similarity-based
approach in general to produce meaningful alignments on real ontologies. Indeed, the results on
artificially altered ontologies only suggest the tool is robust to a single, albeit often powerful,
source of noise. Further experiments will be necessary to gain deeper insight into the behavior
of our alignment mechanisms. It is also noteworthy that the time allocated to the preparation of
the contest was clearly insufficient to deal with all the challenging issues it has revealed. We
are nevertheless very obliged to the contest organizers for their excellent initiative. Indeed, our
participation effort yielded a long list of exciting problems to look at.

Despite the partiality of the picture we could draw about the performances of OLA, we would
advocate for similarity as a mechanism for supporting alignment construction. It represents a
good trade-off between several criteria that need to be taken into account in the design of effective
alignment tools: precision of the final results, computational efficiency, good level of automation.

REFERENCES
[1] Sean Bechhofer, Raphael Voltz, and Phillip Lord. Cooking the semantic web with the OWL API. In

Proc. 2nd International Semantic Web Conference (ISWC), Sanibel Island (FL US), 2003.
[2] Gilles Bisson. Learning in FOL with similarity measure. InProc. 10th AAAI, San-Jose (CA US), pages

82–87, 1992.
[3] John Didion. The Java WordNet Library, http://jwordnet.sourceforge.net/, 2004.
[4] Jérôme Euzenat. An API for ontology alignment. InProc. 3rd ISWC, pages 698–712, Hiroshima (JP),

2004.
[5] Jérôme Euzenat and Petko Valtchev. An integrative proximity measure for ontology alignment. InProc.

ISWC-2003 workshop on semantic information integration, Sanibel Island (FL US), pages 33–38, 2003.
[6] Jérôme Euzenat and Petko Valtchev. Similarity-based ontology alignment in OWL-lite. InProc. 15th

ECAI, pages 333–337, Valencia (ES), 2004.
[7] A.G. Miller. Wordnet: A lexical database for english.Communications of the ACM, 38(11):39–41,

1995.
[8] Mohamed Touzani. Alignement d’ontologies dans OWL. Master’s thesis, University of Montréal, in

preparation.
[9] Petko Valtchev.Construction automatique de taxonomies pour l’aide à la représentation de connais-

sances par objets. Thèse d’informatique, Université Grenoble 1, 1999.

A Semantic Category Matching Approach

to Ontology Alignment

Tadashi Hoshiai1, Yasuo Yamane1, Daisuke Nakamura2, and Hiroshi Tsuda1

1 Fujitsu Laboratories Ltd., I. T. Media Laboratories,
211-8588 Kawasaki-shi, Kanagawa, Japan

{hoshiai, yamane.yasuo, htsuda}@jp.fujitsu.com
2 Kyoto University, Graduate School of Informatics,

606-8501 Sakyo-ku, Kyoto, Japan
daisuke@lab7.kuis.kyoto-u.ac.jp

Abstract. We applied our semantic category matching (SCM) approach to
the EON ontology alignment contest problems. Our approach found pairs of
semantically corresponding categories from two different classification
hierarchies such as Yahoo, based on natural language processing,
similarity searching of huge vector spaces, and structural consistency
analysis. The EON Contest’s random name problems (#201, #202) could not
be solved using conventional character string resemblance techniques. However,
when we applied SCM to these problems, the results showed that SCM had
improved the accuracy as compared to the conventional method (F-measure:
0.021=>0.949, 0.021=>0.580). Moreover, SCM exceeded the accuracy average
in all problem areas by over 10 % as compared to conventional methods.

1 Semantic Category Matching

1.1 Outline

We applied semantic category matching (SCM) technology to the ontology alignment
problem. Our method found pairs of semantically corresponding categories between
two different classification systems. In the integration and interoperation of
classification systems, this kind of technology is important. However, there are
problems that cannot be solved using only the character string resemblance method
because of the difference in the category names, category granularity, and the
classification hierarchy formation principles.

Related works of SCM technology are the enhanced Bayes classification method
by Agrawal [1] and the Identity test method by Ichise [2]. Agrawal’s work is a
content-oriented statistical approach, as much as ours. However, his work does not
look at the entire hierarchical structure, and so therefore it is not suitable for large
hierarchy classification systems. Ichise’s work is not content-oriented approach but an
extension-oriented approach, based on URL identification in web directories.
However, we think that content-oriented approach is necessary for semantic analysis
of text information. Furthermore, their works did not treat structural consistencies
between the results of the category correspondence and hierarchical structures. Since
these points are important for large system services and semantic approaches, we
incorporated them into our method.

Semantic category matching is based on a statistical approach that takes sample
documents from each category and hierarchical structure description data, and outputs
all category pairs that semantically correspond with the two classification systems.
Ontology alignment is a problem designed to find couples of corresponding classes.

While the purposes of SCM and ontology alignment are different, the problem
structures of both are similar to each other, from the perspective of alignment between
the hierarchical structures. Therefore, we applied our new SCM technology to
problems that could not be solved by usual methods.

1.2 Elemental technology

We used the following elemental techniques, which we will explain sequentially, in
SCM. An outline diagram of SCM is shown in Figure 1.

1) Hierarchical version of keyword extraction,
2) Similarity search category similarities, based on oblique coordinates and,
3) Structural consistency analysis.

1.2.1 Generating category feature vectors by hierarchical keyword extraction
A keyword extraction technique statistically analyzes documents classified by
category. It finds keywords, which are words that occur frequently in the documents
in a specific category, but exclude common frequently occurring words that appear
regularly in other categories but that have a weak relationship to the category.

In keyword extraction technology, the following premises are given:
- High statistical correlation between word occurrences in the document and
their classification categories.

- Sufficient classified documents to do a statistical analysis.
- Highly correlated nouns within a category.
- Subcategory word occurrence characteristics are succeeded by super
categories along the classification hierarchy.

Under the above premises, the keywords are extracted automatically, based on the
statistical correlation between the document’s topic category and the word
occurrences. In this case, we can select criteria measures that highly evaluate only
words that have a high correlation to a specific category. In our research, we used
Kullback-Leibler’s information as follows:

)(

)|(log)|(
wQ

CwPCwP ⋅

 w: word, C: category, P(w|C): word occurrence probability in category C
Q(w): average word occurrence probability of every brother-category of C

The keywords are extracted according to the following procedures.
input document => morphological analysis => remove unnecessary words

 => count words => total word occurrences in each category
=> inherit subcategory’s statistical characteristics to super-category
=> select higher-ranking words in each category

Finally, the words whose value of the criteria measure is higher (for instance, the
higher 30 words) in each category are selected as keywords. Then, the category
feature vectors, based on the word occurrence characteristics of each category, were
output. Moreover, because the subcategory feature is weighted and inherited to a
super category, the neighborhood of the classification’s hierarchical structure was
reflected in the features of the keywords, and the distance in the vector space.

Figure 1. Outline of semantic category matching

Category distribution in
multi-dimensional space V(A)

Directory A Directory B

Correspondence search for
category-characteristic vectors in
common space V(A∩B)

Corresponding category pairs

●

B

B

B

A

A

A

the nearest category among B for A2

Category distribution in
multi-dimensional space V(B)

1.2.2 Similarity category search based on oblique coordinates
Because each vector space (V(A) and V(B) in Fig. 1) formed by the two different
classification systems generally has different coordinate systems (each axis coordinate
corresponds to a keyword), we created and used a common feature vector space
()(BAV ∩ in Fig. 1) with vocabulary common to both systems, to compare the
category vectors.

By using an oblique coordinate system [3] that reflects the correlationship
between the keywords, the similarities in the word meanings can be woven into the
coordinate system. As a result, the vector space becomes semantically more natural.
For example, consider these keywords “sports”, “Olympics”, and “weather”. Because
the first two words are more similar, the corresponding coordinate axes are set more
closely than the last one. For each category in one classification system, the nearest
neighboring categories of the other systems are output according to the order of their
angle distances.

1.2.3 Structural consistency analysis
Structural consistency analysis focuses on whether the category couples correspond
between the two classification systems and is formed naturally within their
hierarchical structures, or not. After category couples are mutually and independently
selected by a similar category search as the candidates of the results data of the entire
system, it is necessary to decide which category couples are natural structural
correspondences.

Figure 2 shows the naturalness of the correspondence between two hierarchical
structures. When we call one of the category couples the reference couple (a solid-line
arrow in Fig. 2), we can evaluate whether the neighboring couples (dotted-lines
arrows in Fig. 2) can be placed well (or badly) in the hierarchical structure on both
sides, by comparing them to the reference couple. Here, assuming that the categories
of a reference couple are ‘a’ and ‘b’ in Fig.2, 'neighbor couple' indicates the category
couple, whose category is near as link distance to another category. The link distance
indicates the number of subcategory links that can be joined to ‘a’ or ‘b’.

The neighbor couple that contains subcategory ‘a1’ and ‘b1’ in Figure 2, is
consistent with the reference couple (‘a’ and ‘b’) with respect to their hierarchical
structures, because the category ‘a1’ is a subcategory of category ‘a’ and category ‘b1’
is subcategory of the category ‘b’. Conversely, the neighboring couple that contains
subcategory ‘a2’ and ‘b2’ in Figure 2, the couple is not consistent with the reference
couple with respect to their hierarchical structures, because category ‘a2’ is a super
category of category ‘a’ and the category ‘b2’ is subcategory of the category ‘b’. If the
degree of this consistency is provided according to a suitable measure, the structural
consistency of the reference couple is obtained as the average consistency of all the
neighboring couples. Finally, the structural consistency of the entire SCM is obtained
as the structural consistency average of all the reference couples.

Figure 2. Structural consistency analysis

1.3 Adaptation for Semantic Category Matching

1.3.1 An SCM approach to the ontology alignment problem
Because both techniques have the same common structure from the point of view of
correspondence between two hierarchical structures, we thought that we could apply
SCM technique to ontology alignment (OA), even though the purpose of SCM was
originally different from the purpose of OA.

Difference between ontology alignment and category matching:
Because the description unit for OA is class (or instance), and the description unit for
an SCM is the category (object domain) of document topics, the granularity of OA is
smaller than SCM. Furthermore, in OA, properties for both object’s attributes and
relations between objects, and also, the restricted condition of property can be
described. On the other hand, we cannot describe any predefined logical relationships
between any of the parts of a document in SCM, but XML tag’s roles. Thus, the
information described in OA is more detailed than the information described in SCM.

The idea of application of SCM to OA:
The class-instance relationship is common to both techniques: therefore if we
interpret ‘class’ in ontology as ‘category’ in SCM, and interpret ‘instance’ as ‘sample
document’, and the ontological description information is converted into a category
name, the document ID, the category hierarchy relationship, and tag structure of XML
documents in SCM, we can extract suitable keywords from the text of suitably
selected tags in XML documents.

1.3.2 Outline of application of SCM to OA

classification A classification B

a2

a

a1 b2

b

b1consistent

inconsistent

Figure 3. Application flow of SCM to OA

An outline of SCM application to the ontology alignment problem is as follows: (see
Figure 3)

- The descriptions of two ontology sets (reference and target ontology) are
converted into XML document sets in two classification systems and two category
hierarchies in SCM format. (see Figure 4)

- SCM is applied to 2 sets of converted data to resolve the OA problem.

Figure 4. Conversion from ontology description to SCM input data

SCM results

Convert ontological information
to SCM documents

Apply SCM
to ontology alignment problem

Ontology 1 Ontology 2

Convert alignment results
to OWL format

Alignment by SCM
in OWL format

Evaluate precision

Reference Alignment

Classification 1 Classification 2

Precision, recall,
F-measure

Category C

Category A

descr.
of B

instances

Category B

Converted classification system data

Ontology
data

description

Classes

Properties

instance

descr.
class

B

desc.
class

A descr.
class

C

descr.
of C

instances

- SCM outputs a set of category-pairs that indicate the alignment between the two
classification hierarchies. The results data are described in Ontolingua langage.

- The SCM results data are converted into the OWL alignment form of the EON
contest.

- Finally, the alignment result accuracies (F-measure etc.) are calculated by
ontoalign, the ontology alignment evaluation tool prepared by EON’s promotion
division.

2 Results

In first experiment, we applied SCM (version 1) to first version of contest test data, as
much as string-based alignment method included in the ontoalign evaluation tool.
Because these test data included bugs, we had to modify these data for enabling
execution of programs, and so results data seem to be under a little influence of these
modification. The accuracy data (F-measure) of results for applying SCM to each
problem are listed in Table 1, along with the results of standard string-based
alignment method.

Table 1. F-measures results of SCM and string-based methods in first experiment

test no. 101 102 103 104 201 202 204 205 206 221
String-based .938 NaN .948 .948 .021 .021 .753 .344 .423 .948
SCM v1 .990 NaN .970 .980 .870 .500 .829 .579 .687 .909
Difference .052 0 .022 .032 .849 .479 .076 .235 .264 -.039

test no. 222 223 224 225 228 230 301 302 303 304
String-based .897 .897 .938 .948 .917 .854 .593 .411 .510 .804
SCM v1 .924 .916 .957 .978 .899 .890 .729 .468 .400 .820
Difference .027 .019 .019 .030 -.018 .036 .136 .057 -.110 .016

Note: ‘NaN’ (not the answer) indicates ‘division by zero’ (the alignment number is zero)
for calculating the F-measure. These are proper results, because test #102 has no proper
alignment of classes or properties, therefore we can replace ‘NaN’ with 1.0 (that is, the
results of the alignment are proper.).

After final revised version of test data was disclosed, we applied the little revised
SCM (version 1.1) to the final version of test data in the second experiment. The
results are listed in Table 2.

Table 2. F-measures results of SCM in second experiment

test no. 101 102 103 104 201 202 204 205 206 221
SCM v1.1 .995 NaN .995 .995 .949 .580 .933 .699 .584 .925

test no. 222 223 224 225 228 230 301 302 303 304
SCM v1.1 .955 .908 .995 .995 .941 .953 .755 .468 .505 .886

For comparison between each method, the polygonal line graphs on results data of
both experiments are shown in Figure 5.

Figure 5. F-measure results of SCM and string-based method

2.1 Concept test (test no.: #101, #102, #103, and #104)

Test number 101 is a comparison test of the same ontology, and number 102 is a
comparison test of quite different ontological domains (bibliography and food). The
ontological structures of numbers 103 and 104 are close to that of number 101.

In test #102, results of both methods are exactly matched, that is zero alignment.
As the string-based method is based on the agreement/disagreement of the name

character strings, whether or not the class names in the reference ontology are the

0.000

0.200

0.400

0.600

0.800

1.000

1
0
1

1
0
2

1
0
3

1
0
4

2
0
1

2
0
2

2
0
4

2
0
5

2
0
6

2
2
1

2
2
2

2
2
3

2
2
4

2
2
5

2
2
8

2
3
0

3
0
1

3
0
2

3
0
3

3
0
4

Test numbers

F
-
m
e
a
su
re

string-based SCM V1.1 SCM V1

same as the class names in the target ontology, this method is suitable for this kind of
tests. In the tests #101, #103, and #104, alignment result accuracies from the
string-based methods attached to the ‘ontoalign’ evaluation tool were close to 100%.

Moreover, the SCM alignment results of other tests were generally superior to the
results of the string-based methods.

By the way, the revised SCM (v1.1) results (0.995) included the alignment couple
between ‘language’ property in reference ontology and ‘language’ property in target
ontology. Though we think that this result is proper and results become 1.0, but the
final version of reference alignment file (refalign.rdf) does not include this alignment
couple.

2.2 Name diversity test (#201, #202, #204, #205, and #206)

The problems we focused on in this paper are those that involve naming diversity.
These cannot be solved by string-based methods. The other hand, SCM is a
content-oriented approach, and can solve these problems using content similarity
between the semantically same classes in different ontologies. That is, even if there is
a disagreement in the class names between both ontologies, when the description data
of the classes and the instances belonged to their classes were statistically and
structurally similar, we could obtain an ontological alignment. Semantic similarity of
properties can be discussed as well as semantic similarity of classes.

In random name tests (#201, #202), there was no similarity in the name character
strings between reference ontology and target ontology, and so the string-based
method results were almost 0%. In contrast to this, the results of SCM was 87% and
SCM v1.1 improved to 94.9% in the test #201 where comment sentences were
available, and was 50.0% and improved to 58.0% in the test #202 where no comment
sentences were available.

In test #204, #205, and #206, SCM v1.1 exceeded the string-based method by
over 10%.

2.3 Hierarchy variation test (#221, #222, and #223)

In the no hierarchy test (#221), the SCM results fell below the string-based method
results by a few percentage points. Conversely, in the flattened hierarchy test (#222)
and the expanded hierarchy test (#223), the SCM results exceeded the string-based
method by a few percent.

In SCM, because the hierarchical relationship of ‘subClassOf' is reflected in the
calculation of the category feature vectors of both a super class and a subclass, the
feature vectors are distributed close to each other in the vector space, even if the
names in these classifications have no common character strings. In test number 221,
we think the accuracy fell because of lost information in this hierarchical relationship.

2.4 Other systematic tests (#224, #225, #228, and #230)

In the no instances (#224), no restrictions (#225), no properties (#228), and flattened

entities (#230) tests, the SCM v1.1 results exceeded all of results of the string-based
method by several percent.

2.5 Real ontology test (#301, #302, #303, and #304)

In BibTex/MIT test (#301), the SCM results exceeded the string-based method results
by 10% or more. In the BibTex/UMBC test (#302) and BibTex/INRIA test (#304), the
SCM results exceeded our expectations by several percent. In the BibTex/Karlsruhe
test (#303) the SCM results fell by only 0.5%.

3 General comments

3.1 Results (strength and weaknesses)

Strength:
When there are semantically similar classes between both ontologies, even if the
name of the class in one kind of ontology is different from that in another, SCM can
find correspondences of these classes in both ontologies.

Weakness:
When there is little common vocabulary between the ontologies, there is a possibility
that the system cannot identify the semantically similar category vectors in the feature
vector space. (For example, the case there is no similarities in the instance description
data.)

3.2 Improving the proposed system

Stemming:
Because we don’t process English stemming now, SCM cannot absorb inflection
variations of English words (-s, -es, -ing, -ed, -er, -est, etc.). It is true that this changes
the original word into a different one, thus decreasing the accuracy rate, but this
influence is reduced by effects of correlation between semantically similar words in
oblique coordinate vector space. Consequently we will use the stemming function in
our system in the future. In our experiments, we performed Japanese morphological
analysis and stemming.

3.3 New measures proposed

Path-weighted accuracy (P-measure):
Currently, we obtain an incorrect answer (accuracy 0) if the intended class is not
described in results data. If there is correspondence between two classes that are
semantically unrelated to the intended class, and the correspondence between two
classes that are closely related to the intended class, it is clear that the latter

performance will be better than the former. Therefore, if we use the number of links
between two classes of ‘subClassOf’ and define the semantic closeness between
classes r (0 =< r =< 1) as accuracy, then the overall accuracy can be calculated as the
average of all of accuracies of the correct answers).

4 Raw results

4.1 Links to the set of provided alignments

Currently, our company does not permit public access to URLs containing the
alignment results data files.

5 Conclusions

We showed that there were large improvements in the accuracy during experiments
when our category matching technology was applied to difficult ontological
alignment problems, such as naming diversity. The EON contest’s random name
problems (#201, #202) were difficult to solve using conventional techniques, based on
character string resemblance. However, when we applied our category matching
method, the SCM accuracy results showed some improvement over conventional
methods (F-measure: 0.021=>0.949, 0.021=>0.580). Moreover, in all tests, the
accuracy average surpassed that obtained in conventional tests by over 10 % on
average.

In the future, I want to work on other ontology alignment problems and improve
the accuracy of category matching technology much more.

Acknowledgements
I would like to thank Tomoya Iwakura for his suggestions and support on our program
development.

References

1) Agrawal, R. and Srikant, R.: On Integrating Catalogs, in Proceedings of the Tenth

International World Wide Web Conference (WWW-10), (2001) 603-612.
2) Ichise, R., Takeda, H. and Hon'iden, S.: Learning on the adjustment rules between

hierarchical knowledge, Journal of JSAI, vol.17, no.3-F (2002) 230-238.
3) Yamane, Y., Hoshiai, T., Tsuda, H., Katayama, K., Ohta, M., Ishikawa, H.: Multi-Vector

Feature Space Based on Pseudo-Euclidean Space and Oblique Basis for Similarity Searches
of Images, in Proceedings of the First International Workshop on Computer Vision meets
Databases (CVDB 2004), (2004) 27-34.

4) Hoshiai, T., Yamane, Y., and Tsuda H.: Category-level Retrieval among Heterogeneous
Information Sources based on Category Matching, in Proceedings of the 6th SANKEN
(ISIR) International Symposium, Osaka (2003) 73-76.

Using PROMPT Ontology-Comparison Tools
in the EON Ontology Alignment Contest

Natalya F. Noy, Mark A. Musen

Stanford Medical Informatics, Stanford University,
251 Campus Drive, x-215, Stanford, CA 94305, USA

{noy, musen }@smi.stanford.edu

Abstract. Objective evaluation and comparison of knowledge-based
tools has so far been mostly an elusive goal for researchers and develop-
ers. Objective experiments are difficult to perform and require substantial
resources. The EON Ontology Alignment Contest attempts to overcome these
problems in inviting tool developers to perform a series of experiments in
ontology alignment and compare their results to the reference alignments
produced by experiment authors. We used our PROMPT suite of tools in the
experiment. We briefly describe PROMPT in the paper and present our results.
Based on this experience, we share our thoughts on the experiment design, its
positive and negative aspects, and talk about lessons learned and ideas for future
such experiments and contests.

1 Introduction

Objective evaluation and comparison of knowledge-based tools has so far been mostly
an elusive goal for researchers and developers. First, such evaluations require resources,
both financial and human. Second, for an evaluation to be objective, it must be designed
and run by someone other than tool developers themselves. Otherwise, the evaluation
setup and comparison parameters are inevitably skewed (often subconsciously) to ben-
efit the designers’ own tools. Third, it is often hard to come up with realistic tasks and
gold standards because all tools are designed for somewhat different purposes and try-
ing to pigeonhole the tools into a single set of tasks for an evaluation often puts the
tool designers in the untenable position of comparing their tool in circumstances for
which it was not designed. Fourth, many of the criteria are, by their very nature sub-
jective. For example, when evaluating the quality of an ontology, we often don’t have a
single correct answer for how certain concepts should be represented. When evaluating
the quality of ontology alignment, we often cannot agree on the precise relationships
between concepts in source ontologies.

Therefore, any experiment or contest to compare ontology-based tools will almost
inevitably draw criticism. Nonetheless, given the extreme dearth of any comparative
evaluation of ontology-based tools, any good evaluation is a significant step forward.
Hence, we believe that the community will learn many lessons from the EON Ontol-
ogy Alignment Contest1 that is run as part of the 3d Workshop on the Evaluation of

1 http://co4.inrialpes.fr/align/Contest/

2

Ontology-based Tools at the International Semantic Web Conference.2 In the experi-
ment, developers of ontology-alignment tools used their tools to compare concepts in
a set of ontologies. The resulting alignment was then compared to the reference align-
ment provided by the experiment authors. Hopefully, the lessons from this experiment
will enable the community to produce new experiments that do not suffer from some
of the problems the EON experiment has. Indeed, in some of the materials it is called
a “contest” and in others, an “experiment” that will help us to understand how to run
such evaluations. We subscribe to the latter goal since the experiment design, being the
first one of its kind, has considerable deficiencies that make a contest premature.

In the rest of this paper, we share our thoughts on the experiment design, its positive
and negative aspects, describe the set of PROMPT tools that we used in the experiment
and our results. We then talk about lessons learned and ideas for future such experiments
and contests.

2 Ontology Comparison with PROMPT

PROMPT is a suite of tools for managing multiple ontologies. It is a plugin to the Protéǵe
ontology-editing and knowledge-acquisition environment.3 The open architecture of
Prot́eǵe allows developers to extend it easily with plugins for specific tasks. We imple-
mented PROMPT as a set of such plugins.

2.1 Components of thePROMPT Suite

The PROMPT suite includes tools for many of the tasks in multiple-ontology manage-
ment: interactive ontology merging [1], graph-based mapping [3], creating views of an
ontology [2], ontology versioning [4], and ontology-library maintenance. It is through
development of these tools that we came to realize that many of these directions are
indeed related and started integrating the approaches into a common framework. The
tools in the PROMPT suite share user-interface components, internal data structures,
some of the algorithms, logging facilities, and so on.

IPROMPT is an interactive ontology-merging tool. It leads users through the
ontology-merging process, suggesting what should be merged, identifying inconsisten-
cies and potential problems and suggesting strategies to resolve them.IPROMPT uses
the structure of concepts in an ontology and relations among them as well as the infor-
mation it gets from user’s actions. For example, ifIPROMPT’s analysis identified that
two classes from different ontologies may be similar and then the user merged some of
their respective subclasses,IPROMPT will be even more certain that those classes are
similar.

ANCHORPROMPT—another component in the suite—analyzes a graph represent-
ing ontologies on a larger scale, producing additional suggestions. It takes as input a set
of pairs of matching terms in the source ontologies and produces new pairs of match-
ing terms. ANCHORPROMPT’s results could then be used inIPROMPT to present new
suggestions to the user.

2 http://km.aifb.uni-karlsruhe.de/ws/eon2004/
3 http://protege.stanford.edu

3

Merging source ontologies to create a new one is not always what the user needs. If
the user prefers to keep the source ontologies separately and to record only the align-
ment, IPROMPT saves the alignment as a side-effect of the merging process. The user
can then discard the merged ontology and simply use the produced alignment.

PROMPTDIFF is a tool for comparing ontology versions. We observed that many of
the heuristics we used inIPROMPT would be very useful in finding what has changed
from one version of an ontology to another. These heuristics include analysis and com-
parison of concept names, properties that are attached to concepts, domains and ranges
of properties and so on. At the same time, our level of confidence in the analysis could
be much higher than in the case of ontology merging: If two concepts that came from
versions of the same ontology look the same (e.g., have the same name and type), they
probablyare the same, whereas if two frames that came from independently devel-
oped ontologies look the same, they may or may not be the same. Consider a class
University for example. In two different ontologies, this class may represent either
a university campus, or a university as an organization, with its departments, faculty,
and so on. If we encounter a classUniversity in two versions of the same ontology,
it is much more likely that it represents exactly the same concept.

The PROMPTDIFF algorithm for version comparison consists of two parts: (1) an
extensible set of heuristic matchers and (2) a fixed-point algorithm to combine the re-
sults of the matchers to produce a structural diff between two versions. Each matcher
employs a small number ofstructural and lexical properties of the ontologies to pro-
duce matches. The fixed-point step invokes the matchers repeatedly, feeding the results
of one matcher into the others, until they produce no more changes in the diff.

One matcher, for example, looks for unmatched classes where all siblings of the
class have been matched. If multiple siblings are unmatched, but their sets of properties
differ, another matcher will pick up this case and try to match these classes to unmatched
subclasses of the parent’s image. Another matcher looks for unmatched properties of a
class when all other properties of that class have been matched. There are matchers that
look for lexical properties such as all unmatched siblings of a class acquiring the same
suffix or prefix. The architecture is easily extensible to add new matchers. With the
introduction of OWL, for example, we implemented additional matchers that compared
anonymous classes.

2.2 EvaluatingPROMPT in the EON Ontology-Alignment Contest

In the EON Ontology-Alignment Contest, the participants had to perform the follow-
ing task: For each of the ontologies in the experiment, map its classes and properties
to the classes and properties in areference ontologyand record the alignment. The
alignment was then compared to thereference alignmentprovided by the authors of
the experiment.

We originally planned to useIPROMPTand ANCHORPROMPT—our tools for ontol-
ogy merging and alignment—in the experiment. However, most of the source ontolo-
gies in the experiment are not independently developed ontologies, but rather versions
of the same ontology. Even in the three experiments where the reference ontology de-
veloped by the experiment authors was compared to ontologies developed elsewhere,

4

the comparison closely resembled comparison between ontology versions: All ontolo-
gies represented the structure of BibTex references and therefore were at the same time
limited and driven by the BibTex data model and hence did not vary significantly in the
concepts they represented. They varied only in coverage: some ontologies included for
instance more detailed representation of people and projects but since these concepts
were not part of the BibTex model, they were not mapped to concepts in the reference
ontology anyway.

Given that the comparison was very close to version comparison, we decided to use
only PROMPTDIFF, our version-comparison tool. PROMPTDIFF produces a mapping
between concepts in one version and their corresponding concepts in another version. In
addition, PROMPTDIFF produces a comparison between these corresponding concepts,
presents the results to the user in an intuitive interface and enables users to accept and
reject changes. For the experiment, we used only the first component of PROMPTDIFF,
the one that produces correspondences between concepts (classes and properties) in two
versions.

Adaptation of PROMPTDIFF for the Experiment. Figure 1 shows the process that
we used to perform comparisons for the experiment. First, we ran PROMPTDIFF on the
two ontologies to be mapped. PROMPTDIFF runs in a stand-alone completely automatic
mode and produces a table of mappings between concepts (clases, properties, and in-
stances) as one of its results. Second, we recorded the results in an RDF file following
the format set in the experiment. The recording mechanism was our first modification
of the tool for the experiment. Third, we used PROMPTDIFF itself again to compare
the alignment to the benchmark alignment provided in the experiment and to compile
the results. Because PROMPTDIFF compares not only classes and properties, but also
individuals (by comparing their values for corresponding properties), we could easily
perform this comparison of RDF data automatically. We present our comparison results
in Section 3.

We have performed minimal adaptation of the tool itself. One of the key features of
PROMPTDIFF is that it is anextensiblecollection of matchers. Hence, it is easy to add
new matchers. In the process of the experiment, we found several interesting heuristics
that we have added to the tool. These heuristics were conservative enough that they did
not lower the resulting precision for all the tests, but they did help us increase the recall.
For instance, we already had a heuristic that matched two propertiesP1 andP2, each
of which had a single range,R1 andR2 respectively, if we already new thatR1 andR2

matched. We did not have a corresponding heuristic for domains, however, and therefore
added it. We found these heuristics to be generally useful for version comparison and
plan to keep them in the tool. Overall, we added three new matchers to the 17 matchers
that we already had.

Other Considerations. We would like to point out several other features of PROMPT-
DIFF that are relevant for the experiment.

As a plugin to Prot́eǵe which, through its extensible knowledge model and architec-
ture, supports many different backends and ontology formats, PROMPTDIFF works with
ontologies in OWL, RDFS, OKBC, and other languages. Therefore, we did not need to

5

Source ontology
(OWL)

Reference ontology
(OWL)

PromptDiff

Alignment result
(RDF)

Reference alignment
(RDF)

PromptDiff

Precision and recall
data

Fig. 1. Using PROMPTDIFF in the EON Ontology-alignment Contest. First, PROMPTDIFF auto-
matically compares the source ontology to the reference ontology. Second, it produces the align-
ment results in the RDF Format specified in the contest rules. Third, it automatically compares
the alignment result to the reference alignment to produce recall and precision data.

adapt it in any way either to compare the ontologies in the experiment (which were
in OWL) or to compare the alignments that PROMPTDIFF produced to the reference
alignment (which were in RDF).

PROMPTDIFF and other tools in the PROMPT suite produce only equivalence map-
pings. Some of the reference alignments in the experiment contained generalization and
specialization mappings. In our results, we considered only the equivalence mappings
from the reference alignment. In cases where PROMPTDIFF produced an equivalent
mapping and the reference alignment contained only generalization or specialization,
we considered it a positive result for PROMPTDIFF. In almost all of these cases, we
believed that, from the common-sense point of view, the equivalence alignment was
actually more correct (Section 3).

PROMPTDIFF does not use comments or instance information to align classes or
properties (It uses instance information only to align between instances themselves).
Therefore, tests that differed only in the presence of comments produced identical re-
sults.

3 Experiment Results

We performed 20 tests as part of the experiment, all the tests specified in the experi-
ment. Table 1 contains the summary of the results. Note that in the discussion below
we focus almost exclusively on recall. Because PROMPTDIFF uses a very conserva-
tive approach in creating matches, matches that it finds are almost always correct. Our
previous experiments have put precision at 100%. in this experiment, it was above 99%.

6

3.1 Results of Specific Tests

In 10 of the 20 tests, the source ontology contained classes and properties with exactly
the same names as those in the reference ontology. While in a general case of ontol-
ogy alignment, when two classes from different ontologies have the same name, they
may not necessarily match, in version alignment, they almost always do. In fact, in the
experiment, they always matched. Furthermore, in these 10 cases, there were no other
matches. Thus, any tool, which, just as PROMPTDIFF starts by comparing names of
concepts (and, perhaps their types) would trivially produces the perfect alignment in
these cases. These tests are: 101, 103, 104, 221, 222, 223, 224, 225, 228, 230. Test 102
had no matches, and PROMPTDIFF correctly found this result. We do not discuss these
tests further in this section.

Tests 201 and 202: No names, no comments.In these tests, each class and property
name was replaced by a random one. These tests were the most difficult of all tests
because, except for the imported classesfoaf : Organisation andfoaf : Person,
there was no other name information for the tool to use. PROMPTDIFF was able to
match 8 classes and 3 properties. Having the two imported classes was crucial to come
up with any matches, since PROMPTDIFF could then use such clues as having single
unmatched subclasses of a matched class; having a single property attached to matched
classes; and so on.

We performed a variation of this experiment, where the class names all remained
scrambled, but property names were all restored (tests 201a and 202a in Table 1). Hav-
ing properties helped tremendously since now PROMPTDIFF was able to find correctly
90 of the 92 matches from the reference alignment. The only classes that it did not
match wereMastersThesis andPhDThesis. In fact, after examining these classes
in the ontology, we are convinced that these two classes are indistinguishable to any
tool in the experiment: They are referenced in exactly identical ways in the reference
ontology and having their names scrambled makes them indistinguishable.

Since PROMPTDIFF does not use comments in its analysis, results for the tests 201
and 202 (which differed only in the presence of comments) were identical.

Test 204: Naming conventions.Despite the use of different naming conventions in the
source ontology, PROMPTDIFF found all matches.

Tests 205 and 206: Synonyms and Foreign Names.As the Table 1 shows, PROMPTDIFF

matched approximately 50% of classes in each of these tests, and approximately 25%
of properties. PROMPTDIFF does not have a specific matcher that uses a dictionary to
look up word translations or a thesaurus to look up synonyms. Hence, it was left to using
only structural clues to find the matches. Without the knowledge of synonyms, however,
many of the classes and properties were hard or impossible to distinguish. Some of
the classes that it did not match includeMastersThesis andPhDThesis mentioned
earlier, andSchool andPublisher, which are structurally indistinguishable without
instances (which PROMPTDIFF does not use to compare classes). Other classes could
probably be distinguished structurally if we used less conservative heuristics, but this
approach would have produced many false matches in other experiments. Clearly, tools

7

that use dictionaries and thesauri would perform better on these tests. PROMPTDIFF

itself would also benefit from additional matchers that use these external sources.

Test 301, 302, 303: BibTex/MIT, BibTex/UMBC, BibTex/Karlsruhe.The comparisons
in this series were the only ones involving ontologies developed at different institu-
tions and, hence, were not trueversioncomparisons. As we pointed out earlier, the
ontologies were still sufficiently close and used a very similar terminology, and hence
using PROMPTDIFF was still appropriate. However, this case was the first one where
PROMPTDIFF produced some incorrect matches (PROMPTDIFF incorrectly matched
theConference classes in the two ontologies, and twoaddress properties).

In the reference alignments for these tests, we believed that some of the equiv-
alence matches were not correct. In test 301, the matches between propertiesdate
and hasY ear and book and booktitle were not supported by the ontologies. There
was a similar problem with thebook–booktitle match in the reference alignment for
test 302. In tests 302 and 304, the reference alignment suggests that classChapter
in the reference ontology matches classInBook in the source ontology and the class
InBook in the reference ontology is actually a specialization of the classInBook in
the source ontology. We did not find any data in the ontologies to support this match
and therefore considered the equivalence match betweenChapter andInBook in the
reference alignment to be incorrect and the equivalence match between the two classes
InBook to be correct. It was also unclear why the propertiesproceedings, isPartOf
andbooktitle match. We did not include these incorrect matches from the reference
alignment in our results. We also did not consider matches to concepts in non-local
namespaces and therefore discarded the match to thedateT ime XML Schema datatype
from the reference alignment for test 302.

3.2 Overall Results

Table 1 presents a detailed look at the results of the experiments. We separate the re-
sults for classes and properties before finding the average value. We have included our
modified tests 201a and 202a into consideration: In these tests, we kept the class names
scrambled, but restored the property names. We show the average values for the original
set of tests (the line marked “no mods”). The line marked “mods” shows the average
values if we consider modified versions of tests 201 and 202 (with property names in-
tact) instead of the original ones. Given that the recall number for tests 201 and 202 were
clearly outliers (recall that because PROMPTDIFF does not look at comments, these two
tests were identical), we also looked at the average values without these outliers (the
last line in the table).

The average precision for both class and property matches was above 99%. The
average recall is 62.4%. Note however, that his low recall figure is caused mainly by
two tests, 201 and 202. If we replace these two tests with our modified tests, 201a and
202a (the “mods” line), the recall goes up to 94.1%. If we drop these two outlier tests
altogether, the recall is 94.9%. In all cases, where there was any difference in recall
between classes and properties, the recall for classes was higher than the recall for
properties.

8

Test Class PropertyPrecisionPrecision Overall Recall Recall Overall
matches matches for for PROMPT for for PROMPT

in in class property precision class property recall
PROMPT PROMPT matches matches matchesmatches

(%) (%) (%) (%) (%) (%)
101 33 59 100 100 100 100 100 100
102 0 0 100 100 100 100 100 100
103 33 59 100 100 100 100 100 100
104 33 59 100 100 100 100 100 100
201 8 3 100 100 100 24.2 5.1 14.7
201a 31 59 100 100 100 93.9 100.0 97.0
202 8 3 100 100 100 24.2 5.1 14.7
202a 31 59 100 100 100 93.9 100 97.0
204 3 59 100 100 100 100 100 100
205 20 21 100 100 100 60.6 35.6 48.1
206 23 21 100 100 100 69.7 35.6 52.6
221 33 59 100 100 100 100 100 100
222 33 59 100 100 100 100 100 100
223 33 59 100 100 100 100 100 100
224 33 59 100 100 100 100 100 100
225 33 59 100 100 100 100 100 100
228 33 59 100 100 100 100 100 100
230 33 59 100 100 100 100 100 100
301 14 15 93.3 100 96.7 93.3 41.7 67.5
302 12 19 100 90.5 95.2 100 86.4 93.2
303 16 28 100 93.3 96.7 88.9 100.0 94.4
304 30 46 100 100 100 100 100 100

no mods 99.8 99.6 99.7 67.6 57.3 62.4
mods 99.9 99.7 99.8 94.5 93.8 94.1

no outliers 99.8 99.4 99.6 96.9 92.8 94.9

Table 1. Experiment results for PROMPTDIFFṪest numbers correspond to the tests in the ex-
periment description. Tests 201a and 202a are the same as tests 201 and 202 respectively, but
with property names retained and only class names scrambled. The first line in the results (“no
mods”) represents the average result for all the original tests in the set; the line for “mods” result
represent the average for all the tests when tests 201a and 202a (our own test modifications) are
considered instead of 201 and 202; results for “no outliers” represent the average after dropping
the two (identical from PROMPT’s point of view) worst tests, 201 and 202.

9

3.3 Discussion ofPROMPT Results

Generally, we were very satisfied with the performance results. The precision was al-
most perfect, averaging above 99.5%. In general, if there were some matches between
class or property names, there was enough information in the structure of the ontology
to find the rest of the matches.

PROMPT did not perform as well with finding all property matches. Indeed, af-
ter examining the ontologies, we found that many properties were hard to distinguish
purely by the structure of the ontology. Many properties had the same domains and
ranges, there were very few restrictions to differentiate them, and so on. We felt that
any heuristics that would have allowed us to find these property matches, would have
provided false positives in other tests, improving recall but lowering the precision.

In summary, PROMPTDIFF works very well, both in terms recall and precision, if at
least some of the class and property names match. It is notable that it was able to find
25% of the class matches even when all property and class names were scrambled.

As we noted earlier, PROMPTDIFF provides only equivalence matches, and there-
fore if generalization or specialization matches are required, this tool will not be appro-
priate.

There is some information that PROMPTDIFF does not use but that could provide
additional matches. We plan to consider using this information in the future, such as
using dictionaries for comparing ontologies in different languages; using thesauri for
synonym lookup; using instance information and property values to match classes and
properties.

4 Discussion of the Experiment

Perhaps the most important result of the experiment are the insights that we gained in
how these experiments can be conducted in the future. Many things about this experi-
ment were very positive:

– It was a controlled experiment, with test cases and reference results published well
in advance and in computable form.

– The ontologies were of reasonable size.
– Some of the alignments were to real ontologies produced by different groups in-

dependent from one another (although they all were modeled from the BibTex
data model, which made this independence slightly less valuable than it could have
been).

Many things can be improved and must be considered for future experiments, how-
ever.

Use ontologies developed independently.As we have noted earlier, this experiment
was really about comparing ontologyversionsrather than about comparing indepen-
dently developed ontologies. This experiment, while a perfect experiment for compar-
ing ontology-versioning tools, does not provide any data on how well the same tools

10

will perform in the semantic-integration scenario when they must align truly indepen-
dent ontologies. A more interesting and challenging experiment would be to use ontolo-
gies that are truly independent from one another—developed by different groups and in
the domain that is less “pre-modeled” than BibTex references.

Provide consensus alignments.The more independent source ontologies are the more
likely it is that alignments themselves would be a point of disagreement. Even in this
experiment, we disagreed with some of the reference alignments provided by the ex-
periment authors. Some of the alignments were completely unsubstantiated by any in-
formation in the ontologies or even by common sense. In the future, a panel of experts
from different groups (ideally, the authors of the ontologies themselves) should produce
a consensus alignment reference to minimize disagreement.

Include interactive tools.Many researchers working in the area of ontology alignment
and mapping firmly believe that a fully automatic ontology alignment is not possible.
Therefore, many tools include an interactive element in them. The current experiment
assumed a fully automatic alignment. For more realistic ontologies and usage scenarios,
we have to incorporate the interactive component as well. It is challenging to introduce
such component in a controlled way. One possibility would be to specify the set of user-
provided alignments as input. This approach would simulate tools that allow users to
provide alignment information to the tool. It may be however that we can come up with
a controlled test for interactive tools only after we perform a pilot experiment similar to
the current one to understand better what types of inputs the tools require and at which
stages.

Freeze systems before the test set is published.The results of the current experiment
will inevitably be skewed because the tool developers had the opportunity to adjust
their tools after the test data were published. This situation opens up a possibility that
developers will produce versions of the tools optimized for this particular task and set
of ontologies, but not for another set of ontologies and tasks. In our case, as noted
earlier, we have added three new matchers to PROMPTDIFF after analyzing the ontolo-
gies. These matchers are not specific to the test, they are simply heuristics we have
not thought of before and will remain part of the tool. However, to make the results
completely fair, future experiments (and, even more so, “contests”) should require that
a version of the tool is frozen before the test data are published. We can follow the
traditional TREC model where training data are published first, tools fine-tuned and
instrumented to collect all the statistics, and then frozen before the test data are made
available. Then the period to perform the tests can be very short (2 weeks or so) since
no tool instrumentation will need to be done at this point.

Provide more automated tools to collect and compare results.One of the great positive
points about the current experiment was the requirement to use the standard format to
record the alignments. There is no reason (except time and effort, which should not be
significant) not to go further and provide a suite of tools that will perform the analysis
on the alignment files, producing the same statistics and in the same format for all the
participants.

11

Require that tools be made available to the community.Ideally, the tools participating
in the experiment should be available to the community under some open-source or
free-use license. In this case, others will be able to reproduce the results and to use the
tools on their own ontologies. If making tools available for free is not feasible, they must
at least be available to the experiment organizers so that they can verify the results. We
believe that this availability to the organizers should be a hard requirement for anyone
participating in the experiment.

Finally, we believe that such experiments are extremely important in not only com-
paring different semantic-integration tools, but also in improving these tools and their
performance.

Acknowledgments

This work was conducted using the Protéǵe resource, which is supported by grant
LM007885 from the United States National Library of Medicine. This work was sup-
ported in part by a contract from the US National Cancer Institute. The Prompt suite is
available as a plugin to the Protéǵe ontology-development environment athttp://
protege.stanford.edu/plugins/prompt/prompt.html The results of
the experiment are available athttp://protege.stanford.edu/plugins/
prompt/oacontest .

References

1. N. Noy and M. Musen. PROMPT: Algorithm and tool for automated ontology merging
and alignment. InSeventeenth National Conference on Artificial Intelligence (AAAI-2000),
Austin, TX, 2000.

2. N. Noy and M. A. Musen. Specifying ontology views by traversal. In3rd International
Semantic Web Conference (ISWC2004), Hiroshima:Japan, 2004.

3. N. F. Noy and M. A. Musen. Anchor-PROMPT: Using non-local context for semantic match-
ing. In Workshop on Ontologies and Information Sharing at the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI-2001), Seattle, WA, 2001.

4. N. F. Noy and M. A. Musen. PromptDiff: A fixed-point algorithm for comparing ontology ver-
sions. InEighteenth National Conference on Artificial Intelligence (AAAI-2002), Edmonton,
Alberta, 2002.

	EON2004_Garcia-Castro_Gomez-Perez.pdf
	Acknowledgments
	References

