
 1

Proceedings of the ECAI-02 Workshop on

Ontologies and Semantic Interoperability

J. Euzenat

A. Gómez Pérez

N. Guarino

H. Stuckenschmidt

(editors)

Held on July 22nd, 2002 in conjunction with the

European Conference on Artificial Intelligence

Lyon, France

 2

ECAI-02 Workshop on

Ontologies and Semantic Interoperability

Held on July 22nd, 2002 in conjunction with the

European Conference on Artificial Intelligence

Lyon, France

The ECAI-02 Workshop on Ontologies and Semantic Interoperbability is a follow up of a series of
successful Workshops on Ontologies and related topics that have been held at major AI and Computer
Science Conferences over the last years. With the increasing interest in the Semantic Web Ontologies
have become a major topic in many conferences and workshops. On the one hand, this leads to a wider
acceptance and use of ontologies, on the other hand the field is in danger of of loosing focus. This
workshop is meant to provide a forum for reserachers interested in Ontologies as a core technology for
intrelligent information processing, thereby trying to shape the area and its specific topics. At the IJCAI-
01 Workshop on Ontologies an Information Sharing, there has been an agreement that interoperability
will be a main issue in reserach over the next years. Consequently, this workshop, besides covering
general topics connected to ontologies, puts a special emphasis on Semantic Interoperability.

We received 14 submissions of which 6 were accepted as technical papers. The programme of the
workshop is supplemented by 4 papers describing existing systems and implementations of infrastructure
supporting the use of ontologies.

Technical Papers
The six technical papers that have been selected by the programme committee cover a wide range of topic
connected with ontology technology and ist use:
Menzel (page 38) reports first attempts of developing a better theory of ontological knowldge by
investigating requirements of an ontology theory and comparing them with the formal properties of
Common Logic.
Fernandez-Lopez (page 6) as well as Gangemi et.al. (page 16) address the problem of building ontologies.
While the former paper discusses the problem at a general level, proposing to use a metamodel of the
creation process to explicate modeling bias, the latter paper reports on a concrete attempt to build a well
founded ontology for a specific domain by combining and extending existing sources of ontological
information.
The work by Mitra and Wiederhold (page 45) as well as by Tamma and Bech-Capon (page 51) is
concerned with the problem of re-using ontologies, however focussing on different scenarios. Mitra and
Wiederhold present different Methods for resolving termoinological heterogeneity between pre-existing
ontologies. Tamma and Bech-Capon propose an extension of the OntoClean Framework for ontological
analysis that focusses on the meta-properties of class attributes and show how this extension supports the
comparison of different ontologies
Finally, Klein and others (page 31) discuss the special problem of managing different versions of the
same ontology. Building upon earlier work they discuss different kinds of changes in aan ontology and
describe how versions of an ontology can be compared.

System Descriptions
The four system descriptions accepted for presentation at the workshop provide an idea of the variety of
assisting tools needed for and applications supported by ontology technology.
Fiedler and others (page 62) present Ωmega, a reasoning system that supports the representation and
explanation of proofs focussing on the role of ontologies in providing this functionality.
Hammer and others (pages 67) describe a system that supports the integration of different legacy
information systems by automatically extracting conceptual models from databases.
Visser and Schuster (page 74) describe the use of ontologies for finding and combining simple web
services in terms of information providers using ontology-based metadata descriptions.
Volz and Maedche, finally (page 80), describe a computational infrastructure for supporting the use of
modularized ontologies focussing on different import mechanisms and their implementation.

 3

Program Committee and Reviewers.

We are grateful to the following members of the international program committee for helping us to make
this a high quality workshop:

• Joost Breuker, University of Amsterdam, NL
• Mike Brown, SemanticEdge, D
• Oscar Corcho, Politecnical University Madrid, ES
• Rose Dieng, INRIA Sophia Antipolis, F
• Jérôme Euzenat, INRIA Rhones-Alpes, F
• Fausto Giunchiglia, University of Trento, I
• Asunción Gómez-Pérez, Politecnical University Madrid, ES
• Michael Gruninger, NIST, USA
• Nicola Guarino, LADSEB-CNR, Padova, I
• Michel Klein, Free University Amsterdam, NL
• Alexander Maedche, FZI Karlsruhe, D
• Chris Menzel, Texas A&M University, USA
• Enrico Motta, Open University, UK
• Leo Obrst, Mitre Corporation, USA
• Guus Schreiber, University of Amsterdam, NL
• Steffen Staab, University of Karlsruhe, D
• Heiner Stuckenschmidt, University of Bremen, D
• Rudi Studer, AifB, University of Karlsruhe, D
• Gerd Stumme, University of Karlsruhe, D
• Valentina Tamma, University of Liverpool, UK
• Mike Uschold, Boeing Corporation, USA
• Ubbo Visser, University of Bremen, D

We would also like to thank the following additional reviewers:

• Stefano Borgo
• Bob Colomb
• Raphael Troncy

 4

Table of Contents

TECHNICAL PAPERS

Meta-modelling for ontology development and knowledge exchange......................................6

M. Fernandez-Lopez

A Formal Ontological Framework for Semantic Interoperability in the Fishery Domain.........16

A. Gangemi, F. Fisseha, I. Pettman, D.M.Pisanelli, M. Taconet, J. Keizer

Specifying relations between ontology versions...31

M. Klein, A. Kiryakov, D. Ognyanoff, D. Fensel

Ontology Theory ..38

C. Menzel

Resolving Terminological Heterogeneity in Ontologies...45

P. Mitra, G. Wiederhold

Attribute Meta-Properties for Knowledge Sharing...51

V. Tamma, T. Bench-Capon

SYSTEM DESCRIPTIONS

Ontological Issues in the Representation and Presentation of Mathematical Concepts62

A. Fiedler, A. Franke, H. Horacek, M. Moschner, M. Pollet, V. Sorge

SEEKing Knowledge in Legacy Information Systems to Support Interoperability67

J. Hammer, M. Schmalz, S. Shekar, N. Haldevnekar

Semantic Web Services: A Practical Solution ..74

U. Visser, G. Schuster

Towards a Modularized Semantic Web..80

R. Volz, D. Oberle, A. Maedche

Technical Papers

Meta-modelling for ontology development and knowledge
exchange

Mariano Fernández-López
Laboratorio de Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo sn.
Boadilla del Monte, 28660. Madrid, Spain.

Tel: (34-91) {336-66-05, 336-74-39}
Fax: (34-91) 3-52-48-19

Email: mfernandez@fi.upm.es

ABSTRACT

One of the sources of heterogeneity of ontologies
is that different ontologies have different
necessities of modelling. This paper presents a bi-
phase method to deal with these different
necessities. Phase I of the method models how to
model the ontology, obtaining a meta-model. Such
meta-model can be expressed in LBIR, a formal
and declarative language that has been specifically
designed for this task. To save resources, a
reference meta-model that can be modified and
reused is provided. During phase II of the method,
the ontology is modelled following the meta-
model obtained in the first phase. Furthermore, a
tool (called ODE) provides software support to
the method. Such tool generates SQL schemas
from LBIR, and allows the modelling of the
ontology following the selected meta-model. This
approach eases the interoperability between
groups located in different geographical locations
that have to build the same ontology, since the
meta-model to be used can be exchanged through
LBIR.

KEYWORDS

Ontology, meta-model, modelling, method, LBIR,
ODE.

1. EXPOSITION OF THE PROBLEM

Even though Ontological Engineering is a very
young area in Artificial Intelligence, there exist
some methodological proposals for building
ontologies: Uschold and King’s methodology
[Usc95], Grüninger and Fox’s methodology
[Grü95], METHONTOLOGY [FeG99], etc. A
study and analysis of methodologies for building
ontologies can be found at [Fer99]. This study
shows that METHONTOLOGY is currently the
most mature methodology.

Presently, methodologies do not propose to adapt
the mechanism of modelling to the different
ontologies to be built . However, our experience in
different projects (the (KA)2 initiative [Ben98],
the multidisciplinary project AM9819 about
environmental pollutants, etc.) show that different
domains should be modelled in different ways.
Table 1 shows the components that have been
used in different ontologies. We can see that there
are variations from some ontologies to others.
Some ontologies have been built using a lot of
attributes and no relations, others have been built
using constants, some of them have first order
logic formulas, but others do not, etc.

Apparently, one solution to this problem would be
to consider all the “necessary” components
(concepts, attributes, first order logic formulas,
constants, etc.) when an ontology had to be built.
Nevertheless, such solution has the following
drawbacks: (1) Our experience has shown it is
possible that need for a component is not
perceived a priori, that is, it is possible the
necessity of a component is only detected when it
is needed in an ontology. (2) New research about
modelling can provide new components and new
ideas about how to use old components. (3)
Considering non-useful components when an
ontology is built can cause confusion in
modellers, and especially when they are not very
experienced.

Besides flexibility in the components to be used
during the modelling, the knowledge should be
presented in diffe rent ways to different experts.

Summarising, a rigid way to model brings us
back to the classic knowledge-acquisition
bottleneck [Eri99].

Heiner Stuckenschmidt

Heiner Stuckenschmidt

Heiner Stuckenschmidt
6

O
n

to
lo

gy
D

om
ai

n
C

on
ce

p
ts

In
st

an
ce

at
tr

ib
u

te
s

R
el

at
io

ns
C

on
st

an
ts

F
ir

st
 o

rd
er

 lo
gi

c
fo

rm
u

la
s

A
ri

th
m

et
ic

fo
rm

u
la

s
In

st
an

ce
s

T
O

T
A

L
T

E
R

M
S

C
H

E
M

IC
A

L
S

.1
C

he
m

ic
al

10
6

0
0

0
1

20
37

C
H

E
M

IC
A

L
S

.2
C

he
m

ic
al

16
22

0
0

27
3

10
3

17
3

C
H

E
M

IC
A

L
S

.3
C

he
m

ic
al

16
20

0
2

27
1

10
3

16
9

 (K
A

)2 r
es

tr
uc

tu
re

d
K

no
w

le
dg

e
ac

qu
is

it
io

n
co

m
m

un
it

y
78

12
47

0
0

0
10

2
23

9

R
ef

er
en

ce
 O

nt
ol

og
y

O
nt

ol
og

ie
s

23
70

9
0

0
0

8
11

0

S
ta

nd
ar

d
U

ni
ts

 r
es

tr
uc

tu
re

d
M

ea
su

re
 u

ni
ts

22
3

0
2

0
1

65
93

M
on

at
om

ic
 io

ns
E

nv
ir

on
m

en
ta

l i
on

s
62

11
3

0
6

0
0

82

S
il

ic
at

es
S

il
ic

at
es

84
17

8
0

0
0

0
10

9

H
ar

dw
ar

e
L

ab
or

at
or

y
of

A

rt
if

ic
ia

l
In

te
ll

ig
en

ce
's

 h
ar

dw
ar

e
49

56
0

0
0

0
56

19
0

E
L

L
O

S
 O

nt
ol

og
y

C
at

al
og

ue
 o

f
cl

ot
he

s
8

16
6

0
0

0
20

48

T
ra

de
zo

ne
 O

nt
ol

og
y

C
at

al
og

ue

of

pr
od

uc
ts

in

ge
ne

ra
l

9
3

3
0

4
0

0
22

S
N

C
F

 O
nt

ol
og

y
T

ra
ve

ls
 a

nd
 h

ot
el

s
13

37
4

4
2

2
1

69

F
ID

A
L

 O
nt

ol
og

y
C

on
tr

ac
ts

6
15

8
0

1
0

7
37

T
ab

le
 1

. C
om

po
ne

nt
s

us
ed

 in
 th

e
on

to
lo

gi
es

 d
ev

el
op

ed
 w

it
h

th
e

bi
-p

ha
se

 m
et

ho
d

Heiner Stuckenschmidt
7

Focussing on the case of METHONTOLOGY, it
proposes to carry out the following steps to
develop an ontology: specification in natural
language, conceptualisation using tables and
graphs, formalisation (e.g. using frames), and
implementation (e.g. using the Ontolingua
language [Far97]). According to the
METHONTOLOGY viewpoint, conceptualisation
is the modelling at the knowledge level [New82],
hence, the knowledge is modelled independently
of the implementation language to be used1. The
proposed tables and graphs allow modelling

1 Such idea of conceptualisation is inspired in the Hayes-Roth and

colleagues’ approach [Hay83].

concepts, attributes, first order logic formulas,
etc., and they are thought to be manipulated by
experts in the domains to be modelled. Figure 1
presents an example of a graph: a concept
classification tree, and table 2 is an
example of concept dictionary. Tables
and graphs in METHONTOLOGY are not fixed,
since the engineer can use tables or graphs that
can be different to the proposed ones by the
methodology. However, METHONTOLOGY
does not propose a precise way to specify how the
tables and the graphs to be used during the
conceptualisation are. Besides, this methodology
does not propose how to add a new type of table,
how to add a new field to a type of table, how to

Table 2. Concept dictionary in the domain
of flights

Figure 1. Concept classification tree in the domain of flights

Heiner Stuckenschmidt
8

delete one of the types of the proposed graphs, or
how to elaborate a completely new modelling way
with completely new graphs and tables. Therefore,
if several groups in different locations have to
build an ontology collaboratively, there are
problems to agree and exchange the
characteristics of the tables and graphs to be
used (see figure 2).

In the following sections, a solution to these
problems will be presented. Section 2.1 will
present the bi-phase method and, section 2.2, its
software support: ODE. The paper will finish with
the conclusions and future trends.

Figure 2. Problems in collaborative construction when the characteristics of tables and graphs are not
clearly specified

2. THE PROPOSED SOLUTION

2.1. THE METHODOLOGICAL LEVEL OF
THE BI-PHASE SOLUTION

To allow a more flexible modelling of ontologies
and to ease the exchange of characteristics of
tables and graphs, the bi-phase method proposes
to model how to model the ontology. Until now,
the purpose of the ontology engineer was to model
some parts of the world, for example, flights,
chemical elements, etc. (see figure 3), however,
with the bi-phase method, modelling the process
of modelling is also recommended, that is,
building a meta-model is also proposed.
Particularly, the part of the modelling process to
model is the conceptualisation, which is the base
of the remainder steps of the modelling.

The bi-phase method follows the
METHONTOLOGY approach, although in two
levels. On the one hand, during phase I, the
ontology conceptualisation process is specified in
natural language, conceptualised using tables and
graphs (called in this phase meta-tables and
meta-graphs), formalised using a formal
language, and implemented in SQL (see figure 4).
Thus, the result of this first phase is a meta-model
presented in meta-tables and meta-graphs, in a
formal language, and in SQL. The steps of this
phase are called: meta-specification, meta-

conceptualisation , meta-formalisation and
meta-implementation . On the other hand, phase
II carries out the specification, conceptualisation
(following the meta-model obtained in phase I),
formalisation and implementation of the ontology.
As you can see, in this bi-phase method, there is a
modelling both at Newell’s knowledge level and
symbolic level during phase I as well as phase II.

To facilitate the building of meta-models, a
reference meta-model is proposed. It is possible
to modify this reference meta-model according to
the modelling needs of each ontology. Such meta-
model is expressed by means of meta-tables and
meta-graphs, and it is also formally expressed.
The reference meta-model allows building
ontologies with: concepts, class and instance
attributes, facets of such attributes, relations, first
order logic formulas, arithmetic formulas,
constants, and instances. These components
appear in the reference meta-model because each
one of them have been used in some of the
ontologies developed during the experimentation.
Besides, we have checked that the reference meta-
model contains the static components of the
classic languages for ontology development
(Ontolingua, OKBC, OCML, FLogic and
LOOM). We say static components because we do
not consider rules and procedures. This reminds as
future work.

Heiner Stuckenschmidt
9

We have also developed a tool, called ODE, in
order to provide software support to the bi-phase
method. Ode is especially designed to facilitate
the application of the method.

However, it is not the only tool allowing flexible
modelling, since Protégé-2000 [Fri00] permits the
user to redefine its components (made by classes,
slots, etc.).

In [Fer01] a complete description of the method is
presented. Such description includes the tasks to

Figure 3. General overview of the ontology development using meta-models

Figure 4. Bi-phase method to build ontologies

Heiner Stuckenschmidt
10

be performed, the inputs, the outputs and the
participants. This description includes a way to
manage the changes in meta-models, even when
an ontology is being developed with such meta-
model and new necessities are detected. There is
also a description of the architecture of ODE. The
method and the tool have been tested in the above
mentioned projects (the (KA)2 initiative, the
multidisciplinary project AM9819 about
environmental pollutants, etc.). 10 different meta-
models have been built with a total of 33
additions, removals and modifications with
regards the reference meta-model; such meta-
models have been used in 11 different domains:
chemical elements (169 terms with 27 first order
formulas), knowledge acquisition community (239
terms with no first order formulas), hardware (190
terms with no first order formulas), ontologies
(110 terms with no first order formulas), measure
units (93 terms with no first order formulas),
monatomic ions (82 terms with 6 first order
formulas), silicates (109 terms with no first order
formulas), catalogues of cloths (48 terms with no
first order formulas), travels (22 terms with no
first order formulas), hotels (69 terms with 2 first
order formulas) and contracts (37 terms with 1
first order formula). Other meta-models have been
built containing meta-graphs and meta-tables to
model databases, other meta-models contain meta-
graphs to model tasks, and other meta-models
even contain schemas of bills, invoices, etc. as
meta-tables.

In the following sub-sections, a brief description
of the steps of phase I will be presented.

2.1.1. Meta-specification of the
conceptualisation process

During phase I, the meta-specification describes,
in natural language: (a) what tables and graphs
will be used during the conceptualisation of the
ontology; (b) the recommended order to fill in the
tables and to build the graphs; and (c) the
consistency verification rules between tables,
between graphs, and between tables and graphs.
For example, it can be (meta-)specified that a
graph to be used during the conceptualisation is
the concept classification tree, that
the nodes of this graph are concepts, and that
the edges are subclass of, subclass in
a disjoint partition2, and subclass

2 ‘Subclass in a disjoint partition’. A disjoint partition of a class is a set

of subclasses of this class that do not have common instances.

in an exhaustive partition3. Besides,
it can be also specified that a table to use during
the conceptualisation of the ontology is the
concept dictionary. The possible fields of
such table would be: concept name ,
instances, instance attributes, etc.
Concerning the recommended order, it should be
said that the elaboration of the concept
classification tree should begin before starting the
concept dictionary. And with regard to the
consistency verification rules between the concept
classification tree and the concept dictionary, all
the concepts of the tree should be in the concept
dictionary and vice versa.

2.1.2. Meta-conceptualisation of the
conceptualisation process

For (meta-)conceptualising in phase I, the bi-
phase method proposes: (a) a set of meta-tables to
describe the tables and graphs to be used during
the conceptualisation in phase II; (b) a meta-graph
to describe the order in the conceptualisation in
phase II; (c) and meta-tables and meta-graphs to
describe the consistency verification rules. Thus,
for example, the meta-tables of node
description, and the meta-tables of
edge description are proposed to define the
details of the graphs, and the meta-tables of
field description are proposed to define
the details of the tables. For instance, meta-tables
1, 2 and 3 show the description of the taxonomy
and of the concept dictionary, used both in the
examples of section 1.1.1. In all these meta-tables,
the meta-field symbol is filled in with
abbreviations. In the case of meta-table 2, which
describes a graph, the meta-fields input and
output edges, input multiplicities
and output multiplicities are used to
establish how many edges can go in and go out to
and from a node. In the case of meta-table 3,
which describes the concept dictionary, the meta-
field format restricts the possibilities to fill in
the cells (text, list, logic expression, etc). Is it
main is true when the described field is the
identifier of the row. Repetition in the
same table is true when the field can be filled
in with the same value in different rows. And
multiplicity is true when the same cell can
have several values.

3 ‘Subclass in an exhaustive partition’. An exhaustive partition of a class

is a set of subclasses that covers all the class, that is, there is not an
instance of the father class that is not an instance of any of the

subclasses of the partition.

Heiner Stuckenschmidt
11

The meta-graph to model the order during the
conceptualisation is not presented due to the space
constraints. Concerning the consistency
verification rules between tables, between graphs,
and between tables and graphs, the way to write
them is based on operations on matrices
representing the tables and the graphs. Such
operations are similar to the ones used in the
relational model for databases (projection,
selection, difference, etc.).

2.1.3. Meta-formalisation and meta-
implementation of the conceptualisation
process

To carry out the meta-formalisation, a formal and
declarative language, called LBIR (Language for
Building Intermediate Representations), has been
elaborated. Such language has the same
expressiveness as the meta-tables and meta-graphs
used during the meta-conceptualisation. The LBIR
description uses a context free grammar for the
syntax, and matrices to establish the meaning of
the language. The following code:

shows the definition in LBIR of the concept
dictionary, that is equivalent to the definition
appearing in meta-table 3. Placed in binary
relation diagram indicates that a graph
called binary relation diagram should be designed
before filling in he concept dictionary.

During the meta-implementation, the meta-model
expressed in LBIR is transformed into a SQL

schema. This eases the use of databases to store
ontologies, taking advantage of the independence
and integrity of the data, the minimisation of the

Meta-table 3. Meta-table of field description defining the table “concept dictionary”

Field Symbol Description Format Is it main? Repetition in the same table Multiplicity

Concept name CN ** Term Yes No (1, 1)

Instances I
Instances are particular
cases of the concept Term No Yes (0, n)

Instance attributes IA
The ones that allow
describing the instances of
the concept.

Term No Yes (0, n)

Relations R Relations link concepts Term No Yes (0, n)

define table horizontal [Concept dictionary] as CD

define field [Concept name] as CN
begin

 type term;
repeated no ;
multiplicity (1,1);

end field ;
define field Instances as I

begin
 type term;

repeated yes;
multiplicity (0,N);

define field [Instance attributes] as IA
begin

 type term;
repeated yes;
multiplicity (0,N);

end field ;
define field Relations as R

begin
 type term;

repeated yes;
multiplicity (0,N);

end field ;
begin

placed in [Binary relation diagram];
main field [Concept name];

end table ;

Node Symbol Descrip-
tion

Input
and
outpud
edges

Input
multipli-
cities

Output
multipli-
cities

Subclass
of

(0, n) (0, n)

Concept C ** Subclass
in a
disjoint
partition

(0, n) (0, n)

Subclass
in an
exhaus-
tive parti-
tion

(0, n) (0, n)

Meta-table 2. Meta-table of node
description defining the possible nodes of the graph

“concept classification tree”

Edge Symbol Description
Subclass of S A class C is a subclass of the parent class

P if and only if every instance of C is
also an instance of P.

Subclass in a
disjoint
partition

SDP A disjoint partition of a class is a set of
its subclasses where the subclasses do
not have common instances.

Subclase in an
exhaustive
partition

SEP An exhaustive partition of a class is a set
of subclasses that covers all the class,
that is, there is no instance of the father
subclass that is not subclass of any class
of the subclasses of the partition

Meta-table 1. Meta-table of edge
description defining the possible edges of the

graph “concept classification tree”

Heiner Stuckenschmidt
12

redundancy, etc., provided by the relational
database systems.

3.2. THE SOFTWARE LEVEL OF THE BI-
PHASE SOLUTION

In order to allow the efficient use of the
methodology proposed in 3.1, we has built ODE
(see figure 5). The LBIR processing module
automates the transformation, without loss of
expressiveness, from a meta-model in LBIR to a
SQL schema. Besides, it allows conceptualising
ontologies following a meta-model selected by the
user, and storing the result in a database following
the SQL schema associated to the meta-model.
Moreover, if you follow the reference meta-model
to conceptualise your ontology you can use a
generator of Ontolingua code. The main feature of
ODE is that a change in the meta-model does not
force a change in the program, since SQL schemas
are generated in run-time and not in design time
(as usual).

3. CONCLUSIONS AND FUTURE TRENDS

Although each ontology has its modelling needs,
there is not any methodological proposal to use a
different kind of modelling for each ontology.

The bi-phase method presented in this paper
proposes, during a first phase, to model the
modelling process itself (or reusing an existing
meta-model) and, during the second phase, to
model the ontology. In the first phase, the steps
are: meta-specification, meta-conceptualisation,
meta-formalisation and meta-implementation.
During the second phase the steps are the ones
proposed by METHONTOLOGY: specification,
conceptualisation, formalisation and
implementation. To carry out the meta-
formalisation, a formal and declarative language
(LBIR) has been elaborated. Moreover, to provide
software support to both phases, a tool has been
developed: ODE.

To agree in the meta-model to be used, the
different groups can exchange this meta-model in
meta-tables and meta-graphs, or in LBIR (see

figure 6). The second option, LBIR, is mandatory
if the current version of ODE is utilised to build
the ontologies.

The method and the tool have proved useful in
several Spanish and international projects.

Figure 5. ODE processes

One of the most interesting future lines, above all
for ODE, would be the fast development of
translators from different meta-models into
different implementation languages. An interface
to manipulate meta-tables and meta-grpahs would
be also interesting. Another important future trend
would be a structured characterisation of
ontologies according to their modelling needs.
Now, the modelling necessities are determined by
the experience of the ontology engineers, who
interacts with the experts in the domain to be
modelled.

Meta-model in LBIR

LBIR
processing

SQL-schema
SQL-schema

SQL-schema

SQL
schema
copying

Conceptualisation
process

Ontolingua
translator

Ontolingua codeconceptualisation
result

Knowledge to be
conceptualised

Database to store the
conceptualisation

conceptualisation
content

Database
creation

PHASE I

PHASE II

Meta-model in LBIR
Meta-model in LBIR

Heiner Stuckenschmidt
13

Figure 6. Use of meta-models for cooperative
 construction of ontologies

4. REFERENCES

[Ben98] Benjamins, V.R.; Fensel, D.; Gómez-
Pérez, A.; Decker, S.; Erdmann, M.;
Motta, E.; Musen, M. 1998. “The
Knowledge Annotation Initiative of the
Knowledge Acquisition Community
(KA)2”. In: Proceedings of the 11th Banff
Knowledge Acquisition for Knowledge-
Based System Workshop (KAW 98),
Banff, Canada.

[Eri99] Eriksson, H.; Fergerson, R.W.; Shahar,
Y.; Musen, M.A. “Automatic generation
of ontology editors”. Knowledge
Acquisition Workshop (KAW). Banff
(Canada). 1999.

[Far97] Farquhar, A.; Fikes, R.; Rice, J. “The
Ontolingua Server: Tool for
Collaborative Ontology Construction”.
IJHCS, 46(6) (1997) 707-728.

[Fen00] Fensel, D. Ontologies: silver bullet for
Knowledge Management and Electronic
Commerce. Springer-Verlag. Berlin.
2000.

[Fer01] Fernández-López, M. Método bi-fase
para la conceptualización de ontologías
basado en meta-modelos. Ph. Thesis.
Facultad de Informática. Universidad
Politécnica de Madrid. Spain. 2001.

[FeG99] Fernández-López, M.; Gómez-Pérez, A.;
Pazos-Sierra, A.; Pazos-Sierra, J.
“Building a Chemical Ontology Using
METHONTOLOGY and the Ontology
Design Environment”. IEEE Intelligent
Systems & their applications.
January/February. Pages 37-46. 1999.

[Fer99] Fernández López, M. “Overview of
Methodologies for Building Ontologies”.
Workshop on Ontologies and Problem-
Solving Methods: Lessons Learned and
Future Trends. (IJCAI99). August. 1999.

[Fri00] Fridman Noy, N.; Fergeson, R.W.;
Musen, M.A. “The knowledge model of
Protégé-2000: combining interoperability
and flexibility”. Workshop on Knowledge
Acquisition, Modelling and Management
(EKAW) . Editor Springer Verlag. Jean
Les Pins (Francia). 2000.

[Grü95] Grüninger, M.; Fox, M. S. “Methodology
for the design and evaluation of
ontologies”. Workshop on Basic
Ontological Issues in Knowledge
Sharing. Montreal, Canada. 1995.

[Hay83] Hayes-Roth, F.; Waterman, D. A.; Lenat,
D. B. “Building Expert Systems”.
Addison Wesley Publishing Company,
Inc. Massachusets , USA. 1983.

[Nec91] Neches, N. ; Fikes, R. ; Finin, T. ;
Gruber, T. ; Patil, R. ; Senator, T. ;

Heiner Stuckenschmidt
14

Swartout, W.R. “Enabling technology for
knowledge sharing”. AI Magazine, Fall
1991. Pages 36-56. 1991.

[New82] Newell, A. “The Knowledge Level”.
Artificial Intelligence. Volume 18.
Number 1. Pp. 87-127. January 1982.

[Usc95] Uschold, M. King, M. “Towards a
methodology for building ontologies”.
Workshop on Basic Ontological Issues in
Knowledge Sharing. International Joint
Conference on Artificial Intelligence
(IJCAI). Montreal, Canada. 1995.

Heiner Stuckenschmidt
15

A Formal Ontological Framework for Semantic
Interoperability in the Fishery Domain

Aldo Gangemi1, Frehiwot Fisseha2, Ian Pettman3, Domenico M. Pisanelli1, Marc
Taconet4, Johannes Keizer2

1 Institute of Psychology, CNR (National Research Council), Rome, Italy
{gangemi,pisanelli}@ip.rm.cnr.it

http://saussure.irmkant.rm.cnr.it
2 FAO-GILW, Rome, Italy

{Frehiwot.Fisseha, Johannes.Keizer}@fao.org
http://www.fao.org

3 One Fish, SIFAR, Grange-over-Sands, Cumbria, UK
ip@ceh.ac.uk

http://www.onefish.org3

4 FIDI, FAO, Rome, Italy
Marc.Taconet@fao.org

http://www.fao.org

Abstract. This paper outlines a project (involving FAO, SIFAR, and CNR)
aimed at building an ontology in the fishery domain. The ontology will
support semantic interoperability among existing fishery information
systems and will enhance information extraction and text marking,
envisaging a fishery semantic web. The ontology is being built through the
conceptual integration and merging of existing fishery terminologies,
thesauri, reference tables, and topic trees. Integration and merging are
shown to benefit from the methods and tools of formal ontology.

1 INTRODUCTION

1.1 The general problem

Specialized distributed systems are the reality of today’s information systems
architecture. Developing specialized information systems/resources in response to
specific user needs and/or area of specialization has its own advantage in fulfilling the
information needs of target users. However, such systems usually use different
knowledge organization tools such as vocabularies, taxonomies and classification
systems to manage and organize information. Although the practice of using
knowledge organization tools to support document tagging (thesaurus-based
indexing) and information retrieval (thesaurus-based search) improves the functions of
a particular information system, it is leading to the problem of integrating
information from different sources due to lack of semantic interoperability that
exists among knowledge organization tools used in different information systems.

Heiner Stuckenschmidt
16

The different fishery information systems and portals that provide access to
fishery information resources are one example of such scenario. This paper
demonstrates the proposed solution to solve the problem of information integration in
fishery information systems. The proposal shows how a fishery ontology that
integrates the different thesauri and taxonomies in the fishery domain could help in
integrating information from different sources be it for a simple one-access portal or a
sophisticated web services application.

1.2 The local scenario

Fishery Ontology Service (FOS) is a key feature of the Enhanced Online
Multilingual Fishery Thesaurus, a project aimed at information integration in the
fishery domain. It undertakes the problem of accessing and/or integrating fishery
information that is already partly accessible from dedicated portals and other web
services.

The organisations involved in the project are: FAO Fisheries Department
(FIGIS), ASFA Secretariat, FAO WAICENT (GIL), the oneFish service of SIFAR,
and the Ontology and Conceptual Modelling Group at ISTC-CNR. The systems to be
integrated are: the "reference tables" underlying the FIGIS portal [1], the ASFA online
thesaurus [2], the fishery part of the AGROVOC online thesaurus [3], and the
oneFish community directory [4].

The official task of the project is "to achieve better indexing and retrieval of
information, and increased interaction and knowledge sharing within the fishery
community". The focus is therefore on tasks (indexing, retrieval, and sharing of
mainly documentary resources) that involve recognising an internal structure in the
content of texts (documents, web sites, etc.). Within the semantic web community
and the intelligent information integration research area (cf. [5] and [6]), it is
becoming widely accepted that content capturing, integration, and management
require the development of detailed, formal ontologies.

In this paper we sketch an outline of the FOS development and some hint of
the functionalities that it carries out.

2 ONTOLOGY INTEGRATION AND MERGING

2.1 Heterogeneous systems give heterogenous interpretations

An example of how formal ontologies can be relevant for fishery information
services is shown by the information that someone could get if interested in
aquaculture.

In fact, beyond simple keyword-based searching, searches based on tagged
content or sophisticated natural-language techniques require some conceptual
structuring of the linguistic content of texts. The four systems concerned by this
project provide this structure in very different ways and with different conceptual

Heiner Stuckenschmidt
17

’textures’. For example, the AGROVOC and ASFA thesauri put aquaculture in the
context of different thesaurus hierarchies; an excerpt of the AGROVOC result is (uf
means used for, NT means narrower than; rt means related term, Fr and Es are the
corresponding French and Spanish terms):

AQUACULTURE
uf aquiculture
uf mariculture
uf sea ranching
NT1 fish culture
 NT2 fish feeding
NT1 frog culture

rt agripisciculture
rt aquaculture equipment

Fr aquaculture
Es acuicultura

The AGROVOC thesaurus seems to frame aquaculture from the viewpoint of
techniques and species. On the other hand, the ASFA aquaculture hierarchy is
substantially different:

AQUACULTURE
 uf Aquaculture industry
 uf Aquatic agriculture
 uf Aquiculture
 NT Brackishwater aquaculture
 NT Freshwater aquaculture
 NT Marine aquaculture
 rt Aquaculture development
 rt Aquaculture economics
 rt Aquaculture engineering
 rt Aquaculture facilities

Actually this hierarchy seems to stress the environment and disciplines related to
aquaculture.

A different resource is constituted by the so-called reference tables in FIGIS
system; the only reference table mentioning aquaculture puts it into another context
(taxonomical species):

Biological entity
 Taxonomic entity

Major group
Order
Family
Genus
Species
 Capture species (filter)
 Aquaculture species (filter)
 Production species (filter)

Heiner Stuckenschmidt
18

 Tuna atlas spec

The last resource examined is oneFish directory, which returns the following
context (related to economics and planning):

SUBJECT
Aquaculture

Aquaculture development
Aquaculture economics @
Aquaculture planning

With such different interpretations of aquaculture, we can reasonably expect
different search and indexing results. Nevertheless, our approach to information
integration and ontology building is not that of creating a homogeneous system in
the sense of a reduced freedom of interpretation, but in the sense of navigating
alternative interpretations, querying alternative systems, and conceiving alternative
contexts of use.

To do this, we require a comprehensive set of ontologies that are designed in
a way that admits the existence of many possible pathways among concepts under a
common conceptual framework. This framework should reuse domain-independent
components, be flexible enough, and be focused on the main reasoning schemas for
the domain at hand.

Domain-independent, upper ontologies should characterise all the general
notions needed to talk about economics, biological species, fish production
techniques; for example: parts, agents, attribute, aggregates, activities, plans,
devices, species, regions of space or time, etc. While the so-called core ontologies
should characterise the main conceptual habits (schemas) that fishery people actually
use, namely that certain plans govern certain activities involving certain devices
applied to the capturing or production of a certain fish species in certain areas of water
regions, etc.

Upper and core ontologies [7,8] provide the framework to integrate in a
meaningful and intersubjective way different views on the same domain, such as
those represented by the queries that can be done to an information system.

2.2 Methods applied to develop the integrated fishery ontology

Once made clear that different fishery information systems provide different
views on the domain, we directly enter the paradigm of ontology integration, namely
the integration of schemas that are arbitrary logical theories, and hence can have
multiple models (as opposed to database schemas that have only one model) [9]. As a
matter of fact, thesauri, topic trees and reference tables used in the systems to be
integrated could be considered as informal schemas conceived to query semi-formal or
informal databases such as texts and tagged documents.

In order to benefit from the ontology integration framework, we must
transform informal schemas into formal ones. In other words, thesauri and other
terminology management resources must be transformed into (formal) ontologies.

To perform this task, we apply the techniques of three methodologies:
OntoClean [8], ONIONS [10], and OnTopic [11].

Heiner Stuckenschmidt
19

The first one contains principles for building and using upper ontologies for
core and domain ontology analysis, revision, and development. In its current form,
OntoClean also features an axiomatised domain-independent top-level of formal
criteria, concepts and relations (Figure 3) [18].

ONIONS is a set of methods for enhancing the informal data of
terminological resources to the status of formal ontological data types. Some methods
are aimed at reusing the structure of hierarchies (e.g., BT/NT relations, subtopic
relation, etc.), the additional relations that can be found (e.g., RT relations), and at
analysing the compositional structure of terms in order to capture new relations and
definitional elements. Other methods concern the management of semantic
mismatches between alternative or overlapping ontologies, and the exploitation of
systematic polysemy to discover relevant domain conceptual structures.

OnTopic is about creating dependencies between topic hierarchies and
ontologies. It contains methods for deriving the elements of an ontology that describe
a given topic, and methods to build ’active’ topics that are defined according to the
dependency of any individual, concept, or relation in an ontology.

In Figure 1, a class diagram is shown of the informal and formal data types
taken into account by the forementioned methodologies.

In section 3.1 the types of (meta)data extracted from the resources are
described. In the subsequent sections the (meta)data types obtained from the
transformation of resources into a merged ontology are also described.

We briefly describe:
• the resources that are integrated
• how the Integrated Fishery Ontology (IFO) is being built
• a mediation architecture to interface the fishery ontology service with the

source information systems.

3 OUTLINE OF THE FOS PROJECT

3.1 Resources

The following resources have been singled out from the fishery information
systems considered in the project:

the oneFish topic trees (about 1,800 topics), made up of hierarchical topics
with brief summaries, identity codes and attached knowledge objects (documents,
web sites, various metadata). The hierarchy (average depth: 3) is ordered by (at least)
two different relations: subtopic, and intersection between topics, the last being
notated with @, similarly to relations found in known subject directories like
DMOZ. There is one ’backbone’ tree consisting of five disjoint categories, called
worldviews (subjects, ecosystem, geography, species, administration) and one
worldview (stakeholder), maintained by the users of the community, containing own
topics and topics that are also contained in the first four other categories (Figure 5).
Alternative trees contain new ’conjunct’ topics deriving from the intersection of topics
belonging to different categories.

Heiner Stuckenschmidt
20

Fi
g.

 1
. A

 c
la

ss
 d

ia
gr

am
 o

f
th

e
so

ur
ce

 d
at

a
ty

pe
s

ta
ke

n
in

to
 a

cc
ou

nt

1
H

A
S

-M
E

M
B

E
R

nnnnnn

L
ib

ra
ry

 o
f

m
o

d
u

le
s

D
o

c
u

m
e

n
ta

ti
o

n

1
H

A
S

-P
A

R
T

nnn

111

S
o

u
rc

e

S
e

t
o

f
a

x
io

m
s

as
 re

us
ab

le
 c

om
po

ne
nt

F
is

h
e

ry
 r

e
s

o
u

rc
e

 t
y

p
e

s
::

O
n

to
lo

g
ic

a
l

s
tr

u
c

tu
re

O
n

to
lo

g
ic

a
l

s
tr

u
c

tu
re

In
fo

rm
a

l
o

n
to

lo
g

y
 f

ra
g

m
e

n
t

R
T

 i
n

fo
rm

a
l

a
x

io
m

s

1

H
A

S
-M

E
M

B
E

R

nnn

1

H
A

S
-M

E
M

B
E

R

nnn

1

H
A

S
-M

E
M

B
E

R

nnn

L
e

x
ic

a
l

it
e

m

R
e

u
s

a
b

le
 c

o
m

p
o

n
e

n
t

fr
o

m
 o

ri
g

in
a

l

T
h

e
s

a
u

ru
s

B
T

,N
T

,R
T

 in
fo

rm
al

 a
xi

om
s

In
fo

rm
a

l
d

o
m

a
in

 o
n

to
lo

g
y

In
fo

rm
al

A
xi

om
s

G
lo

s
s

a
ry

D
oc

um
en

ta
tio

n

T
o

p
ic

 t
re

e

In
cl

us
io

n
hi

er
ar

ch
ie

s

D
o

m
a

in
 s

c
h

e
m

a
 (

c
o

n
c

e
p

tu
a

l
te

m
p

la
te

)

(I
nf

or
m

al
)

ax
io

m
s

U
p

p
e

r
o

n
to

lo
g

y

O
nt

ol
og

ic
al

S
tr

uc
tu

re
T

o
p

ic
s

 n
a

m
e

s
p

a
c

e

A
s

s
e

rt
io

n

In
d

iv
id

u
a

ls
 n

a
m

e
s

p
a

c
e

R
e

la
ti

o
n

s
 n

a
m

e
s

p
a

c
e

T
o

p
ic

C
o

n
c

e
p

t

1H
A

S
-M

E
M

B
E

R nnnnnn

1H
A

S
-M

E
M

B
E

R nnnnnn

1H
A

S
-M

E
M

B
E

R
nnnnnn

1H
A

S
-M

E
M

B
E

R nnnnnn
C

o
n

c
e

p
ts

 n
a

m
e

s
p

a
c

e

S
e

t
o

f
a

s
s

e
rt

io
n

s

T
a

x
o

n
o

m
y

R
e

la
ti

o
n

In
d

iv
id

u
a

l

A
x

io
m

nnn

nnn

nnn

S
e

t
o

f
le

x
ic

a
l

it
e

m
s

n
E

X
T

R
A

C
T

E
D

-F
R

O
M

111111

P
ro

c
e

s
s

e
d

 n
a

m
e

s
p

a
c

e

n

E
X

T
R

A
C

T
E

D
-F

R
O

M

111

O
n

to
lo

g
y

 e
le

m
e

n
t

B
T

/N
T

 h
ie

ra
rc

h
y

T
o

p
ic

 t
re

e
 f

ra
g

m
e

n
t

nnn

R
e

s
o

u
rc

e
 f

o
r

o
n

to
lo

g
y

 d
e

v
e

lo
p

m
e

n
t

Fi
g.

 1
. A

 c
la

ss
 d

ia
gr

am
 o

f
th

e
so

ur
ce

 d
at

a
ty

pe
s

ta
ke

n
in

to
 a

cc
ou

nt

1
H

A
S

-M
E

M
B

E
R

nnnnnn

L
ib

ra
ry

 o
f

m
o

d
u

le
s

D
o

c
u

m
e

n
ta

ti
o

n

1
H

A
S

-P
A

R
T

nnn

111

S
o

u
rc

e

S
e

t
o

f
a

x
io

m
s

as
 re

us
ab

le
 c

om
po

ne
nt

F
is

h
e

ry
 r

e
s

o
u

rc
e

 t
y

p
e

s
::

O
n

to
lo

g
ic

a
l

s
tr

u
c

tu
re

O
n

to
lo

g
ic

a
l

s
tr

u
c

tu
re

In
fo

rm
a

l
o

n
to

lo
g

y
 f

ra
g

m
e

n
t

R
T

 i
n

fo
rm

a
l

a
x

io
m

s

1

H
A

S
-M

E
M

B
E

R

nnn

1

H
A

S
-M

E
M

B
E

R

nnn

1

H
A

S
-M

E
M

B
E

R

nnn

L
e

x
ic

a
l

it
e

m

R
e

u
s

a
b

le
 c

o
m

p
o

n
e

n
t

fr
o

m
 o

ri
g

in
a

l

T
h

e
s

a
u

ru
s

B
T

,N
T

,R
T

 in
fo

rm
al

 a
xi

om
s

In
fo

rm
a

l
d

o
m

a
in

 o
n

to
lo

g
y

In
fo

rm
al

A
xi

om
s

G
lo

s
s

a
ry

D
oc

um
en

ta
tio

n

T
o

p
ic

 t
re

e

In
cl

us
io

n
hi

er
ar

ch
ie

s

D
o

m
a

in
 s

c
h

e
m

a
 (

c
o

n
c

e
p

tu
a

l
te

m
p

la
te

)

(I
nf

or
m

al
)

ax
io

m
s

U
p

p
e

r
o

n
to

lo
g

y

O
nt

ol
og

ic
al

S
tr

uc
tu

re
T

o
p

ic
s

 n
a

m
e

s
p

a
c

e

A
s

s
e

rt
io

n

In
d

iv
id

u
a

ls
 n

a
m

e
s

p
a

c
e

R
e

la
ti

o
n

s
 n

a
m

e
s

p
a

c
e

T
o

p
ic

C
o

n
c

e
p

t

1H
A

S
-M

E
M

B
E

R nnnnnn

1H
A

S
-M

E
M

B
E

R nnnnnn

1H
A

S
-M

E
M

B
E

R
nnnnnn

1H
A

S
-M

E
M

B
E

R nnnnnn
C

o
n

c
e

p
ts

 n
a

m
e

s
p

a
c

e

S
e

t
o

f
a

s
s

e
rt

io
n

s

T
a

x
o

n
o

m
y

R
e

la
ti

o
n

In
d

iv
id

u
a

l

A
x

io
m

nnn

nnn

nnn

S
e

t
o

f
le

x
ic

a
l

it
e

m
s

n
E

X
T

R
A

C
T

E
D

-F
R

O
M

111111

P
ro

c
e

s
s

e
d

 n
a

m
e

s
p

a
c

e

n

E
X

T
R

A
C

T
E

D
-F

R
O

M

111

O
n

to
lo

g
y

 e
le

m
e

n
t

B
T

/N
T

 h
ie

ra
rc

h
y

T
o

p
ic

 t
re

e
 f

ra
g

m
e

n
t

nnn

R
e

s
o

u
rc

e
 f

o
r

o
n

to
lo

g
y

 d
e

v
e

lo
p

m
e

n
t

AGROVOC thesaurus (about 500 fishery-related descriptors), with thesaurus
relations (narrower term, related term, used for) among descriptors, lexical relations
among terms, terminological multilingual equivalents, and glosses (scope notes) for
some of them.

ASFA thesaurus, similar to AGROVOC, but with about 10,000 descriptors.

FIGIS reference tables, with 100 to 200 top-level concepts, with a max
depth of 4, and about 30,000 ’objects’ (mixed concepts and individuals), relations
(specialised for each top category, but scarcely instantiated) and multilingual support.
There are modules (water areas, continental areas, biological entities, vessels,
commodities, stocks, etc.), also organised by ’views’.

In Figure 2 a diagram is sketched of the methodology used to extract and
refine the informal data from the fishery information systems. The methodology is
also described in the next sections.

3.2 Translation and refining of the components for IFO building

The (meta)data from the resources that have been singled out have been
processed, in order to integrate them within a homogeneous environment, and with a
clear assessment of their nature. In the following we list a set of guidelines that have
been followed to translate and refine data components:
• A detailed evaluation of each source (find the schema -explicit or not- underlying

the implementation of source data, then describe each data type both qualitatively
and quantitatively) is performed.

• A language to represent the KB is chosen that hosts the integration activity. A
description logic like DLR [9] is an ideal choice for its compatibility with the
ontology integration framework.

• An ontology server is installed that supports DLR or compatible languages.
• Some data types from the sources (Figure 1) seem appropriate to be included in a

preliminary prototype. The following steps are performed on them:
• Discuss, refine and formalise FIGIS fishery conceptual schemas [12] to build

a preliminary core ontology. Also the upper-level concepts from the source
thesauri should be matched against the FIGIS conceptual schemas. This
results in a resource for core ontology develo pment.

• Translate FIGIS reference tables: taxonomy, individuals, and local relations
(to be transformed into formal axioms). This results in a draft resource for
domain ontology development .

• Reuse oneFish topic trees to design a preliminary architecture for IFO
library. This architecture should match the preliminary core ontology. This
results in a resource for ontology library design .

Heiner Stuckenschmidt
22

Fig. 2. A diagram of the methodology used to extract and refine the informal data

Taxonomical resources ready

entry/ Domain ontologies translated, BT/NT hierarchies refined

do: Prepare integration space of taxonomies

exit/ Taxonomies to be integrated

BT/NT hierarchies translated

entry/ Domain BT/NT resources defined [ASFA,Agrovoc]

do: Translate resources to common format

exit/ BT/NT resources formalised

BT/NT hierarchies refined

entry/ BT/NT resources formalised

do: Refine with heuristics based on core ontologies

exit/ Refined subset of BT/NT hierarchies ready

Topic trees refined

entry/ Preliminary topic trees formalised

do: Refine trees according to set-theoretic principles

exit/ Refined topic trees ready

Topic trees translated

entry/ Topic resources defined [oneFish]

do: Translate resources to common format

exit/ Preliminary topic trees formalised

RT axioms translated

entry/ Domain RT resources defined [ASFA,Agrovoc]

do: Translate resources to common format

exit/ RT resources formalised

List of integratable ontology elements ready

entry/ Taxonomical, axiomatic, and assertional resources ready, refined topic trees ready

do: Create working namespaces with flags to original resources, maintain links between current resources

exit/ Working, interlinked namespaces created with flags to resources

Axiomatic resources ready

entry/ Domain ontologies translated, RT axioms refined

do: Prepare integration space of axioms

exit/ Axioms to be integrated

RT resources refined

entry/ RT resources formalised

do: Refine with heuristics based on taxonomies and core ontologies

exit/ Refined subset of RT axioms ready

Assertional resources ready

entry/ Domain ontologies translated, BT/NT hierarchies refined, RT resources refined,
DOC and lexicalisation resources formalised

do: Prepare integration space of assertions

exit/ Assertions to be integrated

Documentation translated

entry/ Domain documentation resources defined [all]

do: Translate resources to common format. Trace origin

exit/ DOC resources formalised

Lexical sets translated

entry/ Lexical resources defined [all]

do: Translate resources to common format. Trace origin

exit/ Lexicalisation resources formalised

Reusable components from resources identified

entry/ Homogeneous resource set defined

do: Analyse resource schemas

exit/ Reusable components identified

Resources described

entry/ Domain resources collected

do: Use a classification scheme from an ontology of resources

exit/ Resources classified

Rough list of ontology elements ready

entry/ Homogeneous resource set defined, reusable components identified

do: Collect all namespaces (concepts,relations,individuals,topics) from resources,
start assigning data types, documentation and terms collected

exit/ Rough namespaces created with flags to resources

Core ontologies translated

entry/ Core ontology resources defined [FIGIS, top ASFA, top Agrovoc, else]

do: Translate core resources to common format

exit/ Preliminary core ontology formalised

Domain ontologies translated

entry/ Domain ontology resources defined [FIGIS]

do: Translate resources to common format

exit/ Domain ontology resources formalised

Domain conceived

exit/ Resources selected

Resource processing packages created

entry/ Resources classified

do: Define activities to be done

exit/ Homogeneous resource set defined

Fig. 2. A diagram of the methodology used to extract and refine the informal data

Taxonomical resources ready

entry/ Domain ontologies translated, BT/NT hierarchies refined

do: Prepare integration space of taxonomies

exit/ Taxonomies to be integrated

BT/NT hierarchies translated

entry/ Domain BT/NT resources defined [ASFA,Agrovoc]

do: Translate resources to common format

exit/ BT/NT resources formalised

BT/NT hierarchies refined

entry/ BT/NT resources formalised

do: Refine with heuristics based on core ontologies

exit/ Refined subset of BT/NT hierarchies ready

Topic trees refined

entry/ Preliminary topic trees formalised

do: Refine trees according to set-theoretic principles

exit/ Refined topic trees ready

Topic trees translated

entry/ Topic resources defined [oneFish]

do: Translate resources to common format

exit/ Preliminary topic trees formalised

RT axioms translated

entry/ Domain RT resources defined [ASFA,Agrovoc]

do: Translate resources to common format

exit/ RT resources formalised

List of integratable ontology elements ready

entry/ Taxonomical, axiomatic, and assertional resources ready, refined topic trees ready

do: Create working namespaces with flags to original resources, maintain links between current resources

exit/ Working, interlinked namespaces created with flags to resources

Axiomatic resources ready

entry/ Domain ontologies translated, RT axioms refined

do: Prepare integration space of axioms

exit/ Axioms to be integrated

RT resources refined

entry/ RT resources formalised

do: Refine with heuristics based on taxonomies and core ontologies

exit/ Refined subset of RT axioms ready

Assertional resources ready

entry/ Domain ontologies translated, BT/NT hierarchies refined, RT resources refined,
DOC and lexicalisation resources formalised

do: Prepare integration space of assertions

exit/ Assertions to be integrated

Documentation translated

entry/ Domain documentation resources defined [all]

do: Translate resources to common format. Trace origin

exit/ DOC resources formalised

Lexical sets translated

entry/ Lexical resources defined [all]

do: Translate resources to common format. Trace origin

exit/ Lexicalisation resources formalised

Reusable components from resources identified

entry/ Homogeneous resource set defined

do: Analyse resource schemas

exit/ Reusable components identified

Resources described

entry/ Domain resources collected

do: Use a classification scheme from an ontology of resources

exit/ Resources classified

Rough list of ontology elements ready

entry/ Homogeneous resource set defined, reusable components identified

do: Collect all namespaces (concepts,relations,individuals,topics) from resources,
start assigning data types, documentation and terms collected

exit/ Rough namespaces created with flags to resources

Core ontologies translated

entry/ Core ontology resources defined [FIGIS, top ASFA, top Agrovoc, else]

do: Translate core resources to common format

exit/ Preliminary core ontology formalised

Domain ontologies translated

entry/ Domain ontology resources defined [FIGIS]

do: Translate resources to common format

exit/ Domain ontology resources formalised

Domain conceived

exit/ Resources selected

Resource processing packages created

entry/ Resources classified

do: Define activities to be done

exit/ Homogeneous resource set defined

Heiner Stuckenschmidt
23

• Extract IS_A taxonomies from AGROVOC and ASFA BT/NT (Broader
Term/Narrower Term) hierarchies. Heuristics from upper and core ontologies
can be applied to clean up BT/NT hierarchies, for example, the following
rule can be applied: if a body part descriptor is NT of an organism
descriptor, then this is probably not an IS_A use of NT (probably it is a
part-of relation). This results in resources for core and domain taxonomies
building .

• Expand RT (Related Term) relations from AGROVOC and ASFA. Also
non-IS_A BT/NT hierarchies could be refined (expanded) here. Heuristics can
be applied here as well, for example, if there exists a systematic relation
between to concepts in the core ontology, and there exists a RT relations
between two subconcepts of those concepts, then this is an indication for that
relation to be the refinement of the RT one. This results in resources for core
and domain axioms building .

• Reuse UF (Used For) relations and (multi-)linguistic equivalents from all
resources. Track must be kept of the context from which a linguistic item
has been extracted. This results in resources for ontology lexicalisation .

3.3 Parallel tasks

In the following sections we outline the main steps to build the basic
taxonomy, documentation, and architecture for the integrated fishery ontology.

3.3.1 Developing a fishery core ontology (FCO)

In this step, we pick up uppermost concepts and conceptual (categorisation)
schemas from sources and integrate them with a certified top-level containing
domain-independent concepts, relations and meta-properties. The resources needed for
such a task are:

Upper ontology resources: the OntoClean upper level [8,18] (Figure 3) is a
preferential choice for its compatibility with the methodology. For alternatives, see
[13]. Moreover, various formal ontologies and standards for relations, and general
lexical repositories like WordNet [14].

Core ontology resources: conceptual templates, (selected in the preliminary
phases), relational database schemas, theoretical views on domain topics, domain
standards, etc. An informal fishery core ontology (the FIGIS composite concepts) is
shown in Figure 4.

In the context of core ontology development, some taxonomical branches
(core concepts) have relevant conceptual integration issues that are being studied by
ontological engineers and domain experts in close collaboration:

• biological taxonomies: difficult having a stable framework of reference (in
principle, mapping from local taxonomies to a biological one is feasible, but
in practice it could be not cost effective)

• geographic regions: use GIS as a stable framework of reference? geographic
names?

• institutions: maybe automatic clustering of individuals through classification

Heiner Stuckenschmidt
24

• fishing devices (including vessels)
• fishing and fish farming techniques (plans and activity types)
• farming systems (sets of components)
• fishery regulations (norms)
• fishery managament systems (plans)
• production centers

Quality
Quality Region
Aggregate

Amount of matter
Arbitrary collection

Object
Physical Object

Body

Ordinary object
Mental Object

Feature
Relevant part
Place

Occurrence
State
Process
Accomplishment

Abstract

Fig. 3. The OntoClean top concepts

Development is performed as incremental loading and classification of upper
and core level ontologies in the Ontology Server.

Another indirect resource that can be exploited to build the core ontology is
the analysis of systematic polysemies (they have been already used in the mining of
large medical thesauri, cf.[10]). A systematic polysemy is discovered when a relation
exists between two senses of a term, and this relation is relevant for the domain that
is being analysed. Consequently, if we find many polysemies with senses that have
been conceptualised within the same concept pairs, this is an indication for a possible
core ontology relation.

3.3.2 Building domain IS-A taxonomies

This phase deals with the integration of the resources for domain ontology
development with the fishery core ontology (developed in the previous phase).

Resulting taxonomies could be either ’tolerated’ or ’cleaned up’. Tolerance
amounts to have widespread and unexplained polysemy for terms, but it is not time
consuming. Cleaning is the most time consuming task, since a frequent scenario is
the following: concept C from source S1 (C^S1) is in principle similar to a D^S2

Heiner Stuckenschmidt
25

(usually because they share one or more terms), but they actually occupy two
taxonomical places that make them disjoint according to the upper or core ontology.

The ONIONS methodology [10] in this case suggests to axiomatise their
glosses (cf. ⁄3.2.3, 3.3.3) and to check if their taxonomical position is correct. If it is
not, then they are probably polysemous senses of the same term, and some alternative
methods can be applied to relate those senses, to merge them, or to accept the
conceptual split of the senses.

Some cleaning will be needed in any case to remove at least the major
taxonomical clashes. This results into a domain taxonomy. Additional effort should
be dedicated to distinguish:

Concepts vs individuals (heuristics applicable: country names, institutions,
etc.).

Backbone concepts vs viewpoint concepts (roles, reified properties,
contingent notions), cf. [7,8].

This eventually results into a refined domain taxonomy.

Fig. 4. The FIGIS composite concepts, used as a resource for core ontology development.

3.3.3 Collecting existing documentation and producing glosses

Available resources for ontology documentation are collected and associated
as a kind of annotation (gloss) to domain concepts. Concepts lacking a gloss require a
new one.

For core concepts and relations, besides existing glosses, an extensive
description of their scope in the FCO is provided.

3.3.4 Designing a preliminary topic architecture

Heiner Stuckenschmidt
26

A preliminary topology for most general topics (to be used for ontology
modularisation as well) is figured out. Here the following resources are reused:
ontologies for topics (Welty s topic topology [15], topic maps standard [16],
OnTopic principles [11]), semantic portals design [17], oneFish topic trees.

Administrat ion

Subjects Ecosystem

Geography Species

Stakeholders

Fig. 5. Topic spaces ("worldviews") in oneFish.

Domain ontologies

Representation
ontology

Upper
ontology

Core
ontology

Geographic
ontology

Species
ontology

Institutions
ontology

Fishing
devices
ontology

Fishing and
farming

techniques
ontology

Farming
systems
ontology

Fishery
regulations
ontology

Fishery
management
ontology

Biological
ontologyDevices

ontology

Legal
ontology Management

ontology

Fig. 6. An example architecture for the fishery ontology library. Double frames mean
external ontologies.

The topic topology will be used both for maintaining the ontology library and for
managing text indexing and retrieval. Figure 5 shows how the current topic spaces of
oneFish are structured. Figure 6 shows an ontology-based architecture for the
Integrated Fishery Ontology.

Heiner Stuckenschmidt
27

3.4 Building domain axioms

Once taxonomies are cleaned to a certain extent, documented, and divided
into appropriate namespaces, activities aimed at raising the conceptual detail of the
ontology can be started. The most important is the characterisation of domain
concepts with axioms. In order to realise this, domain resources containing informal
relationships, and (at least some) glosses from documentation are upgraded to the
status of logical axioms.

Informal relationships can be found in thesauri (e.g. related term) as well as
reference tables and topic trees. They are mined in order to understand:

1) if the axioms are applicable to all the subconcepts of the concept to
which the axiom pertain, and

2) what quantification is applicable to those axioms: existential (necessary)
or universal (contingent)?

This results into formal Domain Axioms. This axiom set is enhanced by
axiomatising glosses. Here the ONIONS methodology [10] is applied to derive
formal domain axioms from natural language descriptions. The typical technique
consists in extracting terms, parsing them according to a dependency grammar, and
applying core and upper ontologies to assign concepts and relations to the resulting
dependency trees.

This activity is time-consuming, and semi-automatic techniques are still a
research issue [13]. Scalability and approximate results are considered here.

The axioms obtained from informal relationships and glosses are revised
according to the fishery core ontology developed so far.

3.5 Modularising ontology library according to topics

Following OnTopic methodology [11], dependency chains of core concepts
are automatically generated and the existing preliminary topic topology is checked in
order to produce a first version of the ontology library architecture. Dependency
chains are also applied to derive indexing tags and boolean search spaces.

A dependency chain is the transitive closure of the logical depend-ons of a
concept. The transitive closure is applied to the defining elements of a concept. Here a
set of relevance parameters are applied in order to

3.6 Providing multi-lingual lexicalisation to elements in the ontology library

An integrated fishery ontology benefits from the existence of terms already
related to concepts in the original resources, since they semi-automatically provide the
so-called lexicalisation of concepts. On the other hand, having an integrated ontology
also provides a powerful tool to check polysemous senses of terms, as well as to
check consistency of UF thesaurus relations and consistency of multi-lingual
equivalents.

Heiner Stuckenschmidt
28

3.7 A unified architecture

Figure 7 shows a simplified example architecture to support information
brokering [6] or unified search after merging of fishery information systems by means
of Fishery Ontology Service.

Integrated Fishery Ontology (IFO)

Fishery
Ontology
Server
(FOS)

Topic-Based
Fishery
Browser
(TBFS)

Query
interface

Results
(documents)

User
query

Results
(specialised

info,
terminological
equivalents,
glosses, etc.)

oneFish
Topic
Trees

FIGIS
Taxonomies

AgroVoc
Thesaurus

ASFA
Thesaurus

Fig. 7. A unified interface for interoperability after merging heterogeneous terminological
resources in fishery.

The basic idea is that user queries, through a query interface, can be
submitted to two kinds of servers: if the query aims at retrieving documents, a topic-
based fishery agent rewrites the query in order to submit it to heterogeneous databases
(brokering); if the query aims at finding specialised conceptual or terminological
information, it is directed to the Fishery Ontology Server (FOS). In both cases, the
query interface uses FOS. Query rewriting needs also mapping relations from the
integrated fishery ontology to the source thesauri.

CONCLUSIONS

In this paper we have outlined some research solutions within the framework
of ontology integration that are based on formal upper and core ontologies. Some
details have been given on how informal schemata such as thesauri, reference tables,
and topic trees can be reused and refined in order to be manipulated by ontology
integration. Some hints have also been shown about the dependence of topic trees
from ontologies, a promising research area for the semantic web.

In fact, the overall research issue underlying the FOS project is to provide a
unified methodology of ontology integration and merging based on formal
ontologies, ontology library design, topic trees building and maintainance, and
efficient web search and indexing.

Heiner Stuckenschmidt
29

REFERENCES

[1] http://www.fao.org/fi
[2] http://www4.fao.org/asfa
[3] http://www.fao.org/agrovoc
[4] http://www.onefish.org
[5] http://www.ontoweb.org
[6] http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-6/web-agent/www/i3.html
[7] Gangemi A, Guarino N, Masolo C, Oltramari A.: Understanding Top-Level Ontological

Distinctions, in: H. Stuckenschmidt (ed), Proceedings of the IJCAI 2001 Workshop on
Ontologies and Information Sharing (2001)

[8] Gangemi A, Guarino N, Oltramari A.: Conceptual Analysis of Lexical Taxonomies: The
Case of WordNet Top-Level, in: C Welty, B Smith (eds.), Proceedings of the 2001
Conference on Formal Ontology and Information Systems, Amsterdam, IOS Press
(2001)

[9] Calvanese D, De Giacomo G, Lenzerini M.: A Framework for Ontology Integration.
Proceedings of 2001 Int. Semantic Web Working Symposium (SWWS 2001) (2001)

[10] Gangemi A, Pisanelli DM, Steve G.: An Overview of the ONIONS Project: Applying
Ontologies to the Integration of Medical Terminologies. Data and Knowledge
Engineering, 1999, vol.31, pp. 183-220 (1999)

[11] Gangemi A, Pisanelli DM, Steve G.: The OnTopic Methodology for Supporting Active
Catalogues with Formal Ontologies. ISTC-CNR-OCMG Internal Report iii-01 (2001)

[12] Taconet M, Roux O: FIGIS, The Fisheries Global Information System.
[13] http://www.ontoweb.org/SIG
[14] Velardi P, Missikoff M, Fabriani P: Using Text Processing Techniques to

Automatically Enrich a Domain Ontology, in: C Welty, B Smith (eds.), Proceedings o f
the 2001 Conference on Formal Ontology and Information Systems, Amsterdam, IOS
Press (2001)

[15] Welty C, The Ontological Nature of Subject Taxonomies, N Guarino (ed.), Proceedings
of the First Conference on Formal Ontology and Information Systems, Amsterdam, IOS
Press (1998)

[16] Pepper S, The TAO of Topic Maps:
http://www.gca.org/papers/xmleurope2000/papers/s11-01.html

[17] Stojanovic N, Maedche A, Staab S, Studer R, Sure Y: SEAL — A Framework for
Developing SEmantic PortALs

[18] Oltramari A., Gangemi A, Guarino N, Masolo C,: Restructuring WordNet’s Top-Level:
The OntoClean approach, in K Simov (ed): Proceedings of the The LREC2002
Workshop on Ontologies and Text, Las Palmas (2002)

Heiner Stuckenschmidt
30

Finding and specifying relations between ontology
versions

Michel Klein1 and Atanas Kiryakov2 and Damyan Ognyanoff3 and Dieter Fensel4

Abstract. Interoperability between different existing ontologies is
import to leverage the use of ontologies. However, the interoperabil-
ity between differentversions of ontologies is at least as important.
Especially when ontologies are used in a distributed and dynamic
context as the Web, we can expect that ontologies will rapidly evolve
and thus may cause incompatibilities. This paper describes a system
that helps to keep different versions of web-based ontologies inter-
operable. To achieve this, the system allows ontology engineers to
compare versions of ontology and to specify the conceptual relations
between the different versions of concepts. Internally, the system
maintains the transformations between ontologies, some meta-data
about the version, as well as the conceptual relation between con-
cepts in different versions. This paper briefly describes the system,
presents the mechanism that we used to find and classify changes in
RDF-based ontologies, and discusses how this may be used to spec-
ify relations between ontologies that improve their interoperability.

1 ONTOLOGY EVOLUTION THREATENS
INTEROPERABILITY

Ontologies have become popular because of their promise of knowl-
edge sharing and reuse [10]. Interoperability between ontologies is
an important issue, because the reuse of knowledge often implies that
different existing ontologies are used together. This requires that the
knowledge represented in the ontologies is not conflicting. However,
ontology interoperability is not only important between different ex-
isting ontologies, it is also an issue between differentversions of an
ontology. This is especially relevant when ontologies are used in the
context of the Semantic Web [5].

In this vision, ontologies have a role in defining and relating con-
cepts that are used to describe data on the web. The distributed and
dynamic character of the web will cause that many versions and vari-
ants of ontologies will arise. Ontologies are often developed by sev-
eral persons and continue to evolve over time. Moreover, domain
changes, adaptations to different tasks, or changes in the conceptu-
alization might cause modifications of the ontology. This will likely
cause incompatibilities in the applications and ontologies that refer
to them, and will give wrong interpretations to data or make data
inaccessible [11].

To handle ontology changes, a change management system is
needed that keeps track of changes and versions of ontologies. More-
over, it is necessary to maintain the links between the versions and
variants that specify the relations and updates between the versions.

1 Vrije Universiteit Amsterdam, michel.klein@cs.vu.nl
2 OntoText, Sofia, Atanas.Kiryakov@sirma.bg
3 OntoText, Sofia, damyan@sirma.bg
4 Vrije Universiteit Amsterdam, dieter@cs.vu.nl

These links can be used to re-interpret data and knowledge under
different versions. The ontologies and their relations together form a
web of ontologies. The specification of these links is thus very im-
portant.

In this paper, we present a web-based system that supports the
user in specifying the conceptual relation between version of con-
cepts. The system, called OntoView, also maintains those links, to-
gether with the transformations between them. It use them to provide
a transparent interface to different versions of ontologies, both at a
specification level as at a conceptual level. It can also export the dif-
ferences between versions as separate “mapping ontologies”, which
can be used as adapters for the re-interpretation of data and other
ontologies. The goal of this system is not to provide a central reg-
istry for ontologies, but to allow ontology engineers to store their
versions and variants of ontologies and relate them to other (pos-
sibly remote) ontologies. The resulting mapping relations between
versions can also be exported and used outside the system.

Most of the ideas underlying the versioning system are not de-
pending on a specific ontology language. However, the implemen-
tation of specific parts of the system will be dependent on the used
ontology language, for example the mechanism to detect changes.
Throughout this article, we will use DAML+OIL5 [8, 9] and RDF
Schema (RDFS) [7] as ontology languages. These two languages are
widely considered as basis for future ontology languages for the Web.

The rest of the paper is organized as follows. In the next section,
we discuss some issues about update relations between ontologies. In
section 3, we give an overview of the versioning system and describe
its the main functions. Section 4 describes the main feature of the
system: comparing ontologies. In that section, we explain the mech-
anism we used to find changes in RDF-based ontologies and present
some of the rules that we used to encode change types. Finally, we
conclude the paper in section 6.

2 THE UPDATE RELATION BETWEEN
ONTOLOGIES

There are three important aspects to discuss when considering an
update relation between ontologies. First, this isthe difference be-
tween update relations and conceptual relations inside an ontol-
ogy.

Ontologies usually consist of a set of class (or concept) definitions,
property definitions and axioms about them. The classes, properties
and axioms are related to each other and together form a model of
a part of the world. A change constitutes a new version of the on-
tology. This new version defines an orthogonal relation between the

5 Available fromhttp://www.daml.org/language/

Heiner Stuckenschmidt
31

definitions of concepts and properties in the original version of the
ontology and those in the new version. This is depicted in Figure 1.

Figure 1. Orthogonal relations between classes in two version of an ontol-
ogy (dashed arrows)

The relations between concepts inside an ontology, e.g. between
classA and classB, is thus a fundamentally different relation from
the update relation between two versions of a concept, e.g. between
classA1.0 and classA2.0. In the first case, the relation is a purely
conceptual relation in the domain; in the second case, however, the
relation describes meta-information about the change of the concept.

Nevertheless, two version of a concept still havesome conceptual
relation. This relation, however, is not determined by the update it-
self, but accompanying information of an update relation. There are
other characteristics of an update relation, too. We distinguish the
following properties that can be associated with an update relation:

• transformation or actual change: a specification of what has ac-
tually changed in an ontological definition, specified by a set of
change operations (cf. [1]), e.g., change of a restriction on a prop-
erty, addition of a class, removal of a property, etc.;

• conceptual relation: the logical relation between constructs in the
two versions of the ontology, e.g., specified by equivalence rela-
tions, subsumption relations, or logical rules;

• descriptive meta-data likedate, author, andintention of the up-
date: this describes the when, who and why of the change;

• valid context: a description of the context in which the update is
valid. In its simplest form, this might consist of the date when the
change is valid in the real world, conform tovalid date in temporal
databases [15] (in this terminology, the “date” in the descriptive
meta-data is calledtransaction date). More extensive descriptions
of the context, in various degrees of formality, are also possible.

A well-designed ontology change specification mechanism should
take all these characteristics into account.

Another issue to discuss about ontology updates is thepossible
discrepancy between changes in the specification and changes
the conceptualization. We have seen that a ontology is aspecifi-
cation of a conceptualization. The actual specification of concepts
and properties is thus aspecific representation of the conceptualiza-
tion: the same concepts could also have been specified differently.
Hence, a change in the specification does not necessarily coincide
with a change in the conceptualization [11], and changes in the spec-
ification of an ontology are not per definition ontological changes.

For example, there are changes in the definition of a concept which
are not meant to change the concept, and, the other way around, a
concept can change without a change in its logical definition. An ex-
ample of the first case is attaching a slot “fuel-type” to a class “Car”.
Both class-definitions still refer to the same ontological concept, but
in the second version it is described more extensively. On the other

hand, a natural language definition of a concept might change, e.g.
the new definition of “chair” might exclude reclining-chairs” without
a logical change of the concept.

The intention of a change is made explicit by categorizing them
into the following categories [16]:

• conceptual change: a change in the way a domain is interpreted
(conceptualized), which results in different ontological concepts
or different relations between those concepts;

• explication change: a change in the way the conceptualization is
specified, without changing the conceptualization itself.

A change cannot be automatically classified as belonging to one of
these categories, because it is basically a decision of the modeler.
However, heuristics can be applied to suggest the effects of changes.
We will discuss that later on.

A third, somewhat different, aspect of an update is thepackaging
of changes, i.e., the way in which updates are applied to an ontol-
ogy. This is an important practical issue for the development of an
ontology change management system.

We can distinguish two different dimensions with respect to the
packaging of the change specification. One dimension is thegran-
ularity of the specification: this can be either the level of a single
“definition” or the level of a “file” as a whole.

The second dimension is themethod of specification. There are
several methods thinkable:

• a “transformation specification”: an update specified by a list of
change operations (e.g., add A, change B, delete C);

• a “replacement”: an update specified by replacing the old version
of a concept or an ontology with a new version; this is an implicit
change specification;

• a “mapping”: an update specified as a mapping between the orig-
inal ontology and another one. Although this is not a update in
the regular sense, an explicit mapping to another ontology can be
considered as an update to the viewpoint of that ontology.

This gives several possible change specifications. For example, a
change can be specified individually, as a mapping between one spe-
cific definition in one ontology and another definition in another on-
tology, but it can also be done at a file level, by defining the transfor-
mation of the ontology.

Notice that the packaging methods are not equivalent, i.e., they do
not give the same information about the update relation. It is clear
that the mapping provides a conceptual relation between versions of
concepts that is not specified in a transformation.

3 GENERAL DESCRIPTION OF ONTOVIEW

OntoView is a web-based system under development that provides
support for the versioning of online ontologies, which might help
to solve some of the problems of evolving ontologies on the web.
Its main function is to help the a user to manage changes in ontolo-
gies and keep ontology versions as much interoperable as possible.
It does that by comparing versions of ontologies and highlighting the
differences. It then allows the users to specify the conceptual relation
between the different versions of concepts. This function is described
more extensively in the next section.

It also provides a transparent interface to arbitrary versions of on-
tologies. To achieve this, the system maintains an internal specifica-
tion of the relation between the different variants of ontologies, with
the aspects that were defined in section 2: it keeps track of themeta-
data, theconceptual relations between constructs in the ontologies
and thetransformations between them.

Heiner Stuckenschmidt
32

OntoView is inspired by the Concurrent Versioning System
CVS [4], which is used in software development to allow collabo-
rative development of source code. The first implementation is also
based on CVS and its web-interface CVSWeb6. However, during the
ongoing development of the system, we are gradually shifting to a
complete new implementation that will be build on a solid storage
system for ontologies, e.g., Sesame7.

Besides the ontology comparison feature, the system has the fol-
lowing functions:

• Reading changes and ontologies. OntoView will accept changes
and ontologies via several methods. Currently, ontologies can be
read in as a whole, either by providing a URL or by uploading
them to the system. The user has to specify whether the provided
ontology is new or that it should be considered as an update to
an already known ontology. In the first case, the user also has to
provide a “location” for the ontology in the hierarchical structure
of the OntoView system.
Then, the user is guided through a short process in which he is
asked to supply the meta-data of the version (as far as this can not
be derived automatically, such as the date and user), to character-
ize the types of the changes (see below in section 4), and to decide
about the identifier of the ontology.
In the future, OntoView will also accept changes by reading in
transformations, mapping ontologies, and updates to individual
definitions. These update methods provides the system with dif-
ferent information than the method described above. For that rea-
son, this also requires an adaptation of the process in which the
user gives additional information.

• Identification. Identification of versions of ontologies is very im-
portant. Ontologies describe a consensual view on a part of the
world and function as reference for that specific conceptualiza-
tion. Therefore, they should have a unique and stable identifica-
tion. A human, agent or system that conforms to a specific ontol-
ogy, should be able to refer to it unambiguously.
Usually, the XML Namespace mechanism [6] is used for the iden-
tification of web-based ontologies. This means that an ontology
is identified by a URI, i.e. a unique pointer on the web. In prac-
tice, people tend to use the location (the URL) of the ontology
file on the web as identifier. OntoView also uses the namespace
mechanism for identification, but does not necessarily use the lo-
cation of the ontology file. If a change does not constitute a con-
ceptual change, the new version gets a new location, but does not
get a new identifier. For example, the location of an ontology can
change from “../example/1.0/rev0” to “../example/1.0/rev1”, while
the identifier is still “../example/1.0”.
OntoView supports two ways of persistent and unique identi-
fication of web-based ontologies. First, it can in itself guaran-
tee the uniqueness and persistency of namespaces that start with
“http://ontoview.org/”, because the system is located at the domain
ontoview.org. Second, because the location and identification
of ontologies are only loosely coupled, it can also store ontologies
with arbitrary namespaces. In this case, the ontology engineer is
responsible for guaranteeing the uniqueness. The ontologies with
arbitrary namespaces are not directly retrievable by their names-
pace, but can be accessed via a search function.

• Analyzing effects of changes. Changes in ontologies do not only
affect the data and applications that use them, but they can also

6 Available from http://stud.fh-heilbronn.de/˜zeller/
cgi/cvsweb.cgi/

7 A demo is available athttp://sesame.aidministrator.nl

have unintended, unexpected and unforeseeable consequences in
the ontology itself [13].
OntoView provides some basic support for the analysis of these ef-
fects. First, on request it can also highlight the places in the ontol-
ogy where conceptually changed concepts or properties are used.
For example, if a property “hasChild” is changed, it will high-
light the definition of the class “Mother”, which uses the property
“hasChild”. In the future, this function should also exploit the tran-
sitivity of properties to show the propagation of possible changes
through the ontology.
Further, we expect to extend the system with a reasoner to au-
tomatically verify the changes and the specified conceptual rela-
tions between versions. For example, we could couple the sys-
tem with FaCT [3] and exploit the Description Logic semantics of
DAML+OIL to check the consistency of the ontology and look for
unexpected implied relations.

• Exporting changes. The main advantage of storing the concep-
tual relations between versions of concepts and properties is the
ability to use these relations for the re-interpretation of data and
other ontologies that use the changed ontology. To facilitate this,
OntoView can export differences between ontologies as sepa-
rate mapping ontologies, which can be used as adapters for data
sources or other ontologies. They only provide a partial mapping,
because not all changes can be specified conceptually.
The exported mapping ontologies are represented with the stan-
dard constructs of the ontology langauge. Because in OntoView
the conceptual relation and the actual transformation are stored
separately, it is not necessary to extend the ontology language with
more advanced mapping- or transformation primitives than those
already available.
The meta-data about the ontology update is specified as a set of
properties of the conceptual relations themselves. In DAML+OIL,
this meant that we had to re-ify the mapping statements.8 This
method has two advantages. First, when specified over re-ified
statements, the meta-data does not interfere with the actual onto-
logical knowledge, as would be the case when meta-data is spec-
ified as characteristics of classes and properties. Second, because
the meta-data is data about themappings themselves, agents or
systems that understand the meta-data can use this to decide which
mappings are applicable in a specific context and which are not.
In the future, it should also be possible to exporttransforma-
tions between two versions of an ontology. A transformation is
a complete specification of all the change operations. This can
be used to re-execute changes and to update ontologies that have
some overlap with the versioned ontology in exactly the same way
as the original one. However, transformations facilitates data re-
interpretations only to a very small extent. A mapping ontology
provides better re-interpretation, because it also captures human
knowledge about the relations.

4 COMPARING ONTOLOGIES

One of the central features of OntoView is the ability to compare
ontologies at a structural level. The comparison function is inspired
by UNIX diff, but the implementation is quite different. Standard
diff compares file version at line-level, highlighting the lines that

8 The DAML+OIL semantics do not currently cover reification because of
the undecidability of second-order logic. However, there is an awareness
that use reification for “tagging” purposes — as we do — is different from
full second-order logic. Seehttp://www.daml.org/language/
features.html.

Heiner Stuckenschmidt
33

textually differ in two versions. OntoView, in contrast, compares ver-
sion of ontologies at astructural level, showing which definitions of
ontological concepts or properties are changed. An example of such
a graphical comparison of two versions of a DAML+OIL ontology is
depicted in Figure 2.9

4.1 Types of change

The comparison function distinguishes between the following types
of change:

• Non-logical change, e.g. in a natural language description. In
DAML+OIL, this are changes in the rdfs:label of an concept or
property, or in a comment inside a definition. An example is the
first highlighted change in Figure 2 (class “Animal’).

• Logical definition change. This is a change in the definition of
a concept that affects its formal semantics. Examples of such
changes are alterations of subClassOf, domain, or range state-
ments. Additions or deletions of local property restrictions in a
class are also logical changes. The second and third change in the
figure is (class “Male” and property “hasParent”) are examples of
such changes.

• Identifier change. This is the case when a concept or property is
given a new identifier, i.e. a renaming.

• Addition of definitions.
• Deletion of definitions.

Most of these changes can be detected completely automatically, ex-
cept for the identifier change. Each type of change is highlighted in
a different color, and the actually changed lines are printed in bold-
face. We describe the mechanism that we use to detect and classify
changes in the next paragraphs.

4.2 Detecting changes

There are two main problems with the detection of changes in on-
tologies. The first problem is the abstraction level at which changes
should be detected. Abstraction is necessary to distinguish between
changes in the representation that affect the meaning, and those that
don’t influence the meaning. It is often possible to represent the
same ontological definition in different ways. For example, in RDF
Schema, there are several ways to define a class:

<rdfs:Class rdf:ID="ExampleClass"/>

or:

<rdf:Description rdf:ID="ExampleClass">
<rdf:type rdf:resource="...chema#Class"/>

</rdf:Description>

Both are valid ways to define a class and have exactly the same mean-
ing. Such a change in the representation would not change the ontol-
ogy. Thus, detecting changes in therepresentation alone is not suffi-
cient.

However abstracting too far can also be a problem: considering
thelogical meaning only is not enough. In [2] is shown that different
sets of ontological definitions can yield the same set of logical ax-
ioms. Although the logical meaning is not changed in such cases, the

9 This example is based on fictive changes to the DAML example on-
tology, available fromhttp://www.daml.org/2001/03/daml+
oil-ex.daml.

ontology definitely is. Finding the right level of abstraction is thus
important.

Second, even when we found the correct level of abstraction for
change detection, the conceptual implication of such a change is not
yet clear. Because of the difference between conceptual changes and
explication changes (as described in section 2), it is not possible to
derive the conceptual consequence of a change completely on basis
of the visible change only (i.e., the changes in the definitions of con-
cepts and properties). Heuristics can be used to suggest conceptual
consequences, but the intention of the engineer determines the actual
conceptual relation between versions of concepts.

In the next two sections, we explain the algorithm that we used
to compare ontologies at the correct abstraction level, and how users
can specify the conceptual implication of changes.

4.3 Rules for changes

The algorithm uses the fact that the RDF data model [12] underlies a
number of popular ontology languages, including RDF Schema and
DAML+OIL. The RDF data model basically consists of triples of the
form<subject, predicate, object>, which can be linked
by using the object of one triple as the subject of another. There are
several syntaxes available for RDF statement, but they all boil down
to the same data model. An set of related RDF statements can be
represented as a graph with nodes and edges. For example, consider
the following DAML+OIL definition of a class “Person”.

<daml:Class rdf:ID="Person">
<rdfs:subClassOf rdf:resource="#Animal"/>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#hasParent"/>
<daml:toClass rdf:resource="#Person"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

When interpreted as a DAML+OIL definition, it states that a “Per-
son” is a kind of ”Animal” and that the instances of its hasParent
relation should be of type “Person”. However, for our algorithm, we
are first of all interested in the RDF interpretation of it. That is, we
only look at the triples that are specified, ignoring the DAML+OIL
meaning of the statements. Interpreted as RDF, the above definition
results in the following set of triples:

subject predicate object
Person rdf:type daml:Class
Person rdfs:subClassOf Animal
Person rdfs:subClassOf anon-resource
anon-resource rdf:type daml:Restriction
anon-resource daml:onProperty hasParent
anon-resource daml:toClass Person

This triple set is depicted as a graph in Figure 3. In this figure, the
nodes are resources that function as subject or object of statements,
whereas the arrows represent properties.

The algorithm that we developed to detect changes is the follow-
ing. We first split the document at the first level of the XML docu-
ment. This groups the statements by their intended “definition”. The
definitions are then parsed into RDF triples, which results in a set of
small graphs. Each of these graphs represent a specific definition of
a concept or a property, and each graph can be identified with the
identifier of the concept or the property that it represents.

Heiner Stuckenschmidt
34

Figure 2. Comparing two ontologies

Figure 3. An RDF graph of a DAML class definition.

Then, we locate for each graph in the new version the correspond-
ing graph in the previous version of the ontology. Those sets of
graphs are then checked according to a number of rules. Those rules
specify the “required” changes in the triples set (i.e., the graph) for a
specific type of change, as described in section 4.1.

Rules have the following format:

IF exist:old
<A, Y, Z>*

not-exist:new
<X, Y, Z>

THEN change-type A

They specify a set of triples that should exists in one specific version,
and a set that should not exists in another version (or the other way

around) to signal a specific type of change. With this rule mecha-
nism, we were able to specify almost all types of change, except the
identifier change. Here we also used some heuristics, based on the
location of the definition in the file. We list two example rules below.

A change in the value of a local property:

IF exist:old
<X, rdfs:subClassOf, Y1>
<Y1, rdf:type, daml:#Restriction>
<Y1, daml:onProperty, Y2>
<Y1, daml:toClass, Z>

not-exist:new
<Y1, daml:toClass, Z>

THEN logicalChange.localPropertyValue X

Heiner Stuckenschmidt
35

A change in the property type:

IF exist:old
<X, rdf:type, rdf:#Property>
<X, rdf:type, daml:#UniqueProperty>

not-exist:new
<X, rdf:type, daml:#UniqueProperty>

THEN logicalChange.propertytype X

The rules are specific for a particular RDF-based ontology lan-
guage (in this case DAML+OIL), because they encode the interpre-
tation of the semantics of the language for which they are intended.
For another language other rules would have been necessary to spec-
ify other differences in interpretation. The semantics of the language
are thus encoded in the rules. For example, the last example not looks
at changes in values of predicates (as the first does), but at a change
in the type of property. This is a change that is related to the specific
semantics of DAML+OIL.

Also, notice that the mechanism relies on the “materialization” of
all rdf:type statements that are encoded in the ontology (some-
times called “knowledge compilation”). The last example depend on
the existence of a statement<X,rdf:type,rdf:#Property>.
However, this statement can only be derived using the semantics of
therdfs:subPropertyOf statement, which — informally spo-
ken10 — says that if a property is an instance of typeX, then it is
also an instance of the supertypes ofX. The application of the rules
thus has to be preceded by the materialization of the superclass- and
superproperty hierarchies in the ontology. For this materialization,
the entailment rules in the RDF Model Theory11 can be used.

4.4 Specifying the conceptual implication of
changes

The comparison function also allows the user tocharacterize the
conceptual implication of the changes. For the first three types of
changes that were listed in section 4.1, the user is given the option
to label them either as “identical” (i.e., the change is an explica-
tion change), or as “conceptual change”, using the drop-down list
next to the definition (Figure 2). In the latter case, the user can spec-
ify the conceptual relation between the two version of the concept.
For example, the change in the definition of “hasParent” could by
characterized with the relationhasParent1.1 subPropertyOf
hasParent1.3.

5 DISCUSSION

There are a few other issues and choices about the design of the sys-
tem that we want to discuss. First, we purposely do not provide sup-
port for finding mappings between arbitrary ontologies. The intention
of our system is to provide users with a system to manage versions
of ontologies and maintain their relations. Finding the relations is a
different task. However, it might be possible to incorporate this func-
tion in a future version of the system, e.g. by interfacing it with a
ontology mapping tool.

Another issue is the visualization of the changes. The current ver-
sions shows the changes by highlighting the textual definitions that
are changed. More advanced visualization techniques are possible.
For example, one could think of techniques that render ontologies in
a graphical representation and highlight the changes in the picture.

10 The precise semantics of RDF Schema are still under discussion.
11 http://www.w3.org/TR/rdf-mt/

We did not yet specify the way in which a “valid context” is
described. Such a context will have several dimensions, of which
“time” is only one. This is something what still has to be done. With-
out such a specification, it is difficult to assess the validness of a
conceptual relation between concepts in different versions. We can
assume that such a relation is at least valid between two successive
versions, but we do not know whether such mapping is allowed to
“propagate” via other mappings to other ontologies. Research on this
is necessary.

A situation in which versioning support is also necessary is the
collaborative development of an ontology [14]. We think that On-
toView is also useful in this situation, especially because all the con-
ceptual implications of versions have to be characterized individually
by users. This integrates the conflict resolution in the update proce-
dure.

A side remark about the use of a versioning system for collabora-
tive ontology development is that this gives an evolutionary way of
ontology building. Each person can have its own conceptualization,
which is conceptually linked to the conceptualizations of others. In
this sense, the combination of versions and adaptations in itself forms
a shared conceptualization of a domain.

Finally, we want to mention that the system is still under construc-
tion. In section 3 we extensively depicted the foreseen functional-
ity of OntoView. However, as became clear of some of the descrip-
tions, not everything is already realized. The basis functions are im-
plemented, but a number of more advanced functions are still being
developed.

6 CONCLUSION

When ontologies are used in a distributed and dynamic context, ver-
sioning support is essential ingredient to maintain interoperability. In
this paper we have analyzed the versioning relation, described its as-
pects, and depicted a system that provides support for the versioning
of online ontologies.

We described how this systems supports helps users to compare
ontologies, and what the problems and challenges are. We presented
a algorithm to perform a comparison for RDF-based ontologies. This
algorithm doesn’t operate on the representation of the ontology, but
on the data model that is underlying the representation. By grouping
the RDF-triples per definition, we still retained the necessary repre-
sentational knowledge. We also explained how users can specify the
conceptual implication of changes to help interoperability. This hon-
ors the fact that it is not possible to derive all conceptual implications
of changes automatically.

The analysis of a versioning relation between ontologies revealed
several dimensions of it. In the system that we described, all these
dimensions are maintained separately: the descriptivemeta-data,
the conceptual relations between constructs in the ontologies, and
thetransformations between the ontologies themselves. This multi-
dimensional specification allows both complete transformations of
ontology representations and partial data re-interpretations, which
help interoperability. The conceptual differences can be exported and
used stand alone, for example to adapt data sources and ontologies.

The described system is not yet finished and should be developed
further. We believe that it will significantly simplify the change man-
agement of ontologies and thus help the interoperability of evolving
ontologies on the web.

Heiner Stuckenschmidt
36

REFERENCES
[1] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth, ‘Se-

mantics and Implementation of Schema Evolution in Object-Oriented
Databases’,SIGMOD Record (Proc. Conf. on Management of Data),
16(3), 311–322, (May 1987).

[2] Sean Bechhofer, Carole Goble, and Ian Horrocks, ‘DAML+OIL is not
enough’, inProceedings of the International Semantic Web Working
Symposium (SWWS), Stanford University, California, USA, (July 30 –
August 1, 2001).

[3] S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and S. Tessaris, ‘A
proposal for a description logic interface’, inProceedings of the In-
ternational Workshop on Description Logics (DL’99), eds., P. Lambrix,
A. Borgida, M. Lenzerini, R. M̈oller, and P. Patel-Schneider, pp. 33–36,
Linköping, Sweden, (July 30 – August 1 1999).

[4] Brian Berliner, ‘CVS II: Parallelizing software development’, inPro-
ceedings of the Winter 1990 USENIX Conference, ed., USENIX Asso-
ciation, pp. 341–352, Washington, DC, USA, (January 22–26, 1990).
USENIX.

[5] Tim Berners-Lee, Jim Hendler, and Ora Lassila, ‘The semantic web’,
Scientific American, 284(5), 34–43, (May 2001).

[6] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML.
http://www.w3.org/TR/REC-xml-names/, January 1999.

[7] D. Brickley and R. V. Guha, ‘Resource Description Framework (RDF)
Schema Specification 1.0’, Candidate recommendation, World Wide
Web Consortium, (March 2000).

[8] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Stefan Decker,
Michael Erdmann, and Michel Klein, ‘OIL in a nutshell’, inKnowl-
edge Engineering and Knowledge Management; Methods, Models and
Tools, Proceedings of the 12th International Conference EKAW 2000,
eds., Rose Dieng and Olivier Corby, number LNCS 1937 in Lecture
Notes in Artificial Intelligence, pp. 1–16, Juan-les-Pins, France, (Octo-
ber 2–6, 2000). Springer-Verlag.

[9] Dieter Fensel and Mark A. Musen, ‘The semantic web: A new brain for
humanity’,IEEE Intelligent Systems, 16(2), (2001).

[10] T. R. Gruber, ‘A translation approach to portable ontology specifica-
tions’, Knowledge Acquisition, 5(2), (1993).

[11] Michel Klein and Dieter Fensel, ‘Ontology versioning for the Seman-
tic Web’, in Proceedings of the International Semantic Web Working
Symposium (SWWS), Stanford University, California, USA, (July 30 –
August 1, 2001).

[12] O. Lassila and R. R. Swick, ‘Resource Description Framework (RDF):
Model and Syntax Specification’, Recommendation, World Wide Web
Consortium, (February 1999). See http://www.w3.org/TR/REC-rdf-
syntax/.

[13] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder,
‘An environment for merging and testing large ontologies’, inKR2000:
Principles of Knowledge Representation and Reasoning, eds., An-
thony G. Cohn, Fausto Giunchiglia, and Bart Selman, pp. 483–493, San
Francisco, (2000). Morgan Kaufmann.

[14] Helena Sofia Pinto and Jo ao Pavão Martins, ‘Evolving ontologies in
distributed and dynamic settings’, inProceedings of the Eighth Inter-
national Conference on Principles of Knowledge Representation and
Reasoning (KR2002), Toulouse, France, (April 22–25, 2002).

[15] John F. Roddick, ‘A survey of schema versioning issues for database
systems’, Information and Software Technology, 37(7), 383–393,
(1995).

[16] Pepijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon, and M. J. R.
Shave, ‘An analysis of ontological mismatches: Heterogeneity versus
interoperability’, inAAAI 1997 Spring Symposium on Ontological En-
gineering, Stanford, USA, (1997).

Heiner Stuckenschmidt
37

Ontology Theory
Christopher Menzel1

Abstract.
Ontology today is in many ways in a state similar to that of anal-

ysis in the late 18th century prior to arithmetization: it lacks the sort
rigorous theoretical foundations needed to elevate ontology to the
level of a genuine scientific discipline. This paper attempts to make
some first steps toward te development of such foundations. Specif-
ically, starting with some basic intuitions about ontologies and their
content, I develop an expressively rich framework capable of treating
ontologies as theoretical objects whose properties and logical inter-
connections — notably, potential for integration — we can clearly
define and study.

1 Introduction

Ontology today is in a state similar to that of analysis in the late
18th century. The practical power of the calculus had been convinc-
ingly demonstrated in the work or Newton and his great successors.
Moreover, the field of real analysis itself had seen an explosion of
creativity, exemplified most notably in the work of Euler. However,
Euler’s own work also revealed worrisome foundational problems.
For techniques used with great success in one instance to prove deep
and dramatic theorems in another instance could lead to absurdities,
e.g., that the value of certain monotonically increasing infinite series
was−1. Such results led to a conceptual crisis — how can any results
be trusted when the methods that generate them can lead to error?

This crisis was addressed, and successfully eliminated, by the de-
velopment of rigorous foundation for analysis — widely known as
the arithmetization of analysis — by Cauchy, Weierstrass, Bolzano,
and others in the early 19th century. Building on the sound foun-
dation of number theory, mathematicians replaced the intuitive but
undefined notions of analysis — limit, continuity, series, integra-
tion, real number etc. — with clearly defined counterparts (e.g., the
now-familiarε, δ definition of limit) and banished unruly notions like
that of an infinitesimal altogether.2 With these solid underpinnings in
place, mathematicians were able to identify clear conditions of ap-
plicability for their analytic methods that prevented the derivation of
absurdities without limiting their ability to prove desirable results.

A similar foundation is needed in the study of ontologies. As with
analysis prior to arithmetization, the potential of ontologies is evi-
dent, but the fundamental notions remain largely intuitive; notably,
there is no precise characterization of the notion of an ontology, nor
what it is for two ontologies to be intergrated. What we need, then, is
our own “arithmetization” — in a nutshell, we needontology theory:

1 Department of Philosophy, Texas A&M University, College Station, TX
77840, email: cmenzel@tamu.edu

2 Ironically, the very foundational work that began with the arithmetization
of analysis and led to the development of mathematical logic ultimately
resurrected the notion of an infinitesimal and an alternative foundation for
analysis built thereon — so-called “nonstandard” analysis. See, e.g., [4]
Chapter 3.

a mathematical framework, akin to number theory or modern anal-
ysis, that enables us to characterize the notion of an ontology for-
mally and develop accounts of their properties and the various ways
in which one ontology can be related to another. Note also that the
framework itself might not be used as it stands for any actual ontol-
ogy integration work. It is in the respect analogous to computabil-
ity theory. No one actually programs turing machines (except as a
heuristic exercise). Rather, the notion provides a model of computa-
tion that serves as a foundation for both theoretical and, therefore,
indirectly, applied computer science.

In this brief paper we can only make some first halting steps to-
ward a general ontology theory. The bulk of this paper will be to ar-
gue for, and lay out in varying degrees of detail, a formal framework
with the representational horsepower adequate for a robust ontology
theory.

2 Intuitions

I begin with some intuitions to motivate the design of a framework
for ontology theory.

1. Ontologies consist of propositions.
2. Propositions are not sentences, they are what sentencesexpress;

different sentences in different languages (or possibly the same
language) can express the same proposition.

3. Propositions can be equivalent without being identical.
4. Propositions and ontologies are objects, things we can talk about.
5. The content of an ontology consists of the propositions involv-

ing concepts in the ontology that are entailed by the constituent
propositions of the ontology.

6. Ontologies are comparable in terms of their content. In particular,
two ontologies are equivalent if they have the same content.

3 Desiderata

In developing a general ontology theory our concern is describe the
phenomenon, just as in the development of number theory or real
analysis or, for that matter, computability theory. We therefore place
no computational restrictions on expressiveness, and hence will avail
ourselves of at least full first-order logic.3

However, we will need quite a lot more than that to satisfy the
intuitions in the preceding section. Notably:

• Re (1) above, we need formal notions ofontology andproposition,
and a notion of the relation between ontologies and the proposi-
tions they consist of.

• Re (2), we need a notion of proposition that is independent of any
particular language.

3 As with both number theory and analysis, of course, we may want to explore
computationally more tractable subtheories of our theory.

Heiner Stuckenschmidt
38

• Re (3), we need a notion of proposition robust enough to allow for
distinct logically equivalent propositions.

• Re (4), we need to be able to name and quantify over propositions
and ontologies; i.e., ontologies and propositions must be “first-
class citizens” in ontology theory.

• Re (5), we need to be able to represent the notion of content, and
hence (i) a notion of entailment that can hold between ontologies
and propositions and (ii) a notion of the concepts within an ontol-
ogy.

• Re (6), we need to be able to define notions of comparability in
terms of ontological content.

I will satisfy these desiderata by developing a first-order theory of
structured relations, of which propositions will be one species. On-
tologies will be identified with 1-place relations, which for most pur-
poses can play the role of classes. This theory will satisfy desiderata
(1), (2), (3), and (4). By “structured” I mean that, although they will
not be identified with formulas, relations will have a decomposable
logical form similar to formulas. Together with a primitive modality,
the structured nature of relations in turn will enable us to define a
notion of entailment for propositions that will enable us to define a
notion of content for ontologies, and hence to satisfy desiderata (5)
and (6).

4 A Formal Framework for Ontology Theory

In this section I will define a language with appropriate expressive
power for ontology theory and a corresponding semantics.

4.1 Syntax

To accomodate the narrow columns of the ECAI 2-column format, as
much as anything, I will simply use the basic apparatus of standard
Principia Mathematica-style first-order language, augmented with a
number of useful constructs. I will call the language “L”.

Note that the unfriendliness of such languages in regard to com-
puter processability is no more to the point here than it is with re-
spect to group theory or computability theory. Our goal is theoreti-
cal — a mathematical theory of ontologies. Such work, of course, if
sound, should lead to developments wherein computer processable
languages are critical, but at this point processability is not an issue.

4.1.1 Lexicon

The lexicon consists of a countable set ofindividual constants, a de-
numerable set ofindividual variables, for eachn ≥ 0, a countable
set ofn-place predicate constants and a denumerable set ofn-place
predicate variables (jointly calledn-place predicates), the reserved
logical symbols¬, ∧, ∨, →, ↔, ∀, ∃, λ, and✷, and parentheses
and brackets. Individual variables will consist of lower case letters,
typically x, y, z, possibly with numerical subscripts.n-place pred-
icate variables will consist of upper case letters with numerical su-
perscripts (suppressed where context serves to indicate the arity of
ann-place predicate), typicallyFn,Gn, andHn, possibly also with
numerical subscripts. For purposes here, constants will consist of al-
phanumeric strings — other than the single-character strings already
in use for the variables — beginning with an upper or lower case let-
ter; dashes are also permitted to join alphanumeric strings. Typically,
I will use a strings beginning with a lower case letter for constants
that are intended to denote individual objects and strings beginning
with an upper case letter for constants intended to denote relations.

4.1.2 Grammar

We define formulas and terms by a simultaneous recursion:

1. Any constant or variable is aterm.
2. If π is ann-place predicate andτ1, . . . ,τn are any terms,n ≥ 0,

thenπ(τ1, . . . , τn) is an (atomic) formula of L. π is said to oc-
cur in predicate position, and eachτi in argument position, in
π(τ1, . . . , τn). In the case wheren = 0, we omit the empty paren-
theses and say thatπ standing alone is an atomic formula.

3. If ϕ, ψ are formulas, so are¬ϕ, ✷ϕ, and(ϕ→ ψ).
4. If ϕ is any formula andν1, . . . , νn any variables, then

(∀ν1 . . . νn)ϕ is a formula.
5. If ϕ is a formula containing no occurrences of✷, no bound vari-

ables occurring in predicate position, and no bound predicate vari-
ables, andν1, . . . ,νn are any individual variables that do not occur
free in any term occurring inϕ, then[λν1 . . . νn ϕ] is a predicable
term.

6. Nothing else is a term or formula ofL

The usual definitions of∧, ∨, ↔, and∃ will be assumed.
There are two particularly distinctive features ofL. First, although

the language ofL contains so-called “higher-order” variables, unlike
standard higher-order languages, these variables, andn-place pred-
icates generally, are considered terms; they can occur as arguments
to other predicates. Semantically speaking, as we will see explic-
itly below, this means that our universe istype-free — everything
is an object; the quantifiers of the language will range over every-
thing alike. Note this doesnot mean that there is no distinction be-
tweenkinds of things. Notably, as noted already, our basic ontology
includes relations as well as ordinary individuals. Rather, in accor-
dance with intuition (4), it simply means that all of these things are
in the universe of discourse, i.e., the range of the quantifiers. All en-
tities — individuals, propositions, properties, and relations alike —
are first-class logical citizens that jointly constitute a single domain
of quantification. As such, properties and relations can themselves
have properties, stand in relations, and serve as potential objects of
reference.

Perhaps the strongest linguistic evidence for type freedom is the
phenomenon of nominalization, whereby any verb phrase can be
transformed into a noun phrase of one sort or another, most com-
monly, a gerund. So, for example, the verb phrase ‘is famous’ indi-
cates a property that can be predicated of individuals, as in ‘Quentin
is famous’. Its gerundive counterpart, however, ‘being famous’,
serves to denote a subject of further predication, as in, e.g., ‘Being
famous is all Quentin thinks about’. Intuitively, the verb phrase indi-
cating the property predicated and the gerund indicating the object of
Quentin’s thoughts (i.e., the object possessing the property of being
thought by Quentin) are the very same thing, the property of being
famous.

In L, this “dual role” of properties and relations — thing predi-
cated vs. object of predication — is reflected in the fact that the same
constant can play both traditional syntactic roles of predicate symbol
and individual constant. Thus, inL, we can write both

(1) Famous(quentin)

and

(2) (∀F)(ThinksAbout(quentin, F) ↔ (F = Famous))

(L retains no representation of the grammatical distinction between
verb phrases — e.g., ‘is famous’ — and their gerundive counterparts

Heiner Stuckenschmidt
39

— e.g., ‘being famous’. One could be added easily enough, of course,
but as there is no semantic difference between verb phrases and their
gerunds on a type free conception, any such representation would be
semantically otiose.)

Because all objects are of the same logical type, it follows that
any property can be predicated of any property and, in particular,
a property can be predicated of (and, indeed, can exemplify) itself.
Again, this comports with natural language; the property of being a
property, for instance, is a property, and hence exemplifies itself. This
is naturally represented inL in the obvious way:

(3) Property(Property)

It must be emphasized that the fact that we will be quantifying
over properties, propositions, and relations generally doesnot in and
of itself mean thatL is higher-order. For that, one’s semantics must
involve higher-order quantifiers whose range includes a power set
construction of some ilk over a domain of logical individuals. In our
semantics, there is no such construction; there is but a single domain
over which a single type of quantifier ranges.

The second distinctive feature ofL, and arguably the most promi-
nent, is the presence of complex terms[λν1 . . . νn ϕ]. Intuitively,
these terms denote complex relations. For instance, the term

(4) [λx Enjoys(x, salmon)∧Prefers(x, red_wine,white_wine)]

indicates the property of enjoying salmon and preferring red wine to
white. Terms with no boundλ-variables indicate 0-place relations,
i.e., propositions. In this case theλ can be dropped. Thus,

(5) [∀x(Planet(x) → Larger(sun, x))]

indicates the proposition that the sun is larger than all of the planets.
This feature ofL is particularly important, as ontologies in the pro-
posed theory will be characterized roughly as classes of propositions,
and the logical connections between ontologies will be expressed in
terms of logical relations between propositions.λ-terms enable us
to talk about the propositions in a given ontology explicitly. And as
we will see, they are also extremely useful for defining a variety of
important auxiliary notions.

4.1.3 On Syntactic Restrictions on Term Formation

Clause (5) in the grammar forL imposes a number of restrictions
on the formation of complex terms. The most noteworthy of these
is the restriction permitting only individual variables to be bound by
theλ operator in complex terms. This restriction avoids the Russell
paradox, as without that restriction the term[λF ¬F (F)] — indicat-
ing, intuitively, the property of non-self-exemplification — would be
legitimate. The grammar would then permit the construction of the
atomic formula[λF ¬F (F)]([λF ¬F (F)]), which, by the logical
principle ofλ-conversion ((10) below), could be proven equivalent
to its negation. However, the restriction that prevents the paradox is
notad hoc. Its justification — which will become clear in Section 4.2
— is that there is simply no intuitive logical operation that yields re-
lations whose logical form corresponds to such terms, and hence no
warrant for permitting them. The avoidance of Russell’s paradox falls
out as a consequence of this restriction, and hence isexplained rather
than merely avoided: the paradox arises from a theoretically unwar-
ranted assumption about the structure of complex relations, much as
the corresponding paradox of self-membership arises from a theoret-
ically unwarranted assumption about the nature and structure of sets
(see, e.g., [2]).

Clause (5) imposes a number of other restrictions on the formation
of terms that are, in fact, dispensable in the sense that we could in fact
provide a reasonable semantics for them. Specifically:

• The requirement thatλ-bound variables all occur free inϕ rules
out such terms as[λxy Px] that contain vacuousλ-bound vari-
ables;4

• The restriction on free occurrences ofλ-bound variables
within complex terms occurring inϕ rules out such terms as
[λxy P [λzQxz]y];5

• The restriction on bound occurrences of predicate variables
within complex terms occurring inϕ rules out such terms as
[λxy (∃F 1)y = F 1];6

However, the terms that would be permitted without these restric-
tions are inessential to our purposes here and hence allowing them
would introduce unnecessary technical complexity.

While the restrictions to non-modal formulas in the formation of
terms is, like the two above, also inessential, it has a certain intuitive
warrant. For, unlike the three restrictions above, this restriction re-
flects an important feature of the intended domain guiding the devel-
opment of the current framework. Specifically, we are formulating a
theory offirst-order ontologies, that is, ontologies whose constituent
propositions are expressible by sentences in a non-modal first-order
language (hence in any weaker sublanguage thereof). This is, of
course, not to say that there are no modal (or higher-order) ontolo-
gies. However, the vast majority of existing ontologies are first-order,
and it seems quite unlikely that this will change with the development
of the Semantic Web if the expressiveness of its basic language is to
be on the order of DAML+OIL. Therefore, to provide the capacity to
express modal propositions, at this point, seems unwarranted.

A theory of ontologies, however, does need this expressive power.
Specifically, modality is useful for characterizing the nature of on-
tologies and their logical connections. Most notably, perhaps, as will
be seen explicitly in Section 7 below, the modal component of the
language of our theory enables us to define a robust notion of en-
tailment which, in turn, can be used to formulate a correspondingly
robust notion of ontological content.

4.2 Semantics

In this section I will build upon work by Bealer [1], Zalta [7], and
Menzel [5] to develop a rich “meta-ontology” of structured relations.

4.2.1 Model Structures

A model structure M for L is a 5-tuple〈D,W, dom,Op, ext〉. Here
D =

⋃{A,R} is thedomain of M, and consists of the union of two
mutually disjoint setsA andR.A is the set ofindividuals ofD andR
is the set ofrelations, of which we considerpropositions a species.R
itself can be partitioned in two significant ways. First,R is the union
of two mutually disjoint nonempty setsRp andRc , intuitively, the
sets of logically primitive and logically complex relations, respec-
tively. Additionally,R is the union of denumerably many nonempty
setsR0,R1, . . . ,eachRn being, intuitively, the class ofn-place rela-
tions. We letRp

n andRc
n beRp ∩Rn andRc ∩Rn, respectively.W

4 Such terms are easily accommodated by means of a further set of logical
operationsVaci that insert vacuous argument places into theith “slot” in
the argument structure of a relation.

5 See Menzel [5] for an account of the semantics of such terms and surround-
ing philosophical issues.

6 Again, see [5] for the semantics of such terms.

Heiner Stuckenschmidt
40

is a nonempty set, intuitively, a set of “possible worlds” or “possible
situations.” More formally,W provides us with a model of modal-
ity that enables us to represent entailment and other logical relations
between ontologies. Accordingly,dom is a function that maps every
elementw of W to a subsetdom(w) of D representing, intuitively,
the set of things that “exist” in the possible worldw.

The next element of a model structure,Op is a set of five sets of
logical operations: a set ofpredication operations,{Predn

i1...ik
:

0 < i1 < . . . < ik ≤ n; k ≥ 07}; a set of twoboolean operations,
{Neg , Impl}; a set ofuniversalization operations,{Univ i1...ik :
1 ≤ i1 < . . . < ik ≤ n; }; a set ofconversion operations,
{Conv i

j : 1 ≤ i < j < ω}; and a set ofreflection operations,
{Refl i

j : 1 ≤ i < j < ω}. These operations “construct” logically
complex relations from individuals and less complex relations inD.
Specifically, for alln:

• Predn
i1...ik

: Rn × Dk −→ Rc
n−k (1 ≤ i1 < . . . < ik ≤

n; k ≥ 1);
• Neg : Rn −→ Rc

n;
• Impl : Rn ×Rm −→ Rc

n+m;
• Univ i1...ik : Rn −→ Rc

n−k, for k ≤ n.
• Conv i

j : Rn −→ Rc
n (1 ≤ i < j ≤ n);

• Refl i
j : Rn −→ Rc

n−1 (1 ≤ i < j ≤ n);

We stipulate thatPredn (i.e., Predn
i1...ik

for k = 0) is just the
identity relation onRn,8 and thatRc is just the union of the ranges
of the logical operations, i.e.,Rc = {⋃ Range(f) : f ∈ ⋃

Op}.
To capture fine-grainedness, it is assumed that all of these operations
are one-to-one and that the ranges of all of the operations are pairwise
disjoint — similar to their syntactic counterparts, the “logical forms”
of relations formed from these operations are all distinct from one
another.

Finally, letDn be the set of alln-tuples overD and letD∗ =⋃
0<n<ω D

n. ext is a function onR × W such that for allr ∈
Rn, w ∈ W , ext(r, w) ⊆ Dn. Note that, forr ∈ R0, only two
extensions are possible:{〈〉}, i.e.,D0 itself, and the empty set∅. In
this case it is useful to think of the former as the truth value� (truth)
and the latter as the truth value⊥ (falsity).

The behavior ofext is constrained further by the logical opera-
tions in

⋃
Op. Some notational conventions will be helpful for stat-

ing these constraints. ForA ⊆ Dn, letA beDn−A. Wheres's′ is
the concatenation of two sequences (tuples)s, s′, for subsetsA,B of
Dn andDm, respectively, letA'B = {a'b : a ∈ A, b ∈ B}.

Where1 ≤ i1 < . . . < ij ≤ n, we let 〈b1, . . . , bn〉i1...ij
a1...aj be

result of replacing eachbik with ak, and we let〈b1, . . . , bn〉i1...ij

be the result of deleting eachbik from 〈b1, . . . , bn〉. Given this, let
r ∈ Rn, q ∈ Rm; then:

• ext(Predn
i1...ik

(r, a1, . . . , ak), w) =

{〈b1, . . . , bn〉i1...ik : 〈b1, . . . , bn〉i1...ik
a1...ak ∈ ext(r, w)};9

• ext(Neg(r), w) = ext(r, w);
• ext(Impl(q, r), w) = ext(q, w)'Dn ∪Dm'ext(r, w)
• ext(Univ i1,...,ij (r), w) =

{〈a1, . . . , an〉i1...ij : ∀b1, . . . , bj ∈ dom(w),

〈a1, . . . , an〉i1...ij

b1...bj
∈ ext(r, w)}

7 If k = 0, theni1 . . . ik is the null sequence, which we want to allow here.
8 This stipulation will yield as logical truths all instances ofπ =

[λν1 . . . νn π(ν1, . . . , νn)], for all n-place predicatesπ.
9 Note that by the definition of thePred functions, we always havek ≤ n in

Predn
i1...ik

.

• ext(Conv i
j(r), w) =

{〈a1, . . . , ai−1, aj , . . . , aj−1, ai, . . . , an〉 : 〈a1, . . . , an〉 ∈
ext(r, w)}

• ext(Refl i
j(r), w) =

{〈a1, . . . , aj−1, aj+1, . . . , an〉 : 〈a1, . . . , an〉 ∈
ext(r, w) and ai = aj}

Constituency and Logical Form The intuitive picture here is a
“quasi-constructive” one similar to the intuitive picture that under-
lies the iterative conception of sets. We begin with a setA of in-
dividuals and a setRp of logically simple relations. The logically
simple relations are thought of as the meanings of the primitive pred-
icates in an ontology. The predication functions applied to primitive
relations and individuals yield basic atomic relations — notably, ba-
sic atomic propositions — and the remaining logical operations ap-
plied to these yield logically complex relations. These in turn, can
be arguments to further applications of the logical operations, yield-
ing an “iterative hierarchy” of relations of increasing complexity. In-
tuitively, then, relations inR are either primitive or are “built up”
from individuals and other relations via the logical operations, and
the manner in which a relation is so built up can be thought of as
its logical form. So, for example, our example proposition (5) —
[∀x(Planet(x) → Larger(sun, x))] — that the sun is larger than
every planet would be built up from the property of being a planet, the
2-place relation of being larger than, and the sun as follows.Pred2

1

applied to the larger-than relation and the sun yields the property

(6) [λy Larger(sun, y)]

of being something that the sun is larger than.10 The boolean “ma-
terial implication” operatorImpl applied to the property of being a
planet and (6) yields the relation

(7) [λxy Planet(x) → Larger(sun, y)]

thata bears tob just in casea is not a planet or the sun is larger than
b. The reflection operationRefl1

2 applied to (7) “collapses” its two
argument places into one to yield the property

(8) [λx Planet(x) → Larger(sun, x)]

of being something such that if it is a planet, then the sun is larger
than it. Finally, application of the “quantification” operatorUniv1

yields our desired proposition (5). In a single equation, then, we have

(9) (5) = Univ1(Refl1
2(Impl(Planet ,Pred2

1(Larger , sun)))).

The manner in which a relation is built up from individuals and
other relations can be thought of as its logical form. We can make this
idea rigorous as follows. Say that aconstituency tree for an element
r ∈ R is any labeled ordered treeT whose nodes are inD and
whose root node isr, such that, for every nodee of T , the daughter
nodese1, . . . , ej of e are such that, for some operationF ∈ ⋃

Op,
F (e1, . . . , ej) = e. A constituency treeT for r is complete iff every
leaf nodeo of T is an individual or a primitive relation, i.e., iffo ∈
A ∪ Rp. Given the constraints on our logical operations it is easy to
show that everyr ∈ R has exactly one complete constituency tree,
which we can therefore identify with thelogical form of r. We define
an objecto ∈ D to be aconstituent of a relationr ∈ R just in case

10 I am of courseusing the term ‘[λy Larger(sun, y)]’ here, not mentioning
it; I am not talking about the term itself, but rather the property it intuitively
denotes under the standard English meanings of the constituent constants.

Heiner Stuckenschmidt
41

e is a node in the complete constituency tree forr. o is a primitive
constituent ofr iff o is a constituent ofr and o ∈ A ∪ Rp. The
notion of constituency will be important for defining the concept of
ontological content in Section 7 below.

4.2.2 Denotations, Interpretations, and Truth

Denotations for the terms ofL relative to a model structureM are
determined by partitioning the class of complex terms according to
their syntactic form. In brief, whereτ is [λν1 . . . νn ϕ], if the order
of the λ-bound variables inϕ does not correspond toν1, . . . , νn,
thenτ is the conversionij of an appropriate termτ ′. Otherwise, if one
of theλ-bound variables occurs free more than once inϕ, thenτ is
a reflectionij of an appropriateτ ′. Otherwise,τ is classified as the
universalizationi1,...,ij , implication, negation, or predicationn

i1,...,ik

of the appropriate sort depending on the logical form ofϕ. Complex
terms of the form[λν1 . . . νn π(ν1, . . . , νn)], for any predicateπ —
i.e., those of the form predicationn — are said to betrivial, as they
indicate no more logical complexity than the constitutive predicate
π.

Given a model structureM, letd be a function assigning elements
of the domainD of M to the individual constants and variables of
L and elements ofRn to then-place predicates ofL. Such ad is
known as adenotation function for L relative toM. Denotations for
complex terms are then assigned by extendingd in an obvious way
that exploits the close parallel between the syntactic form of complex
terms and the logical forms of complex relations:

• If τ is the conversionij of τ ′, thend(τ) = Conv i
j(d(τ

′)).
• If τ is the reflectionij of τ ′, thend(τ) = Refl i

j(d(τ
′)).

• If τ is the universalizationi1,...,ij of τ , then d(τ) =
Univ i1,...,ij (d(τ

′)).
• If τ is the implication of τ ′ and τ ′′, then d(τ) =

Impl(d(τ ′), d(τ ′′)).
• If τ is the negation ofτ ′, thend(τ) = Neg(d(τ ′)).
• If τ is the predicationni1,...,ij

of τ ′ of τ1, . . . , τj , thend(τ) =

Predn
i1,...,ij

(d(τ ′), d(τ1), . . . , d(τj)).

We say that a denotation functiond′ for L relative toM is a ν-
variant of d, for any variableν, just in case, for all variablesµ �= ν,
d′(µ) = d(µ).11

An interpretation A of L is a pair〈M, d〉 consisting of a model
structureM = 〈D,W, dom,Op, ext〉 and a denotation functiond
for L relative toM. For any variableν, aν-variant of A = 〈M, d〉
is any interpretationA′ = 〈M, d′〉 such thatd′ is aν-variant ofd.

Let A = 〈M, d〉 be an interpretation, whereM =
〈D,W, dom,Op, ext〉. Truth at a worldw ∈ W in A for the for-
mulas ofL is defined in the standard sort of way:

• π(τ1, . . . , τn) is true at w in A iff 〈d(τ1), . . . , d(τn)〉 ∈
ext(d(π), w).

• ¬ϕ is true atw in A iff ϕ isn’t.
• (ϕ→ ψ) is true atw in A iff eitherϕ isn’t orψ is.
• ∀νϕ is true atw in A iff ϕ is true atw in all ν-variants ofA.
• ✷ϕ is true atw in A iff ϕ is true atw′ in A, for allw′ ∈W .

5 Proof Theory

The proof theory for this semantics is an extension of classical first-
order logic with identity. Notably, there are principles of identify for

11 Thus, as it is often informally put,d′ differs from d at most in what it
assigns toµ.

complex terms that ensure fine-grainedness, e.g., that no universal-
ization is an implication or a negation, that predications are identical
iff they are predications of the same relation of exactly the same ob-
jects, and so on.

More relevant for ontology theory, however, is a principle ofλ-
conversion that takes as axioms all instances of:

(10) [λν1 . . . νn ϕ](τ1, . . . , τn) ↔ ϕν1,...,νn
τ1,...,τn

,

whereϕν1,...,νn
τ1,...,τn

is the result of replacing every free occurrence ofνi

in ϕ with τi. This principle lets us move freely between statements
about individuals and the attribution of complex properties and rela-
tions to those individuals, e.g.,

(11)
[λx Enjoys(x, salmon) ∧ Prefers(x,wine, beer)](jo)
↔ Enjoys(jo, salmon) ∧ Prefers(jo,wine, beer)

Notably, as we will see below, this principle will give us the ability
to move fromtalking about the propositions in an ontology tousing
them in logical inferences. Like the other axioms of our theory, (10)
is easily shown to be valid relative to the semantics above.

6 The Logic of Constituency

The notion of constituency enables us to capture the intuitive fact that
different ontologies contain different concepts: the concepts in an on-
tology are simply the properties and relations that are constituents of
the propositions of that ontology. Our fine-grained, structured notion
of properties, relations, and propositions gives us a rigorous foun-
dation for analyzing and exploiting the notion of constituency. We
have characterized constituency model theoretically above in Section
4.2.1. In this section we capture the notion axiomatically. We begin
with a schema:12

(12)
Const(τ, τ ′),whereτ ′ is a nontrivial complex term and
τ occurs free inτ ′

That is, any term occurring free within a complex term indicates a
constituent of the relation denoted by the complex term.

Next, we note that the constituency relation is a strict partial or-
dering, i.e., it is transitive and asymmetric (hence also irreflexive):

(13) (Const(p, q) ∧ Const(q, r)) → Const(p, r)

(14) Const(q, r) → ¬Const(r, q)

Finally, we can define an object to be primitive just in case it has
no constituents:

(15) Prim(x) =df ¬(∃q)Const(q, x)

This reflects the model theoretic fact that the ranges of the logical
operations (other than the “trivial”Predn operations) are all subsets
of Rc.

7 Content

As indicated, content is best cashed out in terms of some notion of
entailment. In classical first-order logic, entailment is usually under-
stood model theoretically. Ciociou and Nau [3] have taken some steps
in this direction in developing a formal notion of intertranslatability
between ontologies. For them, ontologies are understood as sets of

12 Recall that a trivial complex term is of the form
[λν1 . . . νn π(ν1, . . . , νn)].

Heiner Stuckenschmidt
42

sentences, and the content of an ontology is understood in terms of
its formal models: the content of an ontologyO consists in the set of
its semantic consequences, i.e., the set of sentences that are true in
all the models ofO. This approach thus can yield a robust notion of
common ontological content across different languages in terms of
shared models.

This approach is clear and insightful, but suffers from two short-
comings. First, though a notion of common content is possible on
this approach, the notion of ontology is still language-dependent; an
ontology is a set of sentences in some language. This violates intu-
itions 1 and 2 above, which jointly imply that ontologies are classes
of language-independent propositions. More seriously, however, the
approach — as a basis for a general theory of ontologies — is un-
wieldy. Content is understood in terms of the models of a theory.
Hence, on this approach, one has to import the full apparatus of first-
order model theory — basic set theory, formal languages, interpre-
tations, model theoretic truth and entailment, etc — just to define a
reasonable notion of ontological content. Moreover, the model theo-
retic approach makes for a rather austere and formal notion of content
— to identify themeaning of a sentence with a set of models is rather
far removed from ordinary semantic notions.

Tbough the present approach has a strong model theoretic com-
ponent, that component serves only to ground a first-order theory of
ontologies and their content; no linguistic or model theoretic entities,
properties, or relations are introduced into the theory.13 Rather, it de-
velops an account of ontologies and their content that is language
independent and grounded in the intuitive notion of propositions —
rather than the austere and abstract notion of a model — as the basic
semantical unit of meaning.

To get at the relevant notion of entailment in our theory, recall
once again that, intuitively, ontologies can be thought of as classes of
propositions. The notion of a proposition easily defined in terms of
our “higher-order” quantifiers:

(16) Proposition(p) =df (∃F 0)p = F 0

Understanding classes as properties, we can now define an ontology
to be a nonempty class of propositions:

(17)
Ont(O) =df (∃F 1)O = F 1 ∧ (∃x)F 1(x) ∧

∀p(F 1(p) → Proposition(p))

The notion of entailment we are after involves both modality and
our notion of constituency. We first define a constituent of an ontol-
ogyO to be a constituent of one of the propositions inO:

(18) OntConst(x,O) =df Ont(O) ∧ (∃p)(O(p) ∧ Const(x, p))

Next, say that an ontologyO entails a propositionF 0 just in caseF 0

must be true if all the propositions inO are true:

(19)
Entails(O,F 0) =df Ont(O)∧

✷((∀G0)(O(G0) → G0) → F 0)

Now say thatF 0 andO share primitives if every primitive con-
stituent ofF 0 is a constituent ofO:

(20)
ShPrim(F 0, O) =df Ont(O) ∧
(∀x)((Prim(x) ∧ Const(x, F 0)) → OntConst(x,O))

13 Though of course we define a model theory for thelanguage L of our
theory, but that’s just a matter of our own metatheoretic housekeeping: it
simply provides a proper theoretical foundation for the language we are
using to express our theory; the model theory forL is not itself a part of
ontology theory.

Thus, combining (19) and (20), we have the notion of entailment we
are after:

(21) StrEntails(O,F 0) =df Entails(O,F 0) ∧ ShPrim(O,F 0).

That is, an ontologyO strongly entails a propositionF 0 just in case
O entailsF 0 andF 0 andO share primitives; that is, intuitively, ifO
entailsF 0 andF 0 is “built up” from the same pool of concepts and
objects — the same “conceptual vocabulary” — as the propositions
inO. We will sometimes write “O ⇒ F 0” for “ StrEntails(O,F 0)”.

The content of an ontology, then, can be thought of as all of the
propositions that it strongly entails. As it happens, we cannot strictly
define the content of an ontology as an object. However, for theo-
retical purposes, strong entailment appears to be all we need. For
example, we can say that one ontologyO subsumes anotherO′ just
in case the content ofO′ is included in that ofO, i.e., just in caseO
strongly entails every proposition thatO′ does:

(22)
Subsumes(O,O′) =df Ont(O) ∧ Ont(O′) ∧

(∀p)(O′ ⇒ p→ O′ ⇒ p)

Ontologies can then be said to beequivalent just in case they sub-
sume each other:

(23) Equiv(O,O′) =df Subsumes(O,O′) ∧ Subsumes(O′, O).

Subtler metrics for comparison are of course also possible, e.g.,
two non-equivalent ontologies might nonetheless share all or some
of their primitives. More generally, the notions defined above pro-
vide a rich framework for analyzing a wide variety of notions rel-
evant to understanding the nature of, and logical relations between,
ontologies.

8 Integration

A major extension of this work that goes far beyond the current scope
will consist in developing a theory of integration. At a purely abstract
level, integration is fairly straightforward. One can import several
ontologies into the languageL of our approach by creating a separate
namespace for the terms in each ontology and translating them from
the language of the ontology intoL. There will thus be, initially,
no possibility of name conflicts. Because the principle[ϕ] ↔ ϕ is
valid, it will be possible to move seamlessly back and forth between
using the axioms of a given ontology to investigate its properties and
talking more generally about the ontology and its content.

Because distinct ontologies are imported with separate names-
paces, there is no danger of logical inconsistency arising from incom-
patible ontologies. Integration can proceed by identifying or other-
wise logically connecting the concepts (objects, properties, relations,
and propositions) expressed across ontologies. Thus, for instance, it
might be postulated that two concepts (properties) from different on-
tologies are identical; or that one concept subsumes the other; or that
for every instancea of one there are two instances of the other that
bear some relation toa; and so on. In this way the logical connec-
tions between ontologies can be mapped clearly and rigorously and
with ever greater precision.

However, while this account of integration is theoretically ade-
quate as far as it goes, a complete treatment will have to include a
theory of languages that connects sets of sentences with the ontolo-
gies that they express, and which should lead to more practical ap-
plications of the theory. Investigating integration at this more applied
level will be the next phase of this project.

Heiner Stuckenschmidt
43

9 Conclusion

It will be possible for ontology to make significant progress toward
the lofty goals workers in the area are pursuing only if it has proper
theoretical foundations. For such goals can be reached only if there
is a clear, generally shared understanding of the subject matter of
ontology, one that makes it possible clearly to define the scope of
the discipline, to identify its subject matter, and chart a course to-
ward the resolution of its outstanding problems. The approach in this
paper shows promise for providing these essential theoretical under-
pinnings

REFERENCES
[1] Bealer, G.,Quality and Concept, Clarendon Press, 1982.
[2] Boolos, G., “The Iterative Conception of Set,”Journal of Philosophy 68,

215-231.
[3] Ciocoiu, M. and Nau, D. “Ontology-Based Semantics,” in Cohn, A.,

Giunchiglia, F., and Selman, B., (eds.),Principles of Knowledge Repre-
sentation and Reasoning. Proceedings of the Seventh International Con-
ference, 539-546, Morgan Kaufmann.

[4] Enderton, H. B.,A Mathematical Introduction to Logic, Academic Press,
1972.

[5] “The Proper Treatment of Predication in Fine-grained Intensional
Logic,” in J. Tomberlin (ed.),Philosophical Perspectives, vol. 7: Lan-
guage and Logic, 1993, Ridgeview Publishing Co., 1993, 61-87.

[6] Turner, R., 1992, Properties, Propositions, and Semantic Theory, in M.
Rosner and M. Johnson (eds.),Computational Linguistics and Formal
Semantics, Studies in Natural Language Processing, pp. 159-180, Cam-
bridge University Press.

[7] Zalta, E.,Abstract Objects: An Introduction to Axiomatic Metaphysics,
Dordrecht: D. Reidel, 1983

Heiner Stuckenschmidt
44

Resolving Terminological Heterogeneity In Ontologies
Prasenjit Mitra and Gio Wiederhold

Infolab, Stanford University,
Stanford, CA 94305, USA 1

fmitra, giog@db.stanford.edu

Abstract. A system that enables interoperation among information
sources using ontologies needs to resolve the terminological differ-
ences between ontologies. In this work, we present several methods
that we have designed to match terms used in different ontologies.
We have implemented two methods based on linguistic similarities
of terms used in the ontologies. The first looks up a dictionary or se-
mantic network like WordNet and the second determines similarities
of words based on word similarity compuoed from a domain-specific
corpus of documents. We discuss our experiments that indicate that
a method that uses both heuristics produces good results.

1 Introduction

Often, we cannot answer a query from a single source, and need to
compose information from multiple information sources. These in-
formation sources are autonomously created and maintained. Inte-
grating the information in them to create a single source is not an
option where the owners of the information sources prefer to main-
tain their autonomy. The merging approach of creating an unified
source is not scalable and is costly. Besides, an integrated informa-
tion source would need to be updated as soon as any information in
any individual source changes [11]. Furthermore, in certain cases a
complete unification of a large number of widely disparate informa-
tion sources into one monolithic information source is not feasible
due to unresolvable inconsistencies between them that are irrelevant
to the application. For a particular application, resolution of incon-
sistencies between a pair of knowledge sources is typically feasible,
but it becomes nearly impossible when the objective is undefined and
the number of sources is large.

Due to the complexity of achieving and maintaining global se-
mantic integration, the merging approach is not scalable. We have
adopted a distributed approach which allows the sources to be up-
dated and maintained independent of each other and enables compo-
sition of information via interoperation.

1.1 The Need for Autonomous Ontologies

Ontologies are increasingly being used to assist the integration of
information. They specify the terminology (and its semantics) used
in information sources. These sources are autonomously created and
maintained.

The alternative to individual ontologies for individual sources is
to use standard ontologies across multiple information sources. Ef-
forts to create and use standardized ontologies have met with limited

1 This work has been supported by the AFOSR New World Vistas program
and the DARPA DAML program.

success due to the different requirements of the different businesses
that construct the information sources. Even if such efforts succeed
in creating a standard ontology, the large size of such an ontology
results in poor performance while using the ontology.

Everyday new discoveries expand our knowledge and change our
views of the universe that we live in. Any ontology representing such
knowledge has to be updated periodically. The maintainers of the in-
formation sources that use the standard ontology will have to agree
on the updates being proposed and on the restructuring of the ontol-
ogy. They may have entirely different applications in mind or may
not subscribe to a newly discovered theory. Furthermore, some par-
ticipants might see the changes required to support the proposed up-
dates as an unnecessary imposition since restructuring the informa-
tion source will require substantial effort on their part. Thus gener-
ating new consensus on updates to the standard ontology is a time-
consuming and tenuous process. For quickly changing fields, arriving
at a consensus within a short period of time is not even feasible.

Besides, even if a standard ontology is devised and widely used
in future, the ontologies that exist today cannot be wished away. To
handle such legacy ontologies, and to allow interoperation among
information systems with autonomous ontologies, we need to inter-
operate among the ontologies themselves.

1.2 Resolving Semantic Heterogeneity

Problems of heterogeneity in hardware, operating systems, and data
structures have been widely addressed, but issues of diverse seman-
tics have been handled mainly in an ad-hoc fashion. While compos-
ing information from information sources, we need to ensure that the
information that we are composing have some semantically meaning-
ful relationship. Semantic heterogeneity among information sources
needs to be resolved to enable meaningful information exchange or
interoperation among them.

The two major sources of heterogeneity among the sources are as
follows: First, different sources use different data formats and model-
ing languages to represent their data and meta-data. Second, sources
using the same data format differ in their structure and semantics
of the terminology they use. Such heterogeneity are a result of the
autonomous nature of the ontologies and the fact that information
sources are constructed by different people with different objectives
in mind.

Often different sources use different terminologies to describe the
objects in the sources. The same term, used in different sources, of-
ten have overlapping or somewhat different semantics, e.g., the term
“nail” has entirely different semantics in a “cosmetics” ontology and
the “carpentry” ontology. Similarly, different sources, often, use dif-

Heiner Stuckenschmidt
45

ferent terms to refer to semantically similar objects, e.g., the terms
“truck” and “lorry” in two transportation ontologies might refer to
the same class of objects.

In order to enable interoperation, we intend to capture the semantic
bridges between two ontologies usingarticulation rules. These rules
express the relationship between two (or more) concepts belonging
to the ontologies that we seek to interoperate. Since these ontologies
can be fairly large, establishing such rules manually is a very ex-
pensive and laborious task. Fully automating the process is also not
feasible. First, despite the rapid advances made in the field of natural
language processing, the technology still remains inadequate to au-
tomatically resolve semantic heterogeneity among these information
sources using different terminology. Second, even though ontologies
expose some of the semantics of the terms and their relationships,
they often remain incomplete or inadequate if we consider the needs
of the various applications that use them.

The problem of ontology alignment has been studied for some
time. Tools like OntoMorph [4], PROMPT [10], and Chimaera [8]
help significantly automate the process. However, these tools do not
contain a component that identifies concept names that are linguis-
tically similar automatically and use that knowledge as the basis for
furhter alignment of the ontologies. They require manual construc-
tion of articulation rules or base their matches on the structure of
the ontologies. Our approach provides a greater degree of automa-
tion while keeping the option of a human expert to ratify the sug-
gested articulation. A similar problem is that of schema matching in
databases. However, most of the techniques used in matching tools
[14],[7], [5], [9], [12], [3] etc. are not adequate when the primary
differences among sources are due to differences in terminology in
sources with little structural similarity or when instance data is not
available and would provide poor results due to the absence of good
structural similarity or absence of instance data in our applications.

In this paper, we propose a semi-automated algorithm for resolv-
ing the terminological heterogeneity among the ontologies and estab-
lishing the articulation rules necessary for meaningful interoperation.
This algorithm forms the basis of thearticulation generator for our
ONtology compositION sytesm (ONION). Our experiments show
that basing such matching on structural information is inadequate.
We describe several heuristics to resolve the terminological hetero-
geneity among ontologies. Experimental results show that combining
the information obtained by using multiple heuristics provides a bet-
ter match between semantically related terms in the ontologies.

2 Ontologies and Their Articulations

In this work, we assume that the ontologies we use are represented
as a graph along with a set of logical rules. Formally, an ontology
O = (G;R) is represented as a directed labeled graphG and a
set of rulesR. The graphG = (V;E) comprises a finite set of
nodesV and a finite set of edgesE. The label of a node is given
by a non-null string that is often a noun-phrase that represents a
concept name. The label of an edge is the name of a semantic re-
lationship among the concepts and can be null if the relationship
is not known. The label of an edge can be any user-defined re-
lationship. The set of relationships with pre-defined semantics is
fSubClassOf; PartOf;AttributeOf; InstanceOf;
V alueOfg. All other relationships are not interpreted by the articu-
lation generator in ONION.

Articulation rules are of two types -
ones that are simple statements of the form
(Match"DepartmentofDefence""DefenseMinistry")

expressing matches between equivalent concepts and the more
complex rules expressed in datalog that are mostly supplied by
the expert. We use the relation(MatchConcept1Concept2)
to indicate that the two conceptsConcept1 and Concept2 are
related (above an acceptable threshold using an expert-supplied
metric of relatedness that can vary from application to application).
Match does not indicate the exact semantic relationship between
the two concepts, for example, whether they have a class-subclass
relationship, or are equivalent etc. Therefore,Match gives a coarse
relatedness measure and it is upon the human expert to then refine
it to something more semantic, if such refinement is required by
the application. For example, the human expert might indicate that
by default all concepts thatMatch are to be taken to be equivalent
unless otherwise noted by the expert.

<flight>|

<DepCity>Washington

D.C.</DepCity>

<ArrCity>Frankfurt</ArrCity>

</flight>

<sortie><from>Rhein Main

AFB</from>

<to>al-Jaber AB</to>

</sortie>

Inference Engine

FORALL X,Y,Z

connection(X,Z)<-

connection(X,Y) and

connection(Y,Z).

<connection>|

<from>Washington D.C.</from>

<to>al-Jaber</to>

</connection>

Declaratively

Specified Rules

Using articulation rule:

<Equ> <Airport>Frankfurt</Airport>

<AFB>Rhein Main AFB </AFB>

</Equ>

<Impl> <Sortie><Connection></Impl>

<Impl><Flight><Connection></Impl>

<Equ><DepCity><From></Equ> ….

Figure 1. An application using an articulation between the United Airlines
Ontology and the TRANSCOM Ontology

In Figure 1, we show an example articulation. On the left hand
side, is a portion of the United Airlines Ontology and on the right
a portion of the TRANSOM Ontology. These ontologies were con-
structed manually for experimentation. The objective of the applica-
tion is to transport military men and materiel from Washington D.C.
to Al Jabar Airbase in Kuwait. A combination of commercial flights
and special purpose sorties is to be used to meet the transport objec-
tive.

The United Airlines source hasflight, whose DepCity is
Washington D: C: andArrity is Frankfurt. This corresponds
to a flight from Washington D. C. to Frankfurt. There exists an ar-
ticulation rule, supplied by the domain expert, that says that the con-
nection relation is transitive.

The TRANSCOM source has asortie that runs from
RheinMainAFB in Frankfurt, Germany toAlJabar airbase in

Heiner Stuckenschmidt
46

Kuwait.
We establish the articulation rules semi-automatically. They in-

dicate that theFrankfurt airport is the co-located with the
RheinMainAFB. It tells us that if there is asortie or a flight
between two cities, then there is aconnection between them. It
also indicates thatDepCity in the United ontology is the same as
From in the TRANSCOM ontology. Due to lack of space in the
figure, the rule that states thatUnited:ArrCity is equivalent to
TRANSCOM:To is not shown.

Using these rules, an inference engine can easily establish
that there is a connection betweenWashington D: C: and
AlJabarAirbase;Kuwait.

The tool generates and suggests the simpler articulation rules to
indicate the terms in the two ontologies that are related. The expert
then validates these suggestions and the final set of articulation rules
are stored to be used during query rewriting and execution.

3 Generation of Ontology Articulations

ONION has an automated articulation generator (ArtGen) that sug-
gests articulations based on a library of heuristic matchers. Each
matcher matches terms in the two ontologies. A human expert,
knowledgeable about the semantics of concepts in both ontologies,
validates the suggested matches generated by ArtGen using a GUI
tool. The expert can either accept the match, keep the match but mod-
ify the suggested relationship between the matched terms, delete a
suggested match or say that the match is irrelevant for the application
at hand. The expert can also indicate new matches that the articula-
tion generator might have missed.

The process of constructing an articulation is an iterative process
and after the expert is satisfied with the rules generated, they are
stored and used when information needs to be composed from the
two ontologies. The response of the expert is also logged and the
articulation generator uses the expert’s feedback to generate better
articulations in future while articulating similar ontologies for simi-
lar applications. This learning process improves the quality of future
generation of articulations from similar information sources.

The heuristic matchers used by the automated articulation genera-
tor can be classified into two broad types - iterative and non-iterative.
Since the articulation generator is modular in nature, any application-
specific matching algorithm can be plugged in. However, we believe
that a set of basic matching algorithms will be useful in a wide vari-
ety of applications and we experimented to determine such a set.

3.1 Non-iterative Algorithms

Non-iterative algorithms are ones that identify the matching concepts
in the two ontologies in one pass. Our linguistic matcher employs
only non-iterative algorithms.

3.1.1 Linguistic Matching

The linguistic matcher looks at all possible pairs of terms from the
two ontologies it is matching and assigns a similarity score to each
pair. If the similarity score is above a threshold, then the match is
accepted and an articulation rule is generated. The threshold can be
modified by the expert performing the articulation to increase or de-
crease the number of matches generated.

We expect that a concept name is represented as a string of words.
The matcher constructs all possible pairs of words where the two

words in a pair come from different strings. The matcher uses a word-
similarity table generated by aword relator which we describe be-
low. It looks up a word-similarity table to determine the similarity
between all such pairs of words. Finally, it computes the similarity
of the strings based on the similarity of the pairs of words.

� match(String s1, String s2, WordSimilarityTable wst)

– List similarityList;

– for each word w1 in s1:

� for each word w2 in s2:
similarityScore wst.lookup(w1, w2);
Add (w1, w2, similarityScore) to similarityList;

– Sort similarityList on the similarity score of the tuples;

– Set matchedWords null;

– floatingPointNumber matchingScore 0.0;

– for each tuple (w1, w2, ss) in similarityList:

� if either w1 or w2 is in matchedWords continue;
� else

matchingScore matchingScore + ss;
add w1, and w2 to matchedWords;

– similarityScore similarityScore / min(size(s1), size(s2));

– return similarityScore;

For example, given the strings ”Department of Defence” and
”Defense Ministry”, we see thatmatch(Defence;Defense) =
1:0. Similarly, we havematch(Department;Ministry) = 0:4.
Therefore, we calculate the similarity between the two strings as:

match("Department of Defence",
"Defense Ministry") = (1 + 0.4)/2 = 0.7.

The denominator is the number of words in the string with less num-
ber of words.

This similarity score of two strings is then normalized with
respect to the highest generated score in the application. The
normalization step removes the bias of word-relators that give
very low similarity scores for all pairs of words or those that
give very high scores to all pairs of words. If the generated
similarity score is above the threshold, then the two con-
cepts are said to match, and we generate an articulation rule,
(Match"DepartmentofDefence""DefenseMinistry"); 0:7,
the last number gives the confidence measure with which the
articulation generator generated this match. The confidence measure
varies betwen 0 and 1.

Constructing the Word-Similarity Table:
We have experimented with several ways to generate the table con-
taining the similarity between all pairs of words. After checking if
the words are spelt similarly, we derive word similarity using meth-
ods that can be differented into two main groups: a) thesaurus based,
b) corpus-based.

Thesaurus-Based Word-Relator: We have devised matching al-
gorithms based on dictionaries or semantic networks, like Nexus [6]
and WordNet [1]. WordNet gives us a list of synonyms for each word.
If the two words are found to be synonyms, then we return a similar-
ity score of 1.0. If the two words are not synonyms, we look at the
the number of words that are ”similar” in the defnitions of each word.
This process of looking into the definitions of words to find their sim-
ilarity can be repeated recursively until a fixed-point is reached or
uptil a specified depth is reached at which point we require ”similar”
to be ”same”.

Heiner Stuckenschmidt
47

� GenerateSimilarity(word w1,word w2,dictionary dict,depth dep)

– if (w1 == w2) return 1;

– if (dep == 0) return 0;

– else

� def1 dict.lookup(w1);

� def2 dict.lookup(w2);

� List similarityList new List;

� for each word wd1 in def1:

� for each word wd2 in def2:
Add (w1, w2, GenerateSimilarity(wd1, wd2, dep-1))

to similarityList;

� Sort similarityList on the similarity score of the tuples;

� Set matchedWords null;

� floatingPointNumber matchingScore 0.0;

� for each tuple (w1, w2, ss) in similarityList:

� if either w1 or w2 is in matchedWords continue;
� else

matchingScore matchingScore + ss;
add w1, and w2 to matchedWords;

� similarityScore similarityScore / min(size(def1),
size(def2));

� return similarityScore;

For example, the definitions of ”truck” and ”boat” are ”an automo-
tive vehicle suitable for hauling”,and ”a vessel for water transporta-
tion”. If the specified depth is 1, we do not look into the definitions
of ”vehicle” and ”vessel” to determine their similarity. Since they
are not exactly the same, we say their similarity is 0. If however, the
depth were set to 2 (or more), we would look up the definitions of
”vehicle” and ”vessel”, discover their definitions both have ”trans-
portation” in common, and generate a similarity measure and prop-
agate that similarity up to generate a non-zero similarity for ”truck”
and ”boat”.

Corpus-Based Word Relator: Word similarities used by the lin-
guistic matcher can also be generated using a corpus-based matching
algorithm. The word relator uses a corpus of documents belonging
to the domain of the ontologies that are being matched. The terms
that appear in the ontology should also appear in the documents. The
word relator calculates word-similarity scores based on the similarity
of the contexts in which the words appear in the documents [13].

We identify the context in which a word,w, appears by looking
at words that appear in a 1000-character neighbourhood of all oc-
currences ofw in documents in the corpus. For example, the words
”in”, ”the”, ”For”, and ”example” constitute the 30-character neigh-
bourhood of the word ”corpus” at the end of the last sentence. In the
example, we looked at a 15-character window ahead of the word and
15 characters behind the word and chose all words that are complete
in these windows. Therefore, even though part of the word ”docu-
ments” appears in the 15-character window before the word ”corpus”
in that sentence it is ignored.

We look at all words that appear in the corpus. For each occurrence
of a word, we identify the words in its context. The number of rows
in the context vector,Vw, of a wordw is equal the number of words
in the corpus. LetVw[i] = c. This implies that theith word in the
corpus occurs with a frequencyc in the 1000-character neighbour-
hood of the wordw. The cosine of such normalized context vectors
of two words gives a measure of the similarity of contexts in which

the two words appear. We use this similarity measure to generate a
table of word similarities that is then used by the linguistic matcher.

Ideally, we would have one corpus associated with one ontology,
where the documents in the corpus use the terms in the exact sense
as it is used in the ontology. However, for our experiments we did
not have such a domain-specific corpus. We generated a corpus by
searching the web(google) using 5 keywords each from the two on-
tologies that we were seeking to articulate. Typically, a corpus of 200
pages proved adequate to produce good matches.

3.1.2 Instance-based Heuristics

Instance-based matching heuristics have been used to successfuly
match schemas in databases [14]. Such matchers look at data types,
and extract other features like lengths of attributes, numerical or lex-
ical statistics of attributes, and match classes based on such feature
vectors. Though, we can handle ontologies, whose concepts also
have instances associated with them, oftentimes, businesses are re-
luctant to make instances available. Thus, we have designed our algo-
rithms assuming that no instance data is available. However, if such
information is available, the matcher can be extended to use instance
information.

3.2 Iterative Algorithms

Iterative algorithms are algorithms that depend upon existing articu-
lation rules to generate further articulation rules. They require mul-
tiple iterations over the two source ontologies in order to generate
semantic matches between them.

3.2.1 Structure-based Heuristics

These algorithms look for structural isomorphism between subgraphs
of the ontologies to find matching concepts. For the ontologies we
have experimented with, we see that a purely structural matcher -
one that simply looks for isomorphism between subgraphs in the on-
tologies without considering concept names- performs very poorly
and is inadequate.

Therefore, we propose a structure-based matcher that is called af-
ter the matches generated by a linguistic matcher is available. If the
linguistic matcher has matched nodes, ”A” and ”B” in the ontology-
graphs, the structural matcher looks to match their children (also
parents), ”C”, and ”D”, if they have not already been matched. If
a substantial percentage (above the threshold supplied) of the parents
of ”C” have been matched with those of ”D”, and the children of
”C” have been matched with those of ”D”, then an articulation rule
matching ”C” and ”D” is generated.

3.2.2 Inference-based Heuristics

An inference engine can reason with the rules available with the on-
tologies and any seed rules provided by an expert ontologies to gen-
erate matches between the ontologies. For example, a rule:

(=> (InstanceOf X O1.LuxuryCar)
((InstanceOf X O2.Car) AND
(O2.PriceOf Y X) AND
(O2.UnitOf X "$") AND
(ValueOf X Z) AND
(> Z 40,000)))

which says that any instance ofO1:LuxuryCar is an instance of
O2:Car, that has a price greater than$40; 000.

Heiner Stuckenschmidt
48

4 Experiments & Results

We have implemented the linguistic methods and the structural meth-
ods in our articulation generator (using Java as the programming lan-
guage). We experimented with three sets of ontologies represented in
RDF[2]:

1. Ontologies (avg. 30 nodes) constructed manually to represent a
domestic airlines (terminology used on United Airlines website)
and a airforce ontology (terminology used in the US Air Force).

2. Ontologies (avg. 50 nodes) constructed manually from the NATO
government web-sites representing each web-page associated with
an department of the government as a node. The edges in the on-
tology graph were derived from the links between the pages.

We measured the accuracy of the generated match by comparing
the results generated by the automated matcher with those expected
by the expert. Any match deleted by the expert was taken to be a false
positive and lowered the precision figures, and a match added by the
expert that the automated generator failed to find lowered the recall.
We summarize the results of the several experiments below:

� A purely structural method which requires exact concept-name
match, like that has been used in existing tools, fails to generate
even 50% of the matches expected by the expert. This result is not
surprising since despite having useful information, the structure
of the ontologies used hardly encode sufficient semantics to use
them solely for ontology alignment.

� Adding linguistic heuristics gave significantly better results, es-
pecially, the corpus-based heuristic provided we supplied the
matcher with a good representative set corpus of documents from
the applicable domain.

� However, a multi-strategy approach works best. On the average
about 75% of the matches were generated, with less than 5% false
positives that the expert indicated was not correct. The linguistic
method generates on the average about 60-70% of the matches
(recall with 95% precision). Adding the structural matcher, boosts
the matches by 5-10%. The human expert provided us with the
other 30% of the rules that were not generated automatically.

The performance of the algorithm depends upon several parame-
ters:

� Thesaurus-based Method: A general purpose thesaurus results in
very poor results. Domain-specific thesauri produce better results
but might not be available.

� Corpus-based Method: A corpus-based method produced better
results than the thesaurus-based method. In the aircraft example,
solely employing the thesaurus-based method produced a 30% re-
call (at 90% precision). A corpus-based method, where we ob-
tained a corpus by searching the web with a few key-words from
the domains, boosted the match to 60%. Combining the two, we
obtained a recall of 70%.

� Scalability: Initially, we tried the corpus-based method with a pre-
processing step of collecting the corpus and building up the word-
context vectors. The linguistic matcher, while matching the on-
tologies, constructed the word similarities as needed. However, for
a test case with 300 nodes in each ontology took an hour to run on
a Pentium III machine with 256M memory. It becomes clear that
for larger ontologies, the algorithm does not scale well if we com-
pute the word similarities while matching the ontologies. For the
algorithm to scale, not only, do we need to build the corpus and
construct the word-context vectors a priori, but also pre-compute

the similarity of all pairs of words in the corpus. The corpus-based
method can then be thought of as equivalent to a lookup based
method, where the word-similarity matrix is constructed from the
words in the corpus. This variation of the corpus-based method
scaled well and for our ontologies finished within a couple of min-
utes at worst.

� Quality: The quality of the matches were very dependent on the
quality of the corpus available. We experimented with corpuses of
size 50 pages, 100 pages, 200 pages and 1000 pages. Corpuses of
size 50-100 pages resulted in low recall figures for the matches. A
size of 200 webpages often proved adequate to generate a recall
of 70%, although in most cases having a corpus of 1000 matches
increased the recall, it was less than a few percentages.

Graph matcher for Articulation- creating Expert

Airline

Passenger Cargo

Flight Orders

Route

Wing

Materiel Passenger

Sortie

Arrival

City

Departure

City

FlightInfo Schedule

Arr.Time

FlightNumber

Dep.Time

Airport

Name

DestinationOrigin

Equipment

Payload

AFB

GEOLOC

EstCost

Date

Location Name

Time

Code

Transcom

ontology

United

ontology

Figure 2. Example of an articulation of United Airlines Ontology with
TRANSCOM Ontology

In Figure 2(hand-drawn), we show two ontologies - the United
Ontology and the TRANSCOM Ontology and the matches gener-
ated. We used a hybrid method that uses WordNet as a thesaurus,
and a corpus generated by searching google. For example, the page
”http://www.etrackcargo.com/Help/Agents/Fieldwas part of the cor-
pus. The confidence scores of the matches are as follows when the
threshold was set to 0.7:

If the threshold was set to a lower value 0.60, we intro-
duced false positives like(Match Airline Destination 0:61).
Further lowering the threshold to 0.50 introduces more
false matches (Match F lightNumber Sortie 0:52),
(Match Equipment Materiel 0:54). Only the first two matches
were generated using a word-relator that consults WordNet. We
ran the word-relator with a depth value of 1. That is, the relator
looks into the definition of the two words for similar words but does
not proceed any further recursively. The match betweenCargo

Heiner Stuckenschmidt
49

Table 1. The matches between the United and TRANSCOM Ontologies

Term in United.ont Term in TRANSCOM.ont Confidence Score
Passenger Passenger 1.0
Cargo Payload 1.0
Departure Time Time 0.90
Arrival Time Time 0.88
Arrival City Destination 0.79
Name Location Name 0.75
Departure City Origin 0.72
Airport Airforce Base 0.71
Flight Sortie 0.70

and Payload was not higher than 0.7 using the corpus-based
word-relator and would not have been suggested. Thus, we see that a
hybrid method gives us a better accuracy than any one method alone.

In this example, we see that with a threshold value of 0.7, we gen-
erate all the desired matches and no false matches - the ideal solution.
However, acheiving a 100all cases. From this and several other exper-
iments, we see that setting a threshold of 0.7 gives the most number
of matches with the a 95the matches are false positives. However,
in a significant number of cases the value of the threshold varies
depending upon both the corpus supplied and the ontologies being
matched. Therefore, we suggest that for an unknown application or
an unknown corpus, when running the first time, the matching thresh-
old be set to 0.7. This is not to say that a threshold of 0.7 will produce
best results always but from our experience it provides a good start-
ing point as there is no one threshold value that will provide satis-
factory for all applications. If not satisfied with the results the expert
can then increase or decrease the threshold to get better matches.

5 Conclusion

We discussed several heuristic methods to produce simple matching
rules between concepts in ontologies that are being aligned. We see
that a multi-strategy method based on intial linguistic-similarity fol-
lowed by structural matching generates matches between ontologies
with reliable accuracy. The work of an expert who then validates the
suggested rules or supplies new rules is substantially reduced by the
automated component.

REFERENCES

[1] ‘Wordnet - a lexical database for english.
http://www.cogsci.princeton.edu/ wn/’, Technical report, Prince-
ton University.

[2] ‘Resource description framework(rdf) model and syntax specification,
w3c recommendation http://www.w3.org/tr/rec-rdf-syntax’, (1999).

[3] M. D. Siegel C. H. Goh, S. E. Madnick. Semantic inter-
operability through context interchange: Representing and reason-
ing about data conflicts in heterogeneous and autonomous systems
http://citeseer.nj.nec.com/191060.html.

[4] H. Chalupsky, ‘Ontomorph: A translation system for symbolic knowl-
edge’, inKR 2000, pp. 471–482. Morgan Kaufmann Publishers, (Apr
2000).

[5] A. Doan, P. Domingos, and A. Y. Halevy, ‘Reconciling schemas of dis-
parate data sources: A machine-learning approach’, inSIGMOD 2002,
(2001).

[6] J. Jannink,A Word Nexus for Systematic Interoperation of Semantically
Heterogeneous Data Sources, Ph.D. dissertation, Stanford University,
2000.

[7] J. Madhavan, P. A. Bernstein, and E. Rahm, ‘Generic schema matching
with cupid’, in VLDB 2001, Proceedings of 27th International Confer-
ence on Very Large Data Bases, September 11-14, 2001, Roma, Italy,
pp. 49–58. Morgan Kaufmann, (2001).

[8] D.L. McGuiness, R.Fikes, J. Rice, and S. Wilder., ‘The chimaera ontol-
ogy environment’, inSeventh National Conference on Artificial Intelli-
gence (AAAI-2000), (2000).

[9] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm, inProceed-
ings of the Twelfth International Conference on Data Engineering, San
Jose, CA. IEEE Computer Society, (February 2002).

[10] N.F. Noy and M.A. Musen, ‘Prompt: Algorithm and tool for automated
ontology mergin and alignment’, inSeventh National Conference on
Artificial Intelligence (AAAI-2000), (2000).

[11] D.E. Oliver, Y. Shahar, E.H. Shortliffe, and M.A. Musen, ‘Represen-
tation of change on controlled medical terminologies’, inProc. AMIA
Conference, (Oct. 1998).

[12] Yannis Papakonstantinou, Hector Garcia-Molina, and Jeffrey D. Ull-
man, ‘Medmaker: A mediation system based on declarative specifica-
tions’, in Proceedings of the Twelfth International Conference on Data
Engineering, February 26 - March 1, 1996, New Orleans, Louisiana,
ed., Stanley Y. W. Su, pp. 132–141. IEEE Computer Society, (1996).

[13] Hinrich Schuetze, ‘Dimensions of meaning’, inSupercomputing, pp.
787–796, (1992).

[14] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin, ‘Data-driven un-
derstanding and refinement of schema mappings’, inACM SIGMOD,
(2001).

Heiner Stuckenschmidt
50

Attribute meta-properties for knowledge sharing
Valentina Tamma and Trevor J.M. Bench Capon

�

Abstract. Formal ontological analysis is a methodology that builds
on some philosophical notions in order to guide the process of build-
ing ontologies whose structure is correct and little or no tangled.
This paper presents an ontology model that facilitates formal onto-
logical analysis, by providing a set ofmetaproperties which char-
acterise the behaviour of concept properties in a concept definition,
while providing a richer semantics of the concept. We describe con-
cepts in terms of their attributes (characterising features) and we also
describe the role played by these features in the concept definition,
whether they are prototypical or exceptional, whether they are per-
mitted to change over time, and if so, how often this happens, how
likely is a concept to show these features, etc. We show that these
metaproperties can support a methodology, OntoClean [44] that uses
formal ontological analysis to build cleaner taxonomies (which are
thus more sharable). The set of metaproperties for attributes we pro-
pose can be used to guide in determining which metaproperties for
concepts hold for an ontology and therefore can support the use On-
toClean.

1 Introduction

Many current applications such as e-commerce or the semantic web
rely on the ability of different resources or agents to interoperate
with each others and with users. In some cases, interoperation
becomes more complex, because agents may have been indepen-
dently developed, therefore the assumption that agents use the same
communication language and the same terminology in a consistent
way cannot be made. When dealing with independently developed
agents, their interoperability with humans and others depends on
the agents’ ability to understand them, which leads us directly
to ontologies. Ontologies are an explicit, formal specification of
a shared conceptualisation, where a ‘conceptualisation’ refers to
an abstract model of some phenomenon in the world by having
identified the relevant concepts of that phenomenon, ‘explicit’ means
that the type of concepts used, and the constraints on their use are
explicitly defined, ‘formal’ refers to the fact that the ontology should
be machine-readable, and lastly ‘shared’ reflects the notion that an
ontology captures consensual knowledge, that is it is not private to
some individual, but accepted by a group [37]. That is ontologies
provide a formally defined specification of the meaning of those
terms that are used by agents during the interoperation.
Agents can differ in their understanding of the world surrounding
them, in their goals, and their capabilities, but they can still interop-
erate in order to perform a task. The interoperation among agents
is the result of reaching an agreement on a shared understanding,
mainly obtained by the reconciliation of the differences. This kind
of reconciliation might be accomplished bymerging the ontologies

�
Department of Computer Science, University of Liverpool, Chadwick
Building, Liverpool L69 7ZF, UK, email:� valli, tbc� @csc.liv.ac.uk

to which the agents involved in the interoperation refer to, that is,
by building a single ontology that is the merged version of different
agent’s ontologies, which often cover similar or overlapping domains
[8].
Ontology merging starts with the attempt to find the places in which
the source ontologies overlap [24], that is the coalescence of two
semantically identical terms in different ontologies so that they can
be referred to by the same name in the resulting ontology. This is
the only step of the merge process which is relevant to the scope of
this article. The coalescence of terms in diverse ontologies has to
be accomplished bearing in mind that agent’s ontologies might be
heterogeneous, and any kind of heterogeneity has to be reconciled in
order to share knowledge. Heterogeneity is out of the scope of this
article, however we recognise that it can hinder attempts to coalesce
terms, especially when it concerns semantics. Ontology or semantic
heterogeneity occurs when different ontological assumptions about
overlapping domains are made [43].
Any consideration on ontology heterogeneity it is usually done
assuming that the ontologies involved in the merging process are
either built according to some kind of engineering methodology,
such as Methontology [6], or ontology taxonomic structures are
validated according to some methodologies such as OntoClean [44].
Both methodologies are aimed to insure that the ontology obtained
after applying them is correct, that it does not contain cycles or
recursive definitions, and it has a taxonomic structure that is no or
little tangled.
Methontology and OntoClean are complementary methodolo-
gies in that Methontology provides the guidelines for building
or re engineering ontologies, whereas OntoClean can be used
either in the validation step (when ontologies are engineered or
restructured) or simultaneously with the ontology construction
(when ontologies are built from scratch). These two method-
ologies are currently undergoing an integration process [5] as
part of the activities of the OntoWeb special interest group on
Enterprise-standards Ontology Environments (SIG’s home page:
http://delicias.dia.fi.upm.es/ontoweb/sig-
tools/index.html).
Methodologies to obtain well-built ontologies, however, are not
enough to support the semi-automatic coalescence process. In fact
in order to recognise whether two concepts (that can be affected
by heterogeneity) are similar, we cannot only rely on the the
terms denoting them, on the relationships with other terms, and on
their descriptions, but we need to have a full understanding of the
concepts. As noted by McGuinness [23], an explicit representation
of the semantics of terms would be useful to understand whether two
concepts are similar. It emerges that the current ontology models are
not expressive enough to provide such an explicit representation of
the semantics. Even when heavyweight ontologies are considered
(that is, concepts described in terms of attributes, linked by relations,

Heiner Stuckenschmidt
51

organised into an Is-a relationship and constrained by axioms) their
expressiveness does not allow a full account of the semantics of the
concepts described.
This paper is organised as follows: Section 2 presents the OntoClean
methodology and the notions of formal ontological analysis, while
Section 3 introduces our proposal for an ontology model encom-
passing a set of metaproperties for attributes which are discussed in
the following subsections. This ontology model was also presented
in [39], in this paper we do not discuss any implementation issues
and we concentrate on the metaproperties, clarifying the relationship
with the concept metaproperties used in OntoClean and the role
attribute’s metaproperties play in associating senses to concepts.
Section 4 discusses the metaproperties and relates them with two
notions (identity and rigidity) of formal ontological analysis and
with roles. Then we proceed by presenting in Section 5 and subsec-
tions a novel approach to knowledge sharing that we are currently
investigating and which motivated the ontology model presented in
Section 3. This approach, calledontology clustering, is thought of
being more suited to open evironments in which agents interoperate
with each others. We Finally, Section 6 draws conclusions and in
Section 7 we describe future work.

2 The philosophical notions of Identity, Unity,
Essence, and Dependence

OntoClean [44] is a methodology to perform aformal ontolog-
ical analysis on taxonomies in order to to verify which formal
metaproperties hold, thus making clear and explicit the modelling
assumptions made while designing the ontologies. The clarification
and explication of the modelling assumptions is a necessary step
to perform in order to evaluate ontologies, it permits knowledge
engineers to detect and reconcile ontological conflicts that may affect
one or more ontologies. Ontological conflicts may become apparent
when two ontologies are compared in order to coalesce term, and
they reveal cases of ontological heterogeneity. For example two
well known ontologies, present the following conflict: one models
Physical Object as subconcept of Amount of matter wheres the other
models Amount of matter as subconcept of Physical object, this is
a case of ontology heterogeneity due to different modellings of the
concepts. Ontologial conflicts need to be detected and resolved if
terms are to be coalesced.
OntoClean is strongly based on the philosophical notions ofidentity,
unity, essence (rigidity), and dependence. The attribute metaprop-
erties we present in this paper are related to these notions, and we
discuss them below.

Identity: Identity is the logical relation of numerical sameness,
in which a thing stands only to itself. Based on the idea that every-
thing is what it is and not anything else, philosophy has tried for a
long time to identify the criteria which allow a thing to be identified
for what it is even when it is cognised in two different forms, by
two different descriptions and/or at two different times [45, 15].
This comprises both aspects of finding constitutive criteria (which
features a thing must have in order to be what it is), and of finding
re-identification criteria (which feature a thing has to have in order
to be recognised as such by a cognitive agent). These are distinct,
although equally important aspects of identity.In fact, while identity
is not affected by the context and is based on the the intrinsic features
of an object, whereas re-identification is affected by context and it
is based on features that are external to the object. For example, an
identity criterion for people is to have matching fingerprints, so two

people are the same if they have the same fingerprints. Fingerprints
are intrinsic to the individual, they are not assigned by an external
agent. A re-identification criterion might depend on the role played
by the object: one can be a student and an employee at the same
time, and is re-identified as student by the student id, whereas is
re-identified as employee by an employee number.
Although the problem ofidentifying what features an entity should
have in order to be what it is and recognised as such has been
central to philosophy, it did not have the same impact in conceptual
modelling and more generally AI. The ability to identify individuals
is central to the modelling process, more precisely, it is not the
mere problem of identifying an entity in the world that is central
to the ontological representation of the world, but the ability to
re-identify an entity in all its possible forms, or more formallyre-
identification in all possible worlds. 2 That is, the problem is related
to distinguishing a specific instance of a concept from its siblings on
the basis of certaincharacteristic properties which are unique and
intrinsic tothat instance in its whole. Intrinsic properties correspond
to the modelling primitiveattributes. Extrinsic properties represent
relations between classes, thus corresponding to the modelling
primitive relationship.
This notion is, of course inherently time dependent, since time gives
rise to a particular system of possible worlds where it is highly likely
that the same instance of a concept exhibits different features3.
This problem is known asidentity through change: an instance of a
concept may remain the same while exhibiting different properties
at different instants of time. Therefore it becomes important to
understand which features or properties can change and which
cannot [44], and also the situations that can trigger such changes.
If we reformulate the identity problem asre-identification we
realise that re-identification is also affected by time; how can we
re-identify the same instance at different instant of times? We
face the re-identification problem in everyday life; we are able to
recognise the features that permits us to distinguish an instance from
the others, and when intrinsic features are not available, we ‘attach’
artificial features, that permit us to establish identity. One example is
the Student ID, which is assigned to university students, in order to
identify students univocally.

Unity: the notion of unity is often included in a more gener-
alised notion of identity, although these two notions are different.
While identity aims to characterise what is unique for an entity
of the world when considered as a whole, the goal of unity is
that of distinguishing the partsof an instance from the rest of the
world by means of a unifying relationthat binds them together (not
involving anything else) [44]. For example, the question ‘Is this my
car?’ represents a problem of identity, whereas the question ‘Is the
steering wheel part of my car?’ is a problem of unity. Also the notion
of unity is affected by the notion of time; for example, can the parts
of an instance be different at different instants of time?

Essence: The notion of essence is strictly related to the notion
of necessity [16]. An essential property is a property that is neces-
sary for an object, that is, a property that is true in every possible
world [22]. Based on the notion ofessence, Guarino and colleagues
[14] have introduced the notion ofrigidity. A rigid property is a

�

Some philosophers, e.g. Lewis [21, page 39 ff], hold that there is no such
thing as trans-world identity, although objects in one world can havecoun-
terparts in other worlds.

�

Here the counterpart theory does not hold, and so identity through time is
always accepted.

Heiner Stuckenschmidt
52

property that is necessary to all instances in any instant of time, that
is a property� such that:� �
 � � � � � � � � � � �
 � � � � � � � � � � . For
this formula, and in the remainder of this paper, we use the modal
notions of necessity � and possibility quantified over possible
worlds (in Kripke’s semantics [18]), meaning that the extension of
predicates concerns what exists in any possible world. We use these
operators according to the following meanings:� � means that�
holds inall possible worlds � means that� is possible, i.e. that�
holds inat least one possible world.
Rigidity strictly depends on the notions oftime andmodality [38];
this point is further elaborated in Section 4.2. It is important,however,
not to confuse modal necessity with temporal permanence. Modal
necessity means that the property is true in every possible world.
Time is undoubtedly one partition of these worlds, but temporal
permanence means that the property is true in that world (time), with
no information concerning the other possible worlds, and this might
happen by pure chance.

Dependence: In OntoClean [44], the notion of dependence is
considered related to concept properties. In this context, dependence
permits us to distinguish betweenextrinsic and intrinsic properties
based on whether they depend on objects other than the one they are
ascribed to or not.

In order to establish whether these metaproperties hold, Onto-
Clean is supported by a description logic based system that can help
knowledge engineers to assign the metaproperties to concepts and
to verify the taxonomic structure on the grounds of the modelling
methodology. In this paper we focus our attention on the process
of assigning the metaproperties. OntoClean guides knowledge
engineers in this process by asking them to answer some questions
such as “Does the property carry identity”. Knowledge engineers can
answer yes, no or unsure, in this latter case more specific questions
can be asked, such as “Are instances of the property countable?”.
The OntoClean methodology depends on the knowledge engi-
neers understanding of the ontologies to analyse and can thus be
problematic if used to evaluate independently designed ontologies.
Moreover, OntoClean does not take into account the structure of
concept definitions, as it does not consider the characteristic features
(or attributes) that might have been used to define concepts.
This work proposes an enriched ontology model whose aim is to
complement the OntoClean methodology, by providing an additional
way to determine metaproperties to concepts. In our proposal
we describe concepts in terms of their characterising properties,
which are in turn described not only in terms of their structural
features (such as range, domain, cardinality etc.), but also in terms
of their metaproperties, which describe the contribution given by
these properties to the concept definition. We describe the enriched
ontology model and the metaproperties for attributes in the next
sections.

3 Enriched ontology model

The ontology model we propose comprisesconcepts, attributes, re-
lations, and instances. We do not consider here axioms. Concepts
represent the entities of the domain and the tasks we want to model
in the ontology. Concepts are described in terms of defining proper-
ties, which are represented by associating anattribute with either a
single value or a set of values. Concepts are organised into an Is-a
hierarchy, so that a concept attributes and their values are inherited
by subconcepts. Multiple inheritance is permitted, so attributes and

their values can be inherited from multiple parents. The values asso-
ciated with an attribute can be restricted in order to provide a better
definition of a concept [19].
Attributes are described in terms of their structural characteristics,
such as the concepts that they are defining, their allowed values, the
type of the values (string, integer, etc.), and the maximum and mini-
mum values (if attributes are numeric). Attributes are also described
in term of the following metaproperties:

Attribute’s behaviour over time: The metapropertiesMutability,
Mutability Frequency, Event Mutability andReversible Mutability
provide a better description of attributes by characterising their be-
haviour over time, that is, whether they are allowed to change their
value during the concept lifetime (Mutability) and how often the
change occursMutability Frequency), whether the change is re-
versible (Reversible Mutability), and what triggers change (Event
Mutability);

Modality: this meta-property is a qualitative description of the de-
gree of inheritability of a concept property by its subconcepts;

Prototypes and Exceptions: the metapropertiesPrototypical and
Exceptional aim to describe properties that are prototypical for
a concept, that is the properties that obtain for theprototypical
(from a cognitive viewpoint, according to Rosch [30]) instances of
a concept. Exceptions are those properties which can be ascribed
to a concept although being highly unusual;

Inheritance andDistinction: inherited metaproperties regard those
properties that hold because inherited from an ancestor concept,
they may be overruled in the more specific concept in order to ac-
commodate inheritance with exceptions.Distinguishing are those
properties that permit us to distinguish among siblings of a same
concept. In other words a distinguishing property� is a prop-
erty such that $ � � � � � ($ � + � � � � , that is there is possibly
something for which the property� holds, and there is possibly
something for which the property does not hold, and these are
neither tautological nor vacuous [44]. Distinguishing properties
might cause disjoint concepts in the ontology’s taxonomic struc-
ture.

These metaproperties provide means to distinguish betweennec-
essary and sufficient conditions for class membership. Indeed, the
modality meta-property and those describing the behaviour over time
permit the identification of essential (or rigid) properties and neces-
sary properties are those that are essential to all instances of a con-
cept. Prototypical properties are good candidates to identify suffi-
cient conditions, as discussed in Section 3.3.
Relations between concepts are supported by the model as are in-
stances. Finally, the ontology model supports roles. Concepts are also
used to representroles, which can be thought of describing thepart
played by a concept in a context, (a more complete discussion on
roles is postponed to Section 4.3). Roles are described in terms of
their context, and the formal role relationship holds, that is, roles are
related to concepts by a ‘Role-of’ relations.
This ontology model enriches the traditional model proposed initially
by Gruber [12], in that it permits the characterisation of a concept
properties. From this viewpoint it should be more expressive. The
solution of adding information characterising concept properties is
a controversial one. Although we do realise that often it is not true
that ‘more is better’, this work claims that an ontology model which
include this type of property’s characterisation might be helpful to
deal with ontology heterogeneity problems in two ways. On the one
hand the model complements the set of formal ontological proper-
ties proposed in [44], and can guide in assigning these to concepts

Heiner Stuckenschmidt
53

in a way which depends on concept definitions in terms of attributes.
This might result particularly useful when knowledge engineers need
to assign formal properties to ontologies they have not designed.
On the other hand, this conceptual model for ontologies facilitates
a better understanding of the concept semantics. Currently ontology
merge is performed by hand based on the expertise of the knowledge
engineers and on the ontology documentation. Even in this case the
ontology model we propose can prove useful by providing a charac-
terisation of the properties, which can help to identify semantically
related terms. The following subsections describe all the metaprop-
erties for attributes but Inheritance and Distinction (which are trivial)
more in detail:

3.1 Behaviour over time

The metaproperties which model the behaviour of the attributes over
time are:

Mutability, which models the liability of a concept property to
change, a property is mutable if it can change during the concept
lifetime;

Mutability Frequency, which models the frequency with which a
property can change in a concept description;

Event Mutability, which models the reasons why a property may
change;Reversible Mutability, which models reversible changes
of the property.

These metaproperties describe the behaviour offluents over time,
where the termfluent is borrowed from situation calculus to denote
a property of the world that can change over time. Modelling the
behaviour of fluents corresponds to modelling the changes in prop-
erties that are permitted in a concept description without changing
the essence of the concept. Describing the behaviour over time also
involves distinguishing properties whose change isreversible from
those whose change isirreversible.
Property changes over time are caused either by the natural pas-
sage of time or are triggered by specific event occurrences. We need,
therefore, to use a suitable temporal framework that permits us to
reason with time and events. In [39] we choseEvent Calculus [17]
to accommodate the representation of changes. Event calculus deals
with local event and time periods and provides the ability to reason
about change in properties caused by a specific event and also the
ability to reason with incomplete information.
Changes of properties can be modelled asprocesses [35]. Processes
can be described in terms of their start and end points and the changes
that happen in between. We can distinguish betweencontinuous and
discrete changes, the former describing incremental changes that
take place continuously while the latter describe changes occurring
in discrete steps calledevents. Analogously we can definecontinuous
properties to be those changing regularly over time, such as the age
of a person, versusdiscrete properties which are characterised by an
event which causes the property to change. If a property’s mutability
frequency isregular (that is it changes regularly), then the process is
continuous, if it isvolatile the process is discrete, and if it changes
once only in the concept lifetime, then the process is considered dis-
crete and the triggering event is set equal totime-point=T.
Any regular occurrence over time can be, however, expressed in form
of an event, since most of the forms of reasoning for continuous
properties require discrete approximations. Therefore in the ontol-
ogy model we present here, continuous properties are thought of as
discrete properties where the event triggering the change in property
is the passing of time from the instant� to the instant� � . Events are

always thought of aspoint events, and we considerdurational events
(events which have a duration) as being a collection ofpoint events
in which the property whose mutability is modelled by the set of
metaproperties hold as long as the event lasts.

3.2 Modality: Weighing the validity of attributes’
properties

The term modality is used to express the way in which a statement is
true or false, which is related to establish whether a statement consti-
tutes anecessary truth and to distinguish necessity from possibility
[18]. The term can be extended to qualitatively measure the way in
which a statement is true by trying to estimate the number of possible
worlds in which such a truth holds. This is the view we take in this
work, by denoting the degree of confidence that we can associate
with finding a certain world with the meta-propertymodality. This
notion is analogous to therankings defined by Goldszmidt and Pearl
[10]: ‘Each world is ranked by a non-negative integer - representing
the degree of surprise associated with finding such a world’.
Here we use the term modality to denote the degree of surprise in
finding a world where the property. holding for a concept/ does
not hold for one of its subconcepts/ � . The additional semantics
encompassed in this meta-property is important for reasoning with
statements that have different degrees of credibility. Indeed there is
a difference in asserting facts such as ‘Cats are pets’ and ‘All felines
are pets’, the former is generally more believable than the latter, for
which many more counterexamples can be found. The ability to dis-
tinguish facts whose truth holds with different degrees of strength is
important in order to find which facts are true in every possible world
and therefore constitutenecessary truth.
The ability to evaluate the degree of confidence in a property describ-
ing a concept is also related to the problem of reasoning with ontolo-
gies obtained by merge. In such a case, mismatches can arise if a
concept inherits conflicting properties. In order to be able to reason
with these conflicts some assumptions have to be made, concerning
on how likely it is that a certain property holds. In case of conflict the
property’s degree of credibility can be used to apply some forms of
non monotonic reasoning or belief revision. For example, we could
rank the possible alternatives on the grounds of the degree of credi-
bility following an approach similar to the one presented in [10].

3.3 Prototypes, exceptions, and concepts

In order to get a full understanding of a concept it is not sufficient
to list the set of properties generally recognised as describing a typ-
ical instance of the concept but we need to consider the known ex-
ceptions. In this way, we partially take the cognitive view of proto-
types and graded structures, which is also reflected by the informa-
tion modelled in the meta-propertymodality. In this view all cogni-
tive categories show gradients of membership which describe how
well a particular subclass fits people’s idea or image of the category
to which the subclass belong [30]. Prototypes are the subconcepts
which best represent a category, while exceptions are those which
are considered exceptional although still belonging to the category.
In other words all the sufficient conditions for class membership hold
for prototypes. For example, let us consider the biological category
mammal: a monotreme (a mammal who does not give birth to live
young) is an example of an exception with respect to the property of
giving birth to live young. Prototypes depend on the context (that is
on the specific domain that is conceptualised); there is no universal
prototype but there are several prototypes depending on the context,

Heiner Stuckenschmidt
54

therefore a prototype for the categorymammal could becat if the
context taken is that ofanimals that can play the role of pets but it is
lion if the assumed context isanimals that can play the role of circus
animals. In the ontology model presented above the context can be
partially described by the roles applicable to the concept for which
prototypical and exceptional properties are modelled. By providing
this example we do not mean that any member of the categoryani-
mals that can play the role of pets could be a prototype, but just that
prototypes vary if we vary the perspective we are taking on the do-
main. Therefore there is no unique prototype for the categoryanimal
but a number of prototypes, depending on how people conceptualise
the domain, and this implies also contextual information, for exam-
ple what is the role played by animals.
Ontologies typically presuppose context and this feature is a major
source of difficulty when merging them, since information about con-
text is not always made explicit.
Prototypes are also quite important in that they provide a frame of
reference for linguistic quantifiers such astall, short, old, etc. These
quantifiers are usually defined or at least related to the prototypical
instance of the concept which is being described, and indeed their
definition changes if we change the point of reference.
Therefore including the notions of prototypes and exceptions per-
mits us to provide a frame of reference for defining these qualifiers
with respect toa specific concept. For the purpose of building ontolo-
gies, distinguishing the prototypical properties from those describing
exceptions increases the expressive power of the description. Such
distinctions do not aim at establishing default values but rather to
guarantee the ability to reason with incomplete or conflicting con-
cept descriptions.
The ability to distinguish between prototypes and exceptions helps
to determine which properties are necessary and sufficient conditions
for concept membership. In fact a property which is prototypical and
that is also inherited by all the subconcepts becomes a natural candi-
date for a necessary condition. Prototypes, therefore, permit the iden-
tification of the subconcepts that best fit the cognitive category rep-
resented by the conceptin the specific context given by the ontology.
On the other hand, by describing which properties are exceptional,
we provide a better description of the membership criteria in that it
permits us to determine what are the properties that, although rarely
holding for that concept, are still possible properties describing the
cognitive category.
Prototypes and exceptions can prove useful in dealing with con-
flicts arising from ontology merging. When no specific information is
made available about a concept and it inherits conflicting properties,
then we can assume that the prototypical properties hold for it.

4 Discussion

The ontology model presented in previous section could be imple-
mented in any kind of ontology representation formalisms. In [39]
we presented an implementation of the ontology model above in a
frame-based representation formalism, therefore attributes were de-
scribed by associating values to slots, and their structural description
and metaproperties were modelled by the slot’s facets.
By adding the metaproperties to the ontology model, we provide an
explicit representation of the attributes’ behaviour over time, their
prototypicality and exceptionality, and their degree of applicability
to subconcepts. This explicit representation may be used to support
and complement the OntoClean methodology [44], in that they can
help in determining which metaproperties hold for concepts, as we
will illustrate in remainder of this section.

Furthermore, the enriched ontology model we propose forces knowl-
edge engineers to make ontological commitments explicit, that is the
agreement on the meaning of the terms used to describe a domain
[13]. Knowledge sharing is possible only if the ontological com-
mitment of the different agents is made explicit. Real situations are
information-rich events, whose context is so rich that, as it has been
argued by Searle [32], it can never be fully specified. When dealing
with real situations one makes many assumptions about meaning and
context [31], and these are rarely formalised. But when dealing with
ontologies these assumptions must be formalised since they are part
of the ontological commitments that have to be made explicit. En-
riching the semantics of the attribute descriptions with things such as
the behaviour of attributes over time or how properties are shared by
the subconcepts makes some important assumptions explicit.
The enriched semantics is essential to reconcile cases of ontology
heterogeneity. By adding information on the attributes we are also
aiming to measure the similarity between concepts more precisely
and to disambiguate between concepts thatseem similar while they
are not.
A possible drawback of enriching the ontology model is that knowl-
edge engineers are required a deeper analysis of a domain. We re-
alise that it makes the process of building an ontology even more
time consuming but we believe that a more precise ontological char-
acterisation of the domain at least balances the increased complexity
of the task. Indeed, in order to include the attribute’s metaproperties
to the ontology model, knowledge engineers need to have a full un-
derstanding not only of the concept they are describing, but also of
the context in which the concept is used. Arguably, they need such
knowledge if they are to perform the modelling task thoroughly.
The evaluation of the cost to pay for this enriched expressiveness
and of the kind of reasoning inferences permitted by this model are
strictly dependent on the domain and the task at hand. We can imag-
ine that the automatic coalescence of terms might require more so-
phisticated inferences whose cost we cannot evaluatea priori. In
some other cases, the simple matching between properties’ charac-
tersiations might help in establishing or ruling out the possiblity of
semantic relatedness. For example, two concepts are described by
the same properties but with different characterisations, this might
indicate that the concepts have been conceptualised differently.

4.1 Identity

The idea of modelling the permitted changes for a property is strictly
related to the philosophical notion ofidentity. The metaproperties
modelling the behaviour over time are, thus, relevant for establishing
the identity of concept descriptions [44], since the proposed ontol-
ogy model addresses the problem of modelling identity when time
is involved, namelyidentity through change, which is based on the
common sense notion that an individual may remain the same while
showing different properties at different times [16]. The knowledge
model we propose explicitly distinguishes the properties that can
change from those which cannot, and describes the changes in prop-
erties that an individual can be subjected to, while still being recog-
nised as an instance of a certain concept.
Prototypical and exceptional properties and the modality metaprop-
erties describing how the property is inherited in the hierarchy can all
contribute to determine what are the necessary and sufficient condi-
tions for class membership. Necessary and sufficient conditions are
ultimately the conditions that permit us to define the properties con-
stitutive of identity and to distinguish them from those that permit
re-identification.

Heiner Stuckenschmidt
55

In order to find suitable identity criteria (which permit to identify a
concept), knowledge engineer should look atessential property, that
is those properties which hold for an individual in every possible cir-
cumstance in which the individual exists. It is important to note that
essential properties should also be intrinsic if they have to be used to
determine identity.
Also inheritance and distinction contribute to identify identity condi-
tions, in that identity conditions have to be looked for among distin-
guishing properties.

4.2 Rigidity

Identity through change is also relevant to determinerigidity. In Sec-
tion 2 arigid property is defined asa property that is essential to all
its instances.
In [38] we have related the notion ofrigidity to those oftime and
modality; and, by including in our ontology model a meta-property
modality and that concerning the behaviour over time, we can pre-
cisely identify rigidity in the subset of the set of possible worlds.
Indeed, since an ontology defines a vocabulary, we can restrict our-
selves to the set of possible worlds which is defined as the set of
maximal descriptions obtainable using the vocabulary defined by the
ontology [26]. By characterising the rigidity of a property in this sub-
set of possible worlds we aim to provide knowledge engineers the
means to reach a better understanding of thenecessary andsufficient
conditions for the class membership. However, this does not mean
that the rigidity of a property depends on any account of whether
the property is used to determine class membership or not. That is,
the final aim is to try to separate the properties constitutive of iden-
tity from those that permit re-identification. Under the assumption of
restricting the discourse to this set of possible worlds,rigid proper-
ties are those properties which are inherited by all subconcepts, and
thus which have a certain degree of belief associated with the meta-
propertymodality and that cannot change in time.
It is important to note that, although in [39] we have modelled this
information as a facet which can take value in the set0 All, Almost all,
Most, Possible, A Few, Almost none, None 1 , the choice of such a set is
totally arbitrary, and it was meant to be such. Knowledge engineers
should be able to associate with this meta-property either a proba-
bility value, if they know the probability with which the property is
inherited by subconcepts, or a degree of belief (such as a- -value, as
in [10], which depends on a2 whose value can be changed according
to the knowledge available, thus causing the- function to change),
if the probability function is not available.

4.3 Roles dependence on identity and rigidity

Rigidity is not only central in order to distinguish necessary truth but
also to recogniseroles from concepts. The notion ofrole is as central
to any modelling activity as those ofobjects andrelations.
A definition of role that makes use of the formal metaproperties
and includes also the definition given by Sowa [34] is provided by
Guarino and Welty. In [44] they define a role as:‘ the properties
expressing the part playedby one entity in an event, often exem-
plifying a particular relationship between two or more entities. All
roles are anti-rigid and dependent... A property � is said to be anti-
rigid if it is not essential to all its instances, i.e. � �
 � � � � � � � � � �
 $ � � + � � � � � � � � ...
A property � is (externally) dependenton a property 8 if, for all
its instances � , necessarily some instance of 8 must exist, which
is not a part nor a constituent of � , i.e.
 � � � � � � � � $ < 8 � < � (

+ . � < � � � (+ / � < � � � � ’, where. � < � � � denotes that< is apart of �
while / � < � � � denotes that< is a constituent of � . In other words a
concept is a role if its individuals stand in relation to other individ-
uals, and they can enter or leave the extent of the concept without
losing their identity. From this definition it emerges that the ability
of recognising whether rigidity holds for some property� is essential
in order to distinguish whether� is a role.
Roles may be ‘naturally’ determined when social context is taken
into account, and the social context determines the way in which a
role is acquired and relinquished. For example, the role ofPres-
ident of the country is relinquished differently depending
on the context provided by the country. So, for example, in Italy the
role may be acquired and relinquished only once in the lifetime of
an individual, whereas if the country is the United Sates, the role
can be acquired and relinquished twice, because a president can be
re-elected. Social conventions may also determine that once a role
is acquired it cannot be relinquished at all. For example, the role
Priest in a catholic context is relinquished only with the death of
the person playing the role. The ability to distinguish roles gives also
a deeper understanding of the possible contexts in which a concept
can be used. Recognising a role can be equivalent to defining a con-
text, and the notion of context is the basis on which prototypes and
exceptions are defined.
In [36] Steimann compares the different characteristics that have
been associated in the literature with roles. From this comparison
it emerges that the notion of role is inherently temporal, indeed roles
are acquired and relinquished dependent on either time or a specific
event. For example the objectperson acquires the roleteenager if
the person is between 13 and 19 years old, whereas a person be-
comesstudent when they enroll for a degree course. Moreover, from
the list of features in [36] it derives that many of the characteristics
of roles are time or event related, such as: an object may acquire
and abandon roles dynamically, may play different roles simultane-
ously, or may play the same role several time, simultaneously, and
the sequence in which roles may be acquired and relinquished can
be subjected to restrictions. Indeed, what distinguishes a role from a
concept, in the modelling process, is that a role holds during a spe-
cific span of time in which some property holds. For example, the
role ‘Student’ is applicable only if the property of being registered
to a university holds. Therefore, the metaproperties that model the
behaviour over time permits the representation of the acquisition and
relinquishment of a role.
For the aforementioned reasons, ways of representing roles must be
supported by some kind of explicit representation of time and events.
Indeed the proposed model provides a way to model roles as fluents;
moreover, by modelling the reason for which a property change, we
provide knowledge engineers the ability to model the events that con-
strain the acquisition or the relinquishment of a role.

5 A novel proposal to knowledge sharing

We have illustrated and discussed a ontology model which is en-
riched with metaproperties providing a better characterisation of at-
tribute. This characterisation is meant to help in disambiguating het-
erogeneous concepts when merging ontologies, since we assume that
two concepts can be matched if :

their description comprises attributes with matching names (syn-
onyms, the name of an attribute is included into the other, etc.);

candidate matching attributes are described by matching structural
definitions (range of the attribute, cardinality, etc.);

Heiner Stuckenschmidt
56

candidatematching attributes show the same behaviour in mod-
elling the concept, that is, the same metaproperties hold for the
attributes.

Matching similar concepts plays a pivotal role in those approaches
to knowledge sharing which rely on shared ontologies in order to
perform the translation between concepts in heterogeneous ontolo-
gies. Usually, knowledge sharing is obtained by creating one shared
ontologies to which all the agents commit. However, such an ap-
proach has been compared to imposing a standard and suffers from
the same drawbacks [42]. In this paper we propose a novel archi-
tecture to knowledge sharing, which is thought to be more scalable
and maintainable, and thus offers more support to the Semantic Web
paradigm we have discussed in the Section 1.
In contrast to an approach in which all resources share one body
of knowledge here we propose to locate shared knowledge in mul-
tiple but smaller shared ontologies. This approach is referred to as
ontology-based resource clustering, or shortly, ontology clustering
[33]. Resources no longer commit to one comprehensive ontology
but they are clustered together on the basis of the similarities they
show in the way they conceptualise the common domain. Thus, we
have not one, but multiple shared ontologies aggregated into clus-
ters.
Each cluster can be thought of as a micro-theory shared by all the
agents that conform to that cluster. Each micro-theory is in turn gen-
eralised and they are all eventually generalised by the top-level ontol-
ogy which is a standard upper ontology like theUpper-Cyc [20], so
as to obtain a structure that is able to reconcile different types of het-
erogeneity. We discuss here the feasibility of building such a struc-
ture, and in particular, we have investigated the different similarity
measures that can be used in order to build clusters of ontologies.
This approach is analogous tomodularisation in software engineer-
ing and is thought of having the same advantages, which are:

Modularity/separability: Each cluster is like a module in soft-
ware engineering and represents a specific aspect of the domain;

Composability: Different clusters are composed by generalising
the concepts that are common to them. This is the first step to
permit heterogeneous resources to communicate;

Scalability: The addition of a new resource to the architecture
requires only the production of the mapping rules between the on-
tology associated to the new resource and the cluster to which this
resource belongs;

Impact of change minimisation: If a concept description needs
to be changed only the mapping rules between the updated on-
tology and the cluster to which this ontology belongs need to be
rewritten;

Division of ontology authoring efforts: Ontologies composing a
cluster do not need to be authored by the same people as long as
their concepts can be mapped into the concepts of the cluster.

Accommodation of diverse formalisations: A cluster can be
comprised of ontologies representing different formalisations of
the same domain, such as different temporal ontologies.

This approach has not been tested yet, therefore we can only foresee
some disadvantages:

There is no methodology which permit to build the structure of
ontology clusters;

Complexity of the first order clustering problem from the machine
learning viewpoint;

Lack of semantic-sensitive similarity measure to use to assess the
similarity among concepts;

Lack of tools that can support the building of the ontology clusters.

5.1 Ontology clusters

Ontology clustering is based on the similarities between the con-
cepts known to different resources, where each resource represents
a different aspect of the domain knowledge. We assume that the
ontologies modelling the resources are consistent, non-redundant,
and well structured. We also assume that the ontologies have been
built with a methodology including a formal evaluation step, such as
Methontology [11]. We also assume that the ontologies are specified
by using a language that conforms to the ontology model described
above.
Since our resources need to communicate in a sensible fashion they
are all supposed to be familiar with some high level concepts. We
group these concepts in an ontology rooted at the top of the hierar-
chy of ontologies. As it describes concepts that are specific to the
domain and tasks at hand we refer to this ontology as the application
ontology (following Van Heijst and colleagues, [41]. These concepts
are reusable within the application but not necessarily outside the
application. The concept definitions in the application ontology are
chosen from an existing top-level ontology, which in our case is
WordNet [25]. The application ontology thus contains a relevant
subset of WordNet concepts. For each concept one or more senses
are selected, depending on the domain. If some resources share
concepts that are not shared by other resources then this leads to
the creation of two (or more) sibling ontologies. Each sibling is a
consistent extension of its parent ontology, but heterogeneous with
respect to its peers. We do not pose any restriction to the types of
heterogeneity that can affect the ontologies.
A cluster is referred to asa group of consistent ontologies (possibly
one) in our structure and is described by an ontology which is
shared by those composing the cluster. Both ontology clusters and
ontologies within each cluster are organised in a hierarchical fashion
where each sibling cluster specialises the concepts that are in its
parent cluster. However, while multiple inheritance is permitted
within the ontologies, it is not permitted between ontologies,
therefore the structure of clusters is a tree. In this structure, the lower
level clusters have more precise concept definitions than the higher
levels, making the latter more abstract.
Clusters are linked byrestriction or overriding relations, that is
concepts in one parent ontology are inherited by its children cluster,
but overriding is permitted [42]. The link between the resources
and the local ontologies, on the other hand, is different, and is a
mapping relation as defined in [42], that is a function preserving the
semantics.
Figure 1 illustrates an example of this structure, where Local Ont.
are the local ontologies.
Since different siblings can extend their parent cluster concepts
in different ways the cluster hierarchy permits the co-existence of
heterogeneous (sibling) ontologies. Figure 1 illustrates this particular
structure, whereD E F H J K L � N � , D E F H J K L � N � , D E F H J K L � N � , and

D E F H J K L � N S are the local ontologies,T U H V W Y � � is the ontology
shared by the local ontologies 1 and 2. AnalogouslyT U H V W Y � S is
the ontology shared by the local ontologies 3 and 4.T U H V W Y � � � S
indicates the ontology shared by the two below that isT U H V W Y � �

and T U H V W Y � S , and in this example is the application ontology
itself, here denoted byApplication Ontology. If some ontologies
share concepts that are not shared by other ontologies then there is
a reason to create a new cluster. A new ontology cluster here is a
child ontology that defines certain new concepts using the concepts

Heiner Stuckenschmidt
57

Figure 1. The hierarchy of multiple shared ontologies

already contained in its parent ontology. Ultimately, ontologies are
likely to have concepts that are not shared with any other ontology.
In our ontology structure, we then create a separate, domain-specific
ontology as sub ontology of the cluster in which the ontology
resides. We refer to these ontologies as local ontologies. The local
ontologies are the leaf nodes of our ontology hierarchy. In each
of the ontologies in the structure, concepts are described in terms
of attributes and inheritance relations holding in the ontology’s
structure. Concepts are hierarchically organised and the inheritance
(with exceptions) allows the passing down of information through
the hierarchy. Multiple inheritance is only permitted within the
ontologies.
Concepts are expressed in terms ofinherited and distinguishing
attributes. To the set of inherited attributes other attributes are added
to distinguish the specific concept from the more general one. These
attributes describe the characteristic differences between a concept
and its siblings. The distinguishing attributes are used to map
concepts from a source ontology into a target ontology preserving
the meaning of the concept.

5.2 Towards the semi-automatic construction of
ontology clusters

The structure of ontology clusters introduced in Section 5.1 builds
on the ability of identifying similar concepts in different ontologies.
Identifying which concepts are similar and assessing the degree of
semantic similarity between them are, thus, two essential steps in the
process of building ontology clusters. However, assessing the sim-
ilarity between concepts in diverse ontologies is not a trivial task
because of the heterogeneity that can affect concepts and their de-
scriptions.
The problem of assessing semantic similarity has received much at-
tention in the artificial intelligence field [27], [3]. In these efforts,
‘semantic similarity’ refers to a form of semantic relatedness using a
network representation. In particular, Rada and colleagues [28] sug-
gest that similarity in semantic networks can be assessed solely on
the basis of the IS-A taxonomy, without considering other types of
links. One of the easiest way to evaluate semantic similarity in tax-
onomies is to measure the distance between the nodes corresponding
to the items being compared, that is the shorter the path between the
nodes, the more similar they are. This way of assessing semantic sim-
ilarity might be useful for semantic networks, however has the ma-
jor drawback of computing the semantic distance between concepts

which have a common ancestor, and thus it is not suitable for as-
sessing the similarity of heterogeneous local ontologies that have to
be clustered. Moreover, this method does not fully exploit the struc-
ture of the concept representation, since it does not take into account
the concept description in terms of attributes, relationships, etc. thus
making it more sensitive to synonym and homonym heterogeneity.
In fact, only few efforts are addressing the problem of facilitating
the (semi) automatic reconciliation of different ontologies, and they
have been mainly developed for merging different ontologies. Rec-
onciling different ontologies involves finding all the concepts in the
ontologies which are similar to one another, determine what the sim-
ilarities are, and either change the source ontologies to remove the
overlaps or record a mapping between the sources for future ref-
erence [9]. Similarity in these efforts is mainly lexical and not se-
mantic. Most systems for ontology merging rely on dictionaries to
determine synonyms, common substrings in the concept names, and
concepts whose documentation share many unusual words. They do
not take into account the internal structure of concept representation
and the structure of the ontology.
The ontology merging environment Chimaera [24] partially consid-
ers the ontology structure in that it assess similarity between con-
cepts also on the grounds of the subclass-superclass relationship and
the attributes attached to the concept. Anchor-PROMPT[9] reconciles
ontologies by findingmatching terms, that is, terms from different
source ontologies that represent similar concepts. Anchor-PROMPT

assess both lexical and semantic matches exploiting the content and
structure of the source ontologies (names of classes and slots, sub-
classes, superclasses domains and ranges of slot values, etc.), and the
user’s actions in merging the ontologies. However, the method used
in Anchor-PROMPT is based on the assumption that if the ontolo-
gies to be merged cover the same domain, the terms with the same
name are likely to represent the same concepts. Such an assump-
tion is a good rule of thumb, but does not take into account cases of
heterogeneity among the source ontologies. In fact, similar concepts
might have different names, and be described by attributes with dif-
ferent names. Moreover, the hierarchical structure of the source on-
tologies might be different, thus a certain subclass-superclass rela-
tionship holding in one source ontology might not hold in the others.
The ontology model we have presented has been inspired by a par-
ticular approach to assess semantic similarity [29], where the authors
propose a method for assessing semantic similarity which takes into
account the differences in the level of explicitness and formalisation
of the source ontologies specifications. This method does not require
an a priori shared ontology, and thus makes it suitable for building
the ontology clusters. The similarity between concepts in different
sources ontologies is assessed by a matching process over synonym
sets (thus accounting for lexical similarity), semantic neighborhood,
and distinguishing features. The use of distinguishing features to as-
sess similarity enables the authors not only to handle binary similar-
ity measures, typical of lexical similarity (two terms are either similar
or not), but also to consider gradients of similarity. This is based on
the assumption that, in order for concepts to be considered similar,
they should present some common features. By assessing similar-
ity on the grounds of the distinguishing and common features, this
method accounts for those problem of synonym terms heterogeneity
that can affect both concepts and attributes.
In [29] the authors argue that from an analysis of different feature-
based models for semantic similarity has emerged the necessity to
account for the context dependence of the relative importance of dis-
tinguishing features and asymmetric characteristic of similarity as-
sessments.

Heiner Stuckenschmidt
58

The method proposed by Rodríguez and Egenhofer is based on Tver-
sky [40] matching process, which produces a similarity value that de-
pends on both common and different characteristic. In order to take
into account common and distinguishing features into the matching
process, the usual ontology model is extended to include also an ex-
plicit specification of the features. By features the authors collec-
tively mean the set offunctions, parts andattributes. Functions rep-
resent the intended purpose of the instances of the concept they de-
scribe. For example the function of a university is to educate.Parts
are the structural element of a concept, and they do not necessar-
ily coincide with those expressing thepart-of relationship, whileat-
tributes correspond to additional characteristics of a concept that are
not considered to be neither parts nor functions.
It could be argued that enriching the concept structure by distinguish-
ing between parts, functions and attributes can give rise to the articu-
lation of new types of mismatches associated with the classifications
of features. However, the authors claim that the advantages of enrich-
ing the concept structure, namely a matching process that compares
corresponding characteristics of concepts, and the ability to distin-
guish different aspects of the context, modelled by the features, over-
weights the possible disadvantages deriving from a higher number of
mismatches.
We believe that Rodríguez and Egenhofer approach to assess seman-
tic similarity rises an important issue, which is that, in order to be
able to have a better assessment of semantic similarity (that gives
also gradients of similarity and not only a binary function) it is nec-
essary to provide a richer description of the structure of the concepts
in the source ontologies. However, we believe that the distinguishing
features proposed in [29] overlap with the semantics already mod-
elled by some relationships, such aspart-of.

6 Conclusions

Sharing ontologies independently developed is a burning issue that
needs to be solved. This paper presents a set of metaproperties de-
scribing concept characteristic features (attributes) that can be used
to support both the process of building correct ontologies (by com-
plementing and supporting the formal ontological analysis performed
by the OntoClean methodology [44]) and the disambiguation of cases
of ontology heterogeneity. Formal ontological analysis is usually de-
manding to perform and we believe that the set of metaproperties for
attributes we propose can support knowledge engineers in determin-
ing the metaproperties holding for the concepts by forcing them to
make the ontological commitments explicit.
The metaproperties we propose, namely Mutability, Mutability Fre-
quency, Reversible Mutability, Event Mutability, Modality, Proto-
typicality, Exceptionality, Inheritance and Distinction encompass se-
mantic information aiming to characterise the behaviour of properties
in the concept description. We have argued that such a precise char-
acterisation might help to disambiguate among concepts that only
seem similar, and in turn can support mappings across the structure
of multiple shared ontologies that we have devised as alternative to
the current approaches to knowledge sharing. We claim that this char-
acterisation of the concept properties is also very important in order
to provide a precise specification of the semantics of the concepts.
Such characterisation is essential if we want to perform a formal on-
tological analysis, in which knowledge engineers can precisely deter-
mine which formal tools they can use in order to build an ontology
which has a taxonomy that is clean and not very tangled. The novelty
of this characterisation is that it explicitly represents the behaviour of
attributes over time by describing the permitted changes in a property

that describe a concept. It also explicitly represents the class member-
ship mechanism by associating with each attribute (represented in a
slot) a qualitative quantifier representing how properties are inherited
by subconcepts. Finally, the model does not only describe the proto-
typical properties holding for a concept but also the exceptional ones.
By providing this explicit characterisation, we are asking knowledge
engineers to make more hidden assumptions explicit, thus providing
a better understanding not only of the domain in general, but also of
the role a concept plays in describing a specific domain.
This paper has also presented a structure of multiple shared ontolo-
gies for knowledge sharing. Although this is still on going research,
we believe that such a structure has advantages over the others espe-
cially if considered in the context of an open environment such as the
Internet. We believe that this kind of modularisation is the key to ap-
plications where intelligent agents (whose knowledge is represented
by ontologies) interoperate dynamically, by agreeing on the vocabu-
lary (and shared knowledge) which is closer to the conceptualisations
of only those agents which are involved in the interoparation and
not of all agents that can be potentially involved. We realise that we
have not investigated in sufficient detail the issues related to build-
ing such structure in an efficient and cost effective manner, and the
relationships existing within and between the ontologies composing
the structure (both topics are future research directions that we will
consider, see next section); but we think that we have laid the basis
for future research.

7 Future work

Future research on ontology clusters concerns the relationships be-
tween and within ontologies, which need to be clarified with respect
to previous work presented in the literature. Two candidate sets of
relations have been identified, these are Borst’sontology projections:
include and extend, include and specialise, include and map [2]; and
Visser and Cui’sontology relations: subset/superset, extension, re-
striction, mapping [42]. Another issue emerging from this research is
how knowledge sources (or agents), reach consensus on which clus-
ter in the structure of multiple shared ontologies they have to join
in order to achieve interoperation. This kind of consensus should be
based on suitable similarity measure, that take into account the se-
mantics of the concepts involved, and the semantics of their proper-
ties. There are no similarity functions of this type, that we are aware
of, and it would be interesting to investigate complex similarity mea-
sures, such as those for symbolic objects [4]. We are particularly
interested in investigating similarity functions that make use of the
extra semantics provided by the conceptual metamodel, in a way
analogous to the similarity measure presented in [29]. These kind
of similarity functions usually provide a measure of the degree of
similarity among different concepts, and not just a binary measure
that indicates whether two concepts are similar or not.
From the viewpoint of the ontology conceptual metamodel, future
work include understanding the kind of inferences and the reasoning
mechanisms that are supported by the additional semantics included
in the ontology metamodel. In order to support complex reasoning
inferences, we will consider the implementation of the metamodel in
some description logic’s based language, which should provide the
capabilities to perform the inferences. This model is also quite de-
manding to use, future work should concentrate also on identifying
the kinds of applications that can benefit from the expressive power
provided by this model.
In order to test the effectiveness of the conceptual metamodel, we
are planning to include the metaproperties in tools to build ontolo-

Heiner Stuckenschmidt
59

gies suchas WebOde [1] or Prot´egé [7].

Acknowledgements

The authors wish to thank Asunci´on Gómez-Pé. The PhD presented
in this paper was funded by BT plc.

REFERENCES

[1] J.C. Arṕirez, O. Corcho, M. Fern´andez-López, and A. G´omez-Pérez,
‘WebODE: A scalable workbench for ontological engineering’, inPro-
ceedings of the First International Conference on Knowledge Capture,
K-CAP 2001. ACM-Sigmod, (2001).

[2] P. Borst,Construction of Engineering ontologies for knowledge sharing
and reuse, Ph.D. dissertation, Centre for Telematica and Information
Technology, University of Twente, 1997.

[3] A.M. Collins and E.F. Loftus, ‘A spreading-activation theory of seman-
tic processing’,Psychological Review, 82, 407–425, (1975).

[4] F. Esposito, D. Malerba, V. Tamma, and H.-H. Bock, ‘Classical resem-
blance measures’, inAnalysis of Symbolic data. Exploratory methods
for extracting statistical information from complex data, eds., H.-H.
Bock and E. Diday, volume 15 ofStudies in Classification, Data Anal-
ysis, and Knowledge Organisation, 139–152, Springer-Verlag, Berlin,
(2000).

[5] M. Fernández-López, A. Gómez-Pérez, and N. Guarino, ‘The methon-
tology & ontoClean merge’, Technical report, OntoWeb special interest
group on Enterprise-standards Ontology Environments, (2001).

[6] M. Fernández-López, A. Gómez-Pérez, A. Pazos-Sierra, and J. Pazos-
Sierra, ‘Building a chemical ontology using METHONTOLOGY and
the ontology design environment’,IEEE Intelligent Systems and their
applications, January/February, 37–46, (1999).

[7] N. Fridman Noy, R. W. Fergerson, and M. A. Musen, ‘The knowl-
edge model of protege-2000: Combining interoperability and flexibil-
ity’, in Proceedings of the 12th EKAW Conference, ed., R. Dieng, vol-
ume LNAI 1937, pp. 17–32, Berlin, (2000). Springer Verlag.

[8] N. Fridman Noy and M.A. Musen, ‘SMART: Automated support for
ontology merging and alignment’, inProceedings of the 12th Workshop
on Knowledge Acquisition, Modeling and Management (KAW), Banff,
Alberta, Canada, (1999). University of Calgary.

[9] N. Fridman Noy and M.A. Musen, ‘Anchor-PROMPT: Using non-
local context for semantic matching’, inProceedings of the IJCAI’01
workshop on ontologies and information sharing, eds., A. G´omez-
Pérez, M. Gruninger, H. Stuchenschmidt, and M. Uschold, (2001).
http://www.semantic-translation.com/IJCAIwp/.

[10] M. Goldszmidt and J. Pearl, ‘Qualitative probabilisties for default rea-
soning, belief revision, and causal modelling’,Artificial Intelligence,
84(1-2), 57–112, (1996).

[11] A. Gómez-Pérez, ‘Knowledge sharing and reuse’, inThe Handbook of
Applied Expert Systems, ed., J. Liebowitz, 10.1–10.36, CRC Press LLC,
Boca Raton, FL, (1998).

[12] T. R. Gruber, ‘A translation approach to portable ontology specifica-
tions’, Knowledge Acquisition, 5(2), 199–220, (1993).

[13] N. Guarino, ‘Formal ontologies and information systems’, inProceed-
ings of FOIS’98, ed., N. Guarino, Amsterdam, (1998). IOS Press.

[14] N. Guarino, M. Carrara, and P. Giaretta, ‘An ontology of meta-level-
categories’, inPrinciples of Knowledge representation and reasoning:
Proceedings of the fourth international conference (KR94), pp. 270–
280, San Mateo, CA, (1994). Morgan Kaufmann.

[15] E. Hirsch,The concept of identity, Oxford University Press, New York,
1982.

[16] I. Kant, Critique of pure reason, St. Martin’s press, New York, 1965.
Translation by N. Kemp Smith fromKritik der reinen Vernunft, 1787.

[17] R. Kowalski and M. Sergot, ‘A logic-based calculus of events’,New
Generation Computing, 4, 67–95, (1986).

[18] S.A. Kripke, Naming and necessity, Harvard University Press, Cam-
bridge, Massachusetts, USA, 1980.

[19] O. Lassila and D. McGuinness, ‘The role of frame-based representation
on the semantic web’,Electronic Transactions on Artificial Intelligence
(ETAI) Journal: area The Semantic Web, To appear, (2001).

[20] D.B. Lenat, ‘Cyc: a large-scale investment in knowledge infrastruc-
ture’, Communications of the ACM, 38(11), 33–38, (November 1995).

[21] D.K. Lewis,Counterfactuals, Blackwell, Oxford, 1993.

[22] E.J. Lowe,Kinds of being. A study of individuation, identity and the
logic of sortal terms, Basil Blackwell, Oxford, UK, 1989.

[23] D.L. McGuinness, ‘Conceptual modelling for distributed ontology en-
vironments’, inProceedings of the Eighth International Conference on
Conceptual Structures Logical, Linguistic, and Computational Issues
(ICCS 2000), eds., B. Ganter and G.W. Mineau, volume LNAI 1867,
(2000).

[24] D.L. McGuinness, R.E. Fikes, J. Rice, and S. Wilder, ‘An environ-
ment for merging and testing large ontologies’, inPrinciples of Knowl-
edge Representation and Reasoning. Proceedings of the seventh inter-
national conference (KR’2000), eds., A.G. Cohn, F. Giunchiglia, and
B. Selman, pp. 483–493, San Francisco, CA, (2000). Morgan Kauf-
mann.

[25] G.A. Miller, ‘Nouns in WordNet: a lexical inheritance system’,Inter-
national Journal of Lexicography, 3(4), 245–264, (1990).

[26] A. Plantiga,The nature of necessity, Clarendon Library of logic and
philosophy. Clarendon Press, New York, 1989.

[27] M.R. Quillian, ‘Semantic memory’, inSemantic Information Pro-
cessing, ed., Marvin Minsky, 227–270, MIT Press, Cambridge, Mas-
sachusetts, (1968).

[28] R. Rada, H. Mili, E. Bicknell, and M. Blettner, ‘Development and ap-
plication of a metric on semantic nets’,IEEE Transactions on Systems,
Man, and Cybernetics, 19(1), 17–30, (1989).

[29] M.A. Rodŕiguez and M.J. Egenhofer, ‘Determining semantic similarity
among entity classes from different ontologies’,IEEE transactions on
knowledge and data engineering, (2002). in press.

[30] E.H. Rosch, ‘Cognitive representations of semantic categories’,Journal
of Experimental Psychology: General, 104, 192–233, (1975).

[31] E.H. Rosch, ‘Reclaiming concepts’,Journal of Consciousness Studies,
6(11-12), 61–77, (1999).

[32] J.R. Searle,Intentionality, Cambridge University Press, Cambridge,
1983.

[33] M.J.R. Shave, ‘Ontological structures for knowledge sharing’,The new
review of information networking, 3, 125–133, (1997).

[34] J.F. Sowa,Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley, Reading, MA, 1984.

[35] J.F. Sowa,Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Brooks Cole Publishing Co., Pacific
Grove, CA, 2000.

[36] F. Steimann, ‘On the representation of roles in object-oriented and con-
ceptual modelling’,Data and Knowledge Engineering, 35, 83–106,
(2000).

[37] R. Studer, V.R. Benjamins, and D. Fensel, ‘Knowledge engineering,
principles and methods’,Data and Knowledge Engineering, 25(1-2),
161–197, (1998).

[38] V.A.M. Tamma and T.J.M. Bench-Capon, ‘An enriched knowledge
model for formal ontological analysis’, inProceedings of the in-
ternational conference on formal ontology and information systems
(FOIS’01), eds., C. Welty and B. Smith, New York, (2001). ACM press.

[39] V.A.M. Tamma and T.J.M. Bench-Capon, ‘An ontology model to facil-
itate knowledge sharing in multi-agent systems’,Knowledge Engineer-
ing Review, To appear, (2002).

[40] A. Tversky, ‘Features of similarity’,Psychological Review, 84(4), 327–
372, (1977).

[41] G. van Heijst, A.Th. Schreiber, and B.J. Wielinga, ‘Using explicit
ontologies in kbs development’,International Journal of Human-
Computer Studies, 45, 184–292, (1997).

[42] P. Visser and Z. Cui, ‘On accepting heterogeneous ontologies in dis-
tributed architectures’, inProceedings of the ECAI’98 workshop on Ap-
plications of Ontologies and Problem-solving methods, Brighton, UK,
eds., P. Borst, V.R. Benjamins, A. Farquhar, and A. G´omez-Pérez, pp.
112–119, (1998).

[43] P.R.S. Visser, D.M. Jones, T.J.M. Bench-Capon, and M.J.R. Shave, ‘As-
sessing heterogeneity by classifying ontology mismatches’, inFormal
Ontology in Information Systems. Proceedings FOIS’98, Trento, Italy,
ed., N. Guarino, pp. 148–182. IOS Press, (1998).

[44] C. Welty and N. Guarino, ‘Supporting ontological analysis of taxo-
nomical relationships’,Data and knowledge engineering, 39(1), 51–74,
(2001).

[45] D. Wiggins,Identity and Spatio-Temporal continuity, Basil Blackwell,
Oxford, 1967.

Heiner Stuckenschmidt
60

System Descriptions

� � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � %
' � � � � � � � � � � �) + � � � � - � � � � � � . � � � � � � �

1 2 3 5 7 9 5 ; = ? ; 2 A C 1 7 = 2 ; I J 9 2 I 7 M ; A C O ; ? 3 Q S O T 2 I W ; M A C
Z I 2 M Q J Z T J W \ 7 ; 2 A C Z I 2 S 5 7 ^ T ? ? ; S A b c d e T ? M ; 2 h T 2 j ; k

l m o q s t v q x y z | ~ � � � � � ~ � ~ � z � � � � ~ �
� ~ � � z � � � � � � � � � � � � � � � � � z � ~ � � � � � � � � � � � � z � � � � � � � � � z � � ~ � � z
� � � � � � � � ¡ � � ~ � � � � � � � � � � � � � � � � � � � z � � � � ~ ~ � � � � z � � ~ � £ ¤ � � � � ~ �
� z � � � ~ � � � � � � � � � ~ ~ � � � � z � � ~ � � � � � z � � � ¨ � � � � ~ � � ~ � ~ � � z � � � � �
� � � � � � � � � � ~ � � z � � « z � � ~ � � � � � � � � � � � � ¬ � � ¨ � � � � � � � � � � � � � � � �
® � ~ ¯ � � � � � ¨ z � � � £ ± � z � � � � � � � � � � � � � � � ¨ � � � � � � � � � � � � � �
� � ³ � � ~ � � ~ � � � � � ~ � ~ � � � � ~ ~ � � � � � � ~ � � � � � � � � � � � ¶ · ¸ ¹ º ¡
¯ � � � � � ~ � ¨ � � � � � � z � ~ � � � � � z � � � � � � � � � ~ � � z � � � � � � � z � � � � z � �
� z � � � ~ ~ � � ¯ � � � � � � � � � � z � � ~ � � z � z ¨ � � � � � � � � � � z � � � z � � z � � � z � � £
¼ � � � � � ~ � � ~ � � � � � z � � � � � � z � � � � z � � � z � ® � ~ ¯ � � � � � ¨ z � � ~ �
¶ · ¸ ¹ º z � � � � � � � � � � � � � � � ® � ~ ¯ � � � � � ¨ z � � ~ � � � � z � � z � � � �

� � ~ ~ � � ¬ � � z � z � � ~ � � � � � � � ¿ Á Â Ã Ä £ ± � � � z � � � � � � � � � ~ � � ~ � ~ � �
� z � � � � � � � � � � � ¡ � ~ � � � � � � � ~ � � � z � � ¡ z � � � � � � � � � � � � ~ � � � z ¨ � � � � � £
Å � � � � � z � � � � � � z � ~ � � � � z � � � � � � � � � z � � ~ � � ® � � � � � � � � � � � z � � ~ � � �
� � � z � � � � � � � Æ � z � � � � � � � � � � � � � z � � � � � � � � � � � � � � ~ � � ~ � � z � � � � � �
� � � � � � � � � � � £

È É Ê Ë Ì Í Î Ï Ð Ë É Í Ê
y z | ~ � � � � � ~ � ~ � z � � � � ~ � � ~ � � z � � � �

� � � � � � � � � � � � � z � ~ � � � � � � � � � � � � z � � � � � � � � � z � � ~ � � z � � � � � � � � ¡ � �
� z � � � � � � z � � � � � � � � � � � � z � � � � ~ ~ � � � � z � � ~ � £ ¤ � � � � ~ � � z � � � ~ � � � �
� � � � � ~ ~ � � � � z � � ~ � � � � � z � � � ¨ � � � � ~ � � ~ � ~ � � z � � � � � � � � � � � � � � �
~ � � z � � « z � � ~ � � � � � � � � � � � � ¬ � � ¨ � � � � � � � � � � � � � � � � ® � ~ ¯ � � � � �
¨ z � � � ¡ � � ~ � � � � � � � � � � � � � � � � ~ � � � z ¨ � � � � � z � � ~ � � � � � � � z � ® � ~ ¯ �
� � � � ¨ z � � � £

± � z � � � � � � � � � � � � � � � ¨ � z � z � � � � � � � ¡ � � � � � � � � � � � � � � � ³ �
� ~ � � ~ � � � � � ~ � ~ � � � � ~ ~ � � � � � � ~ � � � � � � � � � � � ¶ · ¸ ¹ º Ó Õ Ö × £
¶ · ¸ ¹ º � � z � z � � � � z � � � z � z � � � � � z � � � ~ ~ � � � z � � � � � ~ � � � � � ~ ~ �
� � � � � ~ � � � � � z � z � � � � � � � � � � � � � � � � � ~ � z ¨ � � � z � � � ~ � £ ¼ � � � � �

� � � � ~ � ¨ � � � � � � � � � z � � � � � z � � z � � ~ � z � � � � � ~ ~ � � ~ � � � � � � � � ~ �
� � � z � � � � z � � � z � � ~ � z � � � £ Ù � � � � � Õ � � � � � � � z � � � � � � z � � � � � � � � � � �
~ � ¶ · ¸ ¹ º Ú � � � � � z � � � � � � � � � � � � � ~ � � � � � z � � � ~ � � � � � � � � � z � � �
� z � � � � z � � � z � � ~ � � ¯ z � � ¨ � � Û º Ü Ý Þ ¸ ß à á â Ó ã × £ ¤ � � � � ~ � � z � �
¨ � � � ³ � � � � � z � Û º Ü Ý Þ ¸ ß � ~ � � � � � � z � ¨ � � � � � � � ¨ � � � � ~ � � � � � �
Å � � � � � � � z � � z � � z � � � � � � ¨ � � ¨ � ~ � � � � � � � � z � � � � � � z � � � � � ~ � � �
z � ¯ � � � £ ¼ � � � ~ � � ~ � ¶ · ¸ ¹ º � � � � � � � ~ ~ � � � z � � z � z � � � � � � � � �

ä å æ Ó ç × ¡ � � � � � ~ ~ � � � z � � � � Û è é Ü ê Ó Õ Õ × ¡ � � � � � � � � � � � ~ � � � � �
z � � � � ¶ ë ì Ü í Ó î × ¡ z � � z � � � � z � � � � ~ � � z � � � � z � � � z � � � � ~ � � � � ¡

� � � � � � � � � � � ¨ � z � z � � � � z � � � z � � z � z ¨ z � � ¡ ¯ � � � � � ~ � � � � � � � � �
� � � ¨ z � � � � z � � � � z � � � z � ~ � � ~ � ~ � � ~ � � � � � � � � � � £

ï z � � ~ � � � � � � � ~ � � � � ~ � � � ¬ � � � � z � � � z � ~ � � � � � � � � � � � ¯ � � �
� ~ � � � � � � � � z � � � z � z ¨ � � � � � � � z � � � � � � � � z � � � � � � ~ ¶ · ¸ ¹ º ð � � �

ñ ò ó ô õ ö ÷ ø ù ú û ü ø ý û ø þ ø õ ÿ ù ÷ ô ø ý ÷ � ú ÿ ÿ ù � ÿ ý � � ý ü � ø ù 	 ü ÷ � � � � � � � ó �
A � A A � � � þ � � � � � A ú ÿ ÿ ù � ù �ö û ø ý � # ø ù ô ÿ ý �

& ú û ' ó ó � ó (ò ó ô õ ö ÷ ø ù ú û ü ø ý û ø � � ý ü � ø ù 	 ü ÷ � ó (� ü ù ô ü ý + ' ÿ ô � � ü ù ô �ü ý + ' ÿ ô � A � k 0 0 � � 3

� � � � � � � � � � � � ~ � Ù � � � � � Õ 4 £ ¶ · ¸ ¹ º � � � � � � z � � � � � � � � � � � � � �
z � � ~ � � � � � � z � � � ¨ � z � � � � � � � ð 5 ¤ 7 � 4 ¡ � � � � � � ð 8 9 4 z � � ³ � � �

~ � � � � ð Ù 9 4 z � � ~ � z � � � � � � ~ � � � � � ~ � � � � � � � � � � � ð ¤ ¼ < � 4 ¡ � ~ �
� � � z � � � � ~ � � � � � ð 5 7 � 4 ¡ z � � � ~ � � � � � � � � z � ~ � � ð y > � 4 £ ¼ � � � � � � �
� � � ¯ ~ � ~ � � Ú � � � � � z � � � ~ � � � � z � ~ � � � � ~ � � ~ z � � ¨ � � ~ ¨ � � � ¡ ~ �

� � � � � z � � � � � � � � � � � ~ � � � � � ~ � � � ~ � ~ � � � � � � ~ ~ � � � z � � � £ ¼ � � � �
� � � � � � � z � � � � � � � � � ~ � � � � � � � � � � � � � � � ~ � � � � � � � � � � � � � z � � ~ ~ �
� � z � � � ~ � � z � � ~ � � ~ � � � � � ¡ � � ~ � � � � � ~ ~ � � � � � � � z � � � � � � � � � � ¡ z � �
� ~ � � � � � � z � � � � � � � � � � � � � � £ ¼ � � ~ � � � � � ~ � � � � � � � ~ � � ~ � z � � � � � z
� ~ � � � � � � � � � � � � � � � z � � � z � � � z � � � � � � � � � � z � � � ¨ � � ~ ~ � � � �
¶ · ¸ ¹ º � � � � � � z � � � ~ ~ � � � z � � z � z � � � � � � � � � ¡ ¯ � � � � � z � � � z � � �
� � ~ ~ � � � z � � � � � � � � z � � ~ � � � � z � � � @ � � � � � � � � � � � ~ � z ¨ � � � z � � � ~ � £
¼ � � � � � ¨ � � � ³ � � z � � ~ � � � � � � � z � � � � � � � � � � � � � z � ~ � � � z � � z � � �

� � � � � � � � � � � � � ~ � z ¨ � � � z � � � ~ � z � ¯ � � � z � � ~ � z � � � z � ~ � � � � � � �
� � � � � z � z � � � � � � � � � � ~ � ~ � z � z � � � z � � � ~ ~ � £ Ù � ~ � z � ~ � � ~ � ~ � �

� z � � � � � � � � � � � � ¡ � � � � z � � � � z � � � z � � � � ~ � � � � � � ¶ · ¸ ¹ º � � ~ � � � �
� ~ � � � ~ � � ~ � � ~ � � z � � � � ~ � � ~ � ~ � � � ~ � � z � � � � z � � � z � � ~ � � � � � � ¡
� ~ ¯ � � � � � ~ � � � � � � ~ � � ¬ � � � � z � � � � � � � � � � � � ¨ � � � � z � � � £

B � � � � � � � � z � � � ~ � � � � � � � ~ � � � � ¨ � � � � � � z � � � � z � � � � � � � � � �
� z � � C ¶ E F Ó Õ ã × z � � � � � � � ~ ~ � � ¬ � � z � � � � ¿ Á Â Ã Ä Ó Ö × ð � � � � � �
� � � � � � � � ~ � Ù � � � � � Õ 4 £ ¼ � � � z � � � � � � z � z � � � � � � z � � � z � � � � ~ �
¶ · ¸ ¹ º ¡ � � � � � � � � � ~ � � � � � � � ~ ~ � � ¬ � � z � z � � ~ � � � � � z � � � z � � z �
� � z � � ¡ � � � � � � � z � � � � � z � � z � z � � � � � � ~ � � £ Å � ~ � � � � � ~ ¨ � z ¨ � �

� ~ � � � � � � ¨ � � z � � � � z � � � z � � ~ � � � � � � � � � ~ � � � ¬ � ¡ ¿ Á Â Ã Ä � � � � � � � �
~ ¯ � ~ � � ~ � ~ � � ¡ ~ � � z � � « � � ~ � � � � � � � z � � � ~ � � z � � � z � � z � � � z � �
� � � � � � � z � � ~ � � £

Å � � � � � ~ � � ~ ¯ � � � ¡ ¯ � z � � � � � � � � � � ¯ ~ � z | ~ � � � ¨ � � � � � � � � �
� ~ � � � � � � ~ � � ~ � ~ � � � z � � � � � � � ¡ � � � ® � ~ ¯ � � � � � ¨ z � � � ~ � ¶ · ¸ ¹ º
z � � ¿ Á Â Ã Ä ¡ � � � � � � � z � � � � � � � � ~ � � £ ¼ � � � � ¨ � ¡ ¯ � � � z � � � � � � � � �
� � � � � � � � � ~ � � ~ � ~ � � � z � � � � � � � � � � � z � � � ~ � � � � � � � � z � � � ~ � � � � � �
� ~ � � � z � � £ G � ¬ � ¡ ¯ � z � � � � � � � � � � � � � � � � ~ � � � z ¨ � � � � � £ Ù � � z � � � ¡ ¯ �
� � � � � z � � � � � � � � � � z � � � � � ~ � � ¯ � � � ¶ · ¸ ¹ º z � � ¯ � � ® � � � � � � � z
� � ~ � � � ~ ~ � � � � z � � � ~ z � � � � � ~ ~ � � ~ � ~ � � £

I Ë O J Ì J ^ Ì J h J Ê Ë 1 Ë É Í Ê
Ð Í Z ^ Í Ê J Ê Ë

¼ � � ~ � � z � � « z � � ~ � ~ � ¶ · ¸ ¹ º � ® � ~ ¯ � � � � � ¨ z � � � � � ~ � � � z � � � ¨ �
� � � � ~ � � ~ ¯ � � � ~ ¨ � � � � z � � ~ � � £ ¼ � � � � z � � � � � � ~ � z � z � � � � z � � � z �
� � � ~ � � � � z � � � � � � � ~ � � � � z � z � � z ¨ � � � � � ~ � z � ~ � � � ¨ � � � z � � �
� � � ~ � � � ³ � � � � ~ � � ~ � � z � � � � z � � � z � � ~ � � � � � � ¡ ¯ � � � � � � � � � � ¡
� z � � � � � � � � � � � � � � � � � ~ � ~ � � � � � ~ � � � � � � £ y ~ � � ~ � � � ¡ � � � � �
~ � � � � � � ~ � � � � � � ~ � � � � ~ � � � � � z � � z � ¨ � � � � � � � ¯ � � � � � � � �
� ~ � � � ¬ � ~ � z � � ~ ~ � £ > ~ � � � ¨ � � ~ � � � � � � � � � � � � � � � z � � ~ � � � �
� ~ � � � ¡ z � ~ � � z � � � z � ~ � � � � � � � � � � � � � � � z � � � � � � ~ ~ � � � � � ~ � � �
~ � ® � ~ ¯ � � � � � ¡ � ¡ � � � � z � � z � � � � � ¡ z � �
� � � ~ � � z � � ~ � z ¨ ~ � � � ~ � � � ~ � ® � ~ ¯ � � � � � � ~ � z � � ~ � z � � � � � z � ~ � � � �

Heiner Stuckenschmidt
62

−AntsΩ Multi

Proof−Checker

PDS
TRAMP
SAPPER

Proof Transformation

...

MBaseMath−DB

MEGAΩ

P.rex

LΩUI

EXTERNAL
REASONERS

OMEGA CORE SYSTEMUSER
INTERFACE

LEO
TPS

CoSIE

SATCHMO

MAPLE
GAP

OTTER
SPASS
Waldmeister

MATHEMATICAL DATABASES

HO ATPs

CSs

MGs

CASs

FO ATPs

...

SEM

L M O Q R S U W 0 ' ø ÿ ù û ' ü ÷ ø û ÷ ö ù ø ó (÷ ' ø Y [\ ^ ` õ ù ó ó (ÿ 	 	 ü 	 ÷ ÿ ý ÷ � 0 ' ü ý � ü ý ø 	 � ø ý ó ÷ ø ü ý ÷ ø ù ý ÿ � ü ý ÷ ø ù (ÿ û ø 	 � ÷ ' ü û � ü ý ø 	 � ø ý ó ÷ ø û ó ô ô ö ý ü û ÿ ÷ ü ó ý � ü ÿ
e ` f g h \ j k l m � Y [\ ^ ` ' ÿ 	 ÿ û û ø 	 	 ÷ ó ü ÷ 	 � ó û ÿ � ô ÿ ÷ ' ø ô ÿ ÷ ü û ÿ � � ÿ ÷ ÿ � ÿ 	 ø o ÷ ' ü ý � ó ÷ ÷ ø � � ü ý ø r ÿ ý � e m ` t \ o ÷ ' ü û � ÿ 	 ' ø � � ü ý ø r �

z � � z ¨ ~ � � � � � z � ~ � � � � � � � � � � � � � � z � � ~ � ® � ~ ¯ � � � � � £ ¼ ~ � � �
� ~ � � � � z � ~ � � � � � � � � � � z � � � � � � ~ � � � � � ¡ � � � � z � � � � Æ � � � � � � � �
� � z � � w � � � � � z � � � � � � ~ � � ³ � � � � ~ � � z � � z ¬ � ~ � � ¡ � � � � � ¨ � z � ~ � �
� � � � � � � � � z � � � � � � � ~ � � � � � � z � � � � ~ � � z � � ~ � � ~ � z � � � z � � � �
� z � � � £ Ù ~ � � � � � � � � � � � � � � � z � � ¡ ¯ � � z � � � � � � � � � � ~ � � � z �
� � � � � � � z � � � � � � ¯ ~ � ® £ Å � � � ~ � � � � � � ~ � � � @ � � � � � � � � � � ~ � z � � ~ � ~ �
� � � ~ � � z � � ~ � � ~ ¨ � � � � � � � � ~ � � � � � z � � � � � ~ � � z � � � z � � � � z � � � z �
~ ¨ | � � � £ Å � � ~ � � � z � � ¡ � � � � � ~ � � � � � � � � � � z � � � � z � � � � � � � � � � z

� � ~ � � ~ � � � � � � z � � ~ � � ~ � � � � � z � ~ � � � ¡ � � � � � � � � � ® � ~ ¯ � � � � � � �
� � � � � � � z � � � ~ � � � � � � � � � � � � � � � £

Å � ~ � � � � � ~ � � ³ � � z � z � � � � z � � � z � � ~ � � � � � ¡ ¯ � � � � � � z � � � � �
� � � � � ~ ¨ | � � � ¯ � � � � � � � � z � � � ~ � � � � � � � ¡ z � � � ¨ � � ~ � ~ � � � ~ � � � � �
� � z � � � � ¬ � � � ¡ � � � � � � � � � ~ � � � � � � ¨ ³ � � � � � Æ � � � � � ~ � £ ¼ � � � � ~
� ~ � � � � � z � z � � � � � z � � � � � � � � ¨ � � ¯ � � � � � � � � � ~ � � � � � � � � � y { | { y ~ �
� � ~ � � � � � � � � � � ~ � � � z � � � � � � z � � � � y y � | � � � � Ã � ~ � � � £ ¼ � � � z �

� � � z � � � � � ~ � � � � � � z � � � � � ~ � � � � ~ � � � z � � � � � � � � ~ � � z � � � �
� � � � z � � � � � ¡ ¨ � � � � � � � z � ¨ � ¨ � � � � � ® � ~ ¯ � � � � � � ³ � � � ~ � � � �

� � � � � � � ~ � � ~ � � � ~ � � z � � � z � ~ � � £ 8 � � � � ¡ � � � � � ~ � � � z � � � � � � � � z ¨ � �
� � z � � � � � � � � ~ � � � � � � � � ~ � � ¡ ~ � � � � � � � ® � ~ ¯ � � � z � � � � � � � � � z �
� � ~ � � � � � � � � ~ � � £ 5 ~ � � � Æ � � � � � � ¡ � � � z � ¨ � � ~ � � � ¨ � � � ~ � � ³ � � z
� z � � � � z � � � z � � ~ � � � � � � � � � � � � z � � Æ � � � z � � � � ¯ z � � ¯ � � � � � � � �
� z � � � � � ~ � � ¡ � z � � ~ � ¯ � � � � � z � � � ~ � � � � � � � � � ~ � � � z � ~ � � � �
� � � � ~ � � � £

� � � � � � ~ � � � � � � z ¯ � � � ® � ~ ¯ � � ¬ z � � � � � ~ � ¯ � � � � z � � � ¨ � �
~ � z � � � � � z � � � � ¡ � � � � Æ � � � z � � � � ¡ � � ³ � � � � ~ � � � ¬ � � � ¡ � � � � ~ � � ~ � ~ � z

� Â � � � £ ¤ � � ~ � � � � � � � z � � � � � ³ � � � z � z � ~ � � � � � � � � � � ~ � � � � � �
¯ � � � z � ~ � � � z � � ~ � ¡ ¯ � � � � � � � ~ � � � z � � ~ � � � � � ~ � � � z � � z � � ~
� � z � � � � � ~ � � � � � � � � � � � � ~ � � � � � � � � £ y ~ � � ~ � � � ¡ � � � � � � ¬ � � � � z
� � � � � � � � � � � ¡ z � � � ~ � � z � � � � � � � � � � ~ � � � � � � � � z � � � � � � � � � � �
� � � � £ ± � � � � � � � � � � ³ � � � � ~ � � � � � � � ~ � � � ~ � � ~ � ~ � � ¡ � � � � � ~ �
� � � � � z � Ú � ~ � � � � � z � � � ¯ � � z � � � � � z � � � � � � ¬ � � � � � � � ~ � � � � � � � �
� � � � � � � ~ � ~ � � � � � � � � � � � � � � � � ¯ � � � � � � � � � � � � � ¯ � z ® � � � � ~ � � �

� � � � � � z � ~ � � � z � � � � � � � � � � � � � � � ~ � ¬ � � � £
7 � � � � ¯ � ¯ ~ � � � z � � � � � z � z � � ³ � � � � ~ � ~ � z � � ~ � � ¡ � Æ � � � z � � � � � ~

� � � ³ � � � £ y ~ � � ~ � � � ¡ ¯ � � z � � � � � z � � � � � � ~ � � � � z � � ~ � ~ � � � � � � � �
� � � � � � � z � ¨ � � � � � � � � � � z ¬ � ~ � Ú � � Â ~ � �
� � � � � Ã Ä { � � � � � � � � � � � � � ~ � � � � � � ~ | � � � � � � Á

± � � z � z � � ~ � � ³ � � � � � � ~ � � ~ � ~ � z � � ~ � � � � z � z � � � � ¡ � � � �
� ~ � � � � � � z � � � ¨ � z � � � � � � � � � � � � £ 8 � � � ¨ � ¯ � � z � � � � � � � z � � ~ � � � ¨ � �

¯ z � � � ~ z � � � � � z � z � � ³ � � � � ~ � z � � � ~ � � � � � � � � � Ù � � � � � î £
� � � � ¨ � z � ~ � � � � � � � � � z � � � � � � ¨ � z ¨ � � z � � ~ � � � z � � ~ �

~ � � £ ¼ � � � ~ � � ~ ¯ � � � z � � � � � � ~ � � z � � � Æ � � � z � � � � Ú

� ð � � � 4 � � z � � ~ � � £

� ð � � � 4 � � z � ~ � ~ � � z � � � � � � � � � � � � � � ~ � � � � � z � z � � � � � � � � £

� ð � � � 4 � � z � ~ ~ � z � � � � � z � � ~ � � z � � � � £

� ð � � � 4 � � ¨ ~ � � z Æ � z � � � � ~ � � z � � z � � � � � � ~ � � £

¼ � � � � � � � � z � � z � � � � ¬ � � � � � ~ � � � ³ � � � ~ � � ¡ � z � � � ~ � � � � � ~ � �
� ~ ~ � � � z � � � � z � � � � � ~ � Â � � � � � Ù � � � � � î ¡ ¯ � � � � � � � � � � ® � ~ �
� � � � � ~ � � � � � z � � � � � � � � ~ � � � � � ~ � z � � ~ � � z � � � � � � ¡ z � � � � � � � � ®
� ~ � � � � � � ~ � � � | � { � z � � � � � � � � ~ � � � � � ~ � � � � � ¬ � � � � � � � ~ � � �
� � � � � � £ Å � ~ � � � � � ~ � � � z ¨ � � � � � � � � � � Æ � � � z � � � � � � � � � � � � � z � � ~ � �

¯ � � � � � � � � � � � � � � � � z | � � � � ³ � � � z � � � � ¡ � � � � Æ � � � z � � � � � � � �
� z � � � � � � � � ¨ � � � ~ � � � £

¼ ~ � � � � ~ � � � � � � � z � ® ¡ ¯ � z � � � � � � � � � � � � � � � z � � � � � � � ® � ~ ¯ �
� � � � ¨ z � � ¨ � � � � � � � � � � Û â º í ¸ Ó ¡ × ¡ ¯ � � � � � � z � � � � � � ¨ � � � �
� z � � � � z � � � z � ® � ~ ¯ � � � � � ¨ z � � � � � � � � � � � ~ � z ® � � � ~ � z � � z � �
z � � � � � � � � ~ � � � Æ � � � � � � � w � � � � � £ ¼ � � � � � � � ³ � z � � ~ � ~ � � ~ � � �
� � ~ � � � � � � � ~ � � � � ~ � � ~ � ~ � � � z � � � � � � � � � ~ ¨ � � z � � � � � ~ � � � � � � �
z � � � � � � � z � � � � � � ~ � � � � ¨ � � � � ~ � � � � � ~ � � � � � � � � � � � £

Å � ~ � � � � � ~ � � ~ � � z � � � z � � � � � z � � � � � � � ® � � � � ~ � � � � ~ � � z
� � ~ � ¡ Û â º í ¸ � � � � � � � � � � � � � � � � � � z � � z � � � ~ � � � � ~ � � � � ~ � � z � � ~ �
~ ¨ | � � � � ¡ ~ � ¯ � � � � � � � � � � � � � � � � ~ � � � � � � � � � � � � � � � z � z ¨ z � �
� ~ � � � � � � � ~ � � � � � Ú

� ¢ � ³ � � � � ~ � � � ~ � z � � ~ � � z � � � � � � z � � � � � � ~ � � � ¨ ~ � � � � � � � � � ~ �
z � � � z � � � � ³ � � � ~ � � � £

� ¤ � � � � � � ~ � � ¡ ¯ � � � � z � � � ~ � � � z � � � � � � � � � � ¡ � � � � � � � � � z ¬ � ~ � � ¡
� � � ~ � � � � ¡ � ~ � | � � � � � � � z � � � � � � z � ¡ � � � � � � � � � � � � � z � � ~ � � � � �
� ~ � � z � � z � � � ~ � � � ~ ~ � � � � ~ � � � � � � � z � � � £ � � � � < � ~ ~ � � ¡ � � � z �
� � � z � � � � � � � z � � � z � � � ~ ~ � ~ ¨ | � � � � � � � z � � ~ � � � ~ � � z � � ¡ � � � � � �
� � � � ~ � � z � ¡ � � � ~ � � z � ¡ � � � � � � � � � � � � � � � � � ~ ~ � � � � � � � � ¡ z � �
� � � � � z � � � z � � z � � � z � � � ~ � � z � � £

� ¤ ¬ z � � � � � ¡ � � � � ~ � � � � � � � � ~ � � z � � � � � � z � � � � z � � � z � � � z �
� � � � £

� ¼ � � ~ � � � � ¡ ¯ � � � � z � � ~ ¯ � � ~ � � � � � ~ � � z � � � � z � � � z � ~ ¨ | � � � �
z � � ® � ~ ¯ � � � � � z � � � � � � � � � ~ � � � � � ~ � ~ � � � � � � � � z � � � ¨ � � ¯ � � �

� � � ~ � � � � £

� Å � � � � � � � � � � � � � ¡ � � � ~ � � ~ � � � � � � � � � � � � � � � � � � ~ � � z � � � � �
� ~ � � ¡ z � ¨ z � � � � z � � � � � � � � � � � z � � � ~ � � ~ � � � � � � � � £

� 8 � � z � ~ � � � � � � � ð � � � � � � � z � 4 ® � ~ ¯ � � � � � ¡ � � � � z � � z � � � � ~ �
� � � ~ � � � � ¡ z � � � � � � � ³ � z � � ~ � � � ~ � � ~ � z � � ~ � z � � � � � ¨ ~ � � z �
� � � � � £

¼ � � � z � z ¨ z � � � ~ � � � � ~ � � z � � � � ~ � � � � � z � � ~ � � ¨ � � ¯ � � � ~ ¨
| � � � � ~ � � � � � � ® � � � � ~ � � ~ ¯ � � � � � � � � � � � z � � � � � � z � � £ ¼ � � � �

� � � � � � �

Heiner Stuckenschmidt
63

¥ � z � � � � ~ � � � ~ ~ �

y z � � z ¦ > � ~ � �

7 � � � � � ~ � � y ~ � ~ � �
§ ¨ ¨ © ª « § ¬ « « ¬ ®

° ± ² ± ´ µ ¶ ´

· ¸ ¹ º » ¼ » ½ » ¸ º

ö ý ü ÷ ø � ø ô ø ý ÷

¾ ¿ À Á Â Ã Á Ã

Ä Å Å Æ Ç È Ä É È Ê È É Ë

L M O Q R S Ì W ò ó ý 	 ÷ ù ö û ÷ ü ý + + ù ó ö õ 	 � ü ÿ ô ó ù ø + ø ý ø ù ÿ � ÿ � + ø � ù ÿ 	

� ¢ � ³ � � � � ~ � � � � z � � � � � � ¡ � ~ � � � z � � � � ³ � � � � � � ¨ ~ � � � ~ ~ � � � � �
z � � ¡ � � � � � z � � � � ¡ � ~ � � � ¨ ~ � � � z � ® � � z � � � � � � � � � � £

� ¢ � � � � � � ~ � Î � ~ � z � � � ¡ ¯ � z � � � ~ � z �
� � � � � � ~ � � z � � ~ � � ~ � � � � � z � � ® � ~ ¯ � � � � � � � � � � £ ¼ � � � � � z � � ~ �
� z ® � � � ¬ � � � � � � � � � � � � ~ � � � � ¨ ~ � � � � z � � ³ � � � � ~ � ~ � z � � � �

� � ~ � ¡ z � � � � � z � � � � � z � � ~ � ~ � � � � � z � � � z � � ~ ~ � £

� ¼ � � ~ � � � � � � � � � z � � � ¡ ¯ � � � � � � � � � ³ � � � � � ~ � � z � � « z � � ~ � ~ �
� z � � � � z � � � z � � � ¨ � ~ � z � � � z � � � � � z � � ~ � � z � � � � � � � � � � z � � �
~ � � � � � � � � ~ � � � � � � � £

¼ � � � � � � ~ � � ~ � � � � � z � � � ~ � � � � � � � � � � ¨ � � ¨ � � ~ � � � � � ~ � �
� � � � � ~ � � � � � � � � � � � � � � � � ~ � � � � ~ � ¨ � � � � � � � � z � � � � z � � � � ~ �
� ~ � � � � � � � z � � z � � � � � z � � � � � � � z � � � � � � � � ~ � � � � £ ¼ � � � � � � ~
� � � � � � � � � � � � � � � ~ � � � � � � � � ~ � ~ � � � � � � � � � ~ ~ � � ¨ � � z � � � � � z � �

� � � � z � ~ � � z � � � � � ~ � z � � @ ~ � � � � � � � � � � z � � � � � � � � z � � ~ � £ ¢ � ³ � �
� � ~ � � z � � ¬ � � � � � � � � � � � � � � z � � ~ ¯ � ~ � � � � z ¨ ¨ � � � � z � � ~ � ~ � � � � � �

z � � � ~ � � � � z � £ ¤ � � � � � z � � � � � � � � � z � � ~ ¨ � � � � � � � � � � z � � � �
� � ³ � � � � ~ � � � � � � � ~ � z � � � � ¯ � � � � ~ � � � � � ~ � � � � � � � ~ � � � � � � � � � � � £ ¼ � �

� ¬ � � � � � � � � � � z � � � � ~ � � � � ~ � � � � z � � ~ ¯ � � ~ � � � ~ � � � � � ~ � � z � � � � z �
� � z � ® � ~ ¯ � � � � � z � � � � � � � � � � � � � � � ~ ® � � � z � ~ � � � � � � ¯ £ 9 � � � �
~ � � � � � z � � ~ � � � z � � ~ � � � � � � ~ � � ~ ¯ � ~ � � � � � � � � � � � � � ~ � � z �
� « z � � ~ � � � ~ � � z � � � ¯ � � � ¨ � � � � � � � � ~ � � � � � � ~ ~ � � ~ � � � � � � � � ~ �
� � � � � ~ � � � � � � z � � � � � � � � � � � � � � � � ~ � � � � £ ¤ � � � � � � � ¨ � � � ~ � � � �
� Æ � � � z � � � � � � ³ � � � � ~ � � ~ � � � � � ~ � � � � � � Â � � � � � � � � � � � � � � ~ ¨ �
� ~ ¨ � � � � ~ � � z � � « z � � ~ � � � z � � ~ � � � � � � � � � z � � � � � z � � � � � � � � � � � � �
~ � � � � � � � ~ � � � � � � z � � � � � z � � ~ ¨ � � Æ � z � � « � � ¨ � � � � � z � � � � � z �
� � � � � � � � ~ � � � � � � � z � � Ó Ï × ¡ ¯ � � � � z � � ~ ¯ � � � � ~ � z � z � � z � z � � �
� � z � � � ~ � � � � � � � � � � � � ~ � � z � � « z � � ~ � � £

¼ � � � � � � � � z � � � ~ � � « z � � ~ � � � � ~ � � � � � � ³ � � ~ ¶ · ¸ ¹ º ¨ � � � ~ � � �
z � ¯ � � � � ~ � ~ � � � � � � ~ ~ � � � � � � ~ � � � � � � � � � � � � ¯ � � � � � z � � � z � �
z � � ¨ � z � � ~ � � z � � � � z � � � z � ® � ~ ¯ � � � � � £ ¼ � � � � � � � � � � z � � � @ � �
� � � � � � ~ � � ~ ¯ � � � z � � � � � � Ú

� ³ � � � � � z � � � ³ � z � � ~ � ~ � ~ ¨ | � � � � ¡ � £ � £ � � � � � � � � � � � ³ � � � � ~ � � � �
Ð Ñ Ò Ó Õ ¡ × ¡

� � � � � z � � � z � � � � � � � ~ � � � � � � z � � � ~ � � � � z � ¡ � £ � � � � � � � z � ¨ � z
� z � � � � � � � � ¶ · ¸ ¹ º ~ � � � � � � � ~ � � � � Û ê Ó º Ô Ó Õ ç × ¡

� � � � z � z � � z ¨ � � � � � � � � ~ � z � � � � ¡ � £ � £ � � � ~ � � � � � � � � � � � z � � ~ � � z �
� � � � z � � � � � ~ � � � � � � � � � ~ � � � � ~ � � � � � � Õ · × í Ó Õ Ù × ¡

� � � � ¨ z � � � � ~ � � � z � � z � � � � � � z � � � � � � ~ � � z � � � � � ~ ¨ � � � � � ~ � �
� ~ � � � � ¬ � � � � � � � � � � � � � � £

Ú Ë O J ^ Ì J h J Ê Ë 1 Ë É Í Ê Ð Í Z ^ Í Ê J Ê Ë

¿ Á Â Ã Ä � � z � � ~ ~ � � ¬ � � z � � � � z � � z � � � � � ~ ¶ · ¸ ¹ º ¡ ¯ � � � � � � � � � � ~ �
� � ¨ � � � ~ � � ¬ � � � � � � � � z � z � � � � z � � � z � � � ~ ~ � � � � � � � � ~ � � z � � � z �
� z � � � z � � � � ¬ � ¡ � � � � � � � z � � � ¯ � � � � ~ � � � � z � £ ¤ � z � � � � � � z � � z � z
¨ � � � � � ~ � ¿ Á Â Ã Ä � � � ~ � ¬ � � z � � z � � ~ ~ � � � � � z � � � @ � � � � � � � � � � � ~ �
z ¨ � � � z � � � ~ � ¡ � � � � � z � � � z � � � � � ~ � � z ¨ � � � z � � � � � � � � � z � � � � � � � �
� � z � � � � � � � ~ ® � ~ ¯ £ ¼ � � � � � � � � � � z � � � Ü � ¬ � ¨ � � � ~ Æ � � � � � ~ � �
z � � � � Æ � � � � � £ ± � � � � � � � � ¬ � � z � z � � ~ � � � � � � � ~ � � � � � ¡ � � � � � � �

� z � � � � � � � � � � ¿ Á Â Ã Ä z � � � � � � ¡ � � � � � � � � � � � � � ¬ � � z � z � � ~ � � � � ~ �
� z � � � � z � � ~ � � £ ¿ Á Â Ã Ä z � z � � « � � � � � � � � � � � � � � � z � � � ~ � z � � � � � � � �
� � � ~ z � � z � � ³ � z � � ~ � � � z � ~ � ¯ � � � � � � � � � � ~ � � � � � � � � � � � � � z � ~ �
¯ � � � � � � ¬ � � z � z � � ~ � ¯ z � � ~ � � z � � � � z � � ~ � � z � � � � � � z � � z ¨ � � � � �

� ¬ � � z � z � � ~ � ¡ � ~ � � ¬ z � � � � ¡ ¨ � � ¯ � � � � � � � � ~ z � ~ � � � � � � � � � ~ � z ¨
� � � z � � � ~ � £ ¢ � � � � � � � � � � � � � � � z � � ~ � � � ~ � � � � ¡ ¿ Á Â Ã Ä � ~ � � � � � � � � z

� { � � � � Â � Ã � � Â � � � � Â Ã � Â Ã Ã � ~ ~ � � z � � « � � � � � � � � � z � � � � � ~ ¨ � � � ~
� � � � � £ ¤ z � � � � � � � z � � � � � � � � � � � � � � � � ¨ � z � � � � ¡ � z � � � � Ý Ã Ä �

ß � Â � � � � Â Ã ¡ � � z � � � � ~ � ³ � z � � ~ � ð � � £ Ó à × � ~ �
� � � z � � � 4 £

¼ � � � � � � � ³ � z � � ~ � � � � z � � ~ ~ � z � � ~ � � � � � � � ~ � z ¨ � � � z � � � ~ � ¡
¯ � � � � ¿ Á Â Ã Ä � � � � � � ~ � � � � ~ � ~ � � � � � � � � ~ z � z � � � z � � z � � � z � �
� � � � � � � z � � ~ � ¡ � ~ � � z � � � � � � � � � � � � � ~ � z � � � � z � � � z � � ~ � � � � � � £
Ù ~ � � � � � � � � z � � ~ � � � � � ~ � � � ¡ � � � � � z � � ~ � � z � � « � � � � � � � � � ~ �

� Ã y ~ | � { � � ~ � Ã � � Â { Ã � £ ¼ � � � z � � � ~ � � ~ � � � � � Ã y ~ | � { � � ~ � Ã � � Â { Ã �
� � � ~ � � ~ � � � � � ~ � z ¨ � � z � � � � ¡ ¯ � ~ � � � ~ �
� ~ � � � ~ � � � � ¼ � ¬ � 7 � � � � � � � � £ ¼ � � � � � ³ � � � ~ ¯ � � � z � z � � ¼ � ¬ �

7 � � � � � � � � � � z � ¨ � � ~ � ¨ � � � � ¡ z � � � � � � � � � � z � � � � � � z � � � �
~ � � � ¨ � � � � � ¬ � � � � � � ¨ � � ¼ � ¬ � 7 � � � � � � � � � £ Ù ~ � � � � � z � � � ¡ � � � � � �
á � � ~ � � � ¨ � � ¬ � z � � � � z � � ~ � � â ¨ � � � � � ã ¡ � � � � � � � � � � � � � � � �
~ � ã � � � � ¨ � � ~ � � z � � ¨ � � � ~ � � � � � � � � � � � � � � � � ~ � z � � z � � � � � ~ â £
Ù ~ � � ~ ¯ � � � < z � z � � � Ó Õ î × ¡ � ~ ¯ � � � � ¡ ¯ � ~ � �
� � � ~ � ¯ ~ ~ � � � ~ � ~ � z � � � � � � � � ~ � � Ú � � � � � � z � � ~ � z � � � � � � � � ~ � � �
� � � � � ~ � � � � ä � � Ã Â � � � Ã � Ó Õ × ¡ z � � � � � � { Ã Â ~ Â � � � � è � Ã Ä � � ~ �

� Ã y ~ | � { � � ~ � Ã � � Â { Ã � � ~ ¨ � � � � � � � � � � ¨ � � ~ ¯ £ ¤ � � � ~ � � � � � ~ �
� � � � � z � � � � � z � � � � � � ¡ � � � � � � z � � ~ � ¨ � � ¯ � � � � � � � ~ � � � � � � � ~ � �
z � � � � � � � � � � � z � � � � � � � � � ~ � � � � � � z � � « � � z � z � � � � � z � � « z � � ~ � ¡

� z � � � � � � z � z � z � � � � � z � � � z � � ~ � £ 7 � � � � � � � � � z � � � � ~ � � � � � � �
� z � � ~ � � � � � � � � � ~ � � � � � � z � � � ¡ � � � � � � z � � � � z � � � � � ~ � � � z ¨ � � £

¼ � � � � � � z � � � � � � z ® � � � ¡ � � � ¼ � ¬ � 7 � � � � � � � � � � ¿ Á Â Ã Ä � � z
� � � � � � � � � � � � � � � � ~ � � ~ � � � ~ � ® � � � � � � � ¨ � � � � � ~ � � ~ � � ~ � � � �
� � ¨ � � � � � Ú ¤ � z � ~ � � � ê Ã Â | Ã � � � ë � Â Ã Ã � z � z � � z � z � � � � � ~ ~ �
z � � z � � � � � � � � z � � � � � � � � � ¡ � � � � � � � � � � � � ¨ z � � � z � � � z � � � � �
� z � � Î z � � � � � � � � � � � � � � � � £ ì � y � � � { � Ã � � ë � Â Ã Ã � � z � ¨ � � � � � � � �
� � � ~ � ¯ ~ � � ¨ � � � � � Ú � � � ³ � � � � z � z � � � � � z � y ~ � Â { Ä � � � � � z � �
« � � ~ ~ � � ~ � � ~ � î � | � � � � � � � � � � z �
� ~ � z ¬ � � ¡ � � � � � � ~ � � � z � � ¯ ~ ~ � � ~ � � � � � Â � { | ~ � Ã � � � � � � � � � z � �
� � z � � � � ~ � � z � z � z ¬ � � £

¤ z � � � ~ � � � � � � � � � ¨ ~ � � � � � � � � � ~ � � � � B � � � � y ~ � � �
z � � � � � � � � � z � � � � ~ � � � ¬ � � z � � � � z � � � � � z � � � ~ � � � � £ ¼ � � B � � � �
y ~ � � � � � z � ~ � z � � � � � � � � � � � � � � � ~ � � � � � � � � � � � � z � � � � � � ¯ ~ � ®

~ � � ~ � � � � � � � � z � z � � � � � � z � � � � � z � � � ~ � � z � � « � � z � � ~ � � � � � � ~ � ~ ¯
� � � � � z � ¨ � � � � � � � � � � � z � � � � ¬ � � � � � � � £ Ù � � � � � ç � � ~ ¯ � z � � z �
� � � � ~ � � � � B � � � � y ~ � � � � � ¿ Á Â Ã Ä £ Ù ~ � � � � � � � ~ � z � � ~ � z � � � �
� z � � ~ � ¡ � ~ � z � � � � � � � ³ � � ~ � � � � � � � � � � ¨ � � � � � � � ³ � � z � � � � z � � �
z � z � � ¬ � � � � � ~ � ~ � � � � B � � � � y ~ � � � £ Å � � � � � ~ � z � � ~ � � z � �
� � z � � � � ¡ � ~ � � � ~ � z � � � � � � � ³ � � ~ � � � � � � ð � ~ � � z � � � Ú ~ � � � � z � �
� � � � � � z � � � 4 z � � � � z � � � � � � � � � � � � ~ � � � � � | � | ï � � | � � { � � � � � { | � ¡
� ¬ � � � � � ~ � ~ � � � � z � ¯ ~ � � � � ~ � � � � � � ¡ ¯ � � � � z � � � z � � � � z � �
� � z � � � z � � � ¨ � � � ~ � � � � � ~ � � � « « � � � £ y ~ � � ~ � � � ¡ � ~ � z � � � � ~ � � �
� � � � z � � � z � � � � � � � { � � Â Ã � Ã � � ~ � Ã Â Ã � ~ � { � | � £ ¼ � � ~ � � z � � « z � � ~ � ~ �
� � � � � � � � � � � � � � � � � � ¨ � � � � � � z � � « z � � ~ � � � � z � � ~ � � z � � ¨ � � � � �
� � � � � � � � � ~ � � ~ � � � � ³ � � � � � ~ � � � � z � � ~ � � £ G ~ � � � � z � � � � � � � � � � � � � � � �
z � � � ~ � � � � � � � � z � � � ~ � � ~ � � ~ � � � � � z � � � � z � � � z � ® � ~ ¯ � � � � �
¨ z � � ¡ ¯ � � � � � � z � � � ~ � � @ � � � � � � � � � � � � � � � � � ð � � � � � z � � � Ü z � � � � 4
� � � � z � � � � � � £

¼ � � � � � � z � � � � ~ � � � ¬ � � z � � � � z � � � � � z � � � ~ � � � � � � z � � ~ z
� ~ � z � � � � � � � � � � � � � � � ~ � � � � � � � � � � � � z � � � � � � ¯ ~ � ® £ ¼ � � � ~ �

Heiner Stuckenschmidt
64

arbitrary-place-relation

discrete-place-relation

concept

modal-quality

relational-processes

quality

object

material-word-quality

process

conscious-being

mental-processes

non-concious-thing

modified-concept

L M O Q R S ð W ñ ò ù ÿ + ô ø ý ÷ ó (÷ ' ø � õ õ ø ù ô ó � ø � ü ý õ ö ÷ ø ù

� � � � � z � � ~ � � z � � « � � � � z � � � � z � � � � ¨ z � � � ~ � � � � � � � � ¬ � � z � � � z �
� « z � � ~ � £ Ù ~ � � ¬ z � � � � ¡ � � � � ~ � � � � � � � ~ � � Ã ï y � � { ú Ã Â ï Â ~ | ê { | � û � �
� � z � � « � � z � z � z � � � � ¨ ¡ � � ~ � � Ã ï y � � { ú Ã Â ï Â ~ | ê { | � û û z � z � � � � ~ � �
� � ~ � z � � � � z � � ¡ z � � � � ~ � � Ã ï y � � { ú Ã Â ï Ã y ë Ã � � Ã � z � z � z � � � � ¨ � z �
� � z � � � £ Ù � � � � � Ö � � ~ ¯ � z � � z � � � � � ~ � � � � � � � � z � � � � ~ � � � ¬ � � z �
� � � z � � � � � z � � � ~ � � � � £

clause-modifier-rankingI

clause-modifier-rankingII
clause-modifier-embedded

category

text

sentence

clause

vp

np

modifier

clause-modifier

np-modifier

intensifier

vp-modifier

L M O Q R S ü W ñ ò ù ÿ + ô ø ý ÷ ó (÷ ' ø ý ü ø ù ÿ ù û ' � ó (0 ø � ÷ ö ÿ � ú ø ô ÿ ý ÷ ü û
ò ÿ ÷ ø + ó ù ü ø 	 ü ý õ ö ÷ ø ù

¼ � � � Æ � � � z � � � � � � � � � � ³ � � � � � � ~ � � � ~ � � � � � � z � � z � � � � z � � � z �
~ ¨ | � � � � ¡ z � � ¬ � ~ � � � � � � � � � � � � � ~ � � � � � � � ~ � ¡ z � � � ~ � � � Ü � � � � �
¨ � � � � � � � � � � � � � � ® � ~ ¯ � � � � � ¨ z � � � £ ¼ � � � � � ~ � � ¡ ¨ � � � � � � � z � z �
� � � � z � � � � � � � � � � � � � z � � ~ � ¡ ¯ � � � � � z � ¨ � � ~ � � � z � � � ¨ � � z � � ~ � �
� � � � � � � z � � ~ � � ~ z � � ¡ � z � � ~ ¨ � � z � � � � � ~ � � ~ � � � � ¨ z � � � ~ � � � �
� � ~ ~ � � � � � � � � � � z � � ~ � � � � ~ � � ~ � � � ¨ z � � « z � � ~ � ¡ ¯ � � � � � � z � z � � � �
~ � � � � � � � ¯ ~ � ® £ Å � � ~ � � � z � � ¡ ¿ Á Â Ã Ä � � z ¨ � � � ~ � � ~ � � � � � � @ � � � � �
� � � z � � � � � � ~ � � ~ � � � z � � � � z � � � z � � � ~ � � � � � � � ¡ � � � � z � z � � ~ � � z
� � � � � � ¡ � � � z � | � � � � � � z � � ~ � � z � � � � ~ � � � � � ~ � � z � � ~ � � z � � � � � � ¡
� � z ¨ � � � � � � ~ � � � � � � � � � � � � � z � ~ � � � � B � � � � y ~ � � � ¡ � � � � � ¬ �
� ~ � ¡ z � � � � � � � ¬ � � z � � � � z � � � � � z � � � ~ � � � � £ ¼ � � � � � � � � � � � � ~ � � �
� ~ � � � Ü � � � � � ¨ � � � � � z � � � � z � � � z � ® � ~ ¯ � � � � � ¨ z � � £

þ É Ê Ë J Ì Í ^ J Ì 1 ÿ É � É Ë �

± � � � � ~ � � z � � � � � � � ~ � � z � � « z � � ~ � � � � � � � � � � � ~ � Û â º í ¸ z � �
� � � B � � � � y ~ � � � ~ � ¿ Á Â Ã Ä ¡ � � � � � � � � � � � � � � � � ~ � � � � � z � � � � � � z
� ~ � � � � � � � � ~ � � � � ~ � � � z � � � � � � � ~ � � z � � « z � � ~ � � � Û â º í ¸ � ~ � ~ �
� � Æ � � � � � � � � � z � � « z � � ~ � � � � � � � � � � � � z � � � � � z � � � � � � � � � � � � ¡ ¯ � � � �
� � Æ � � � � � ~ � � ~ � � ~ � ~ � � � � ~ � � ~ � ~ � � � � £ Å � � � � B � � � � y ~ � � � ¡
� ~ ¯ � � � � ¡ � � � ¯ z � � � � � � � � � � � z � � « z � � ~ � � z � � � � � � � � � ~ � � � � � � �
~ � � � � � � � � z � � ~ � � � � � ~ � � � � z � � � � � � z � ~ � � z � � � � z � � � z � � � ~ �
� � � � � � £ 5 ~ � � � � � � � � ¡ � � � � � � � � � � � ~ � � � z � � � ³ � � � � ~ � � � � � � ~ � z � � �
� � � ~ � � � � � � � � � � � � � z � � � � � � ¯ ~ � ® � ¬ � � � � � � � � � � � � � � z � � � � � ~ �
� � � � z � � � � z � � � z � � ~ � � � � � � z � � � � � z � � ~ � � z � � � ~ � z � � � � � � ¨ � � � ~
� � � B � � � � y ~ � � � £

¼ � � ~ � � � � � � � � � � ³ � � � � ~ � � � ¬ � � � � � � � � � � B � � � � y ~ � � � ¡ � � �
� z � � � � z � � � z � � ~ � � � � � � z � � � � � ~ � � � � � � � � � � � � � � � � � � � � ¡ ¯ � � �
� � � ® � � ~ � � � � � � ~ � � � � � � z � � � � � � � � � z � � � � z � � � z � ® � ~ ¯ � � � � �
¨ z � � £ ¼ � � z � � ~ � � z � � � � z � � � � � z � � � � @ ~ � � � � � � z � ~ � � z ¨ � � ¡ � � � � �

� ~ � � z � � � z � � � � z � � � z � � ~ � � ~ � � � ¯ � � � ~ � � � � � � � � � � � z � � �
� z � � � z � � � � ~ � � � z � � ¡ � � � � ~ � � � � � ~ � � � � � � ~ � � � � � � z � � ~ � � � � � � �

� � � � � � � � � � � � � � � ¨ � z � � � ~ � � � z � � � � � � � � � � z � � � � � � � � � � � � � � � � � �
® � ~ ¯ � � � � � ¨ z � � � £ 9 � � � � ~ � � � ~ � � � z � � � ¡ ¯ � � � � z � z � � � � z � � � z �
� ~ � � � � � � � Æ � � � � � � ~ � � � � � � � � � � ® � ~ ¯ � � � � � ~ � � � � � � z � � � � � � � � � �
¨ � � � � � z � � ¡ ¯ � � � � z � � ~ � � � � � � ~ � � z � � � � � � � � � � � ~ � � � z ¨ � � � � �
¨ � � ¯ � � � � z � � � � z � � � z � z � � � � � � � � � � � � ® � ~ ¯ � � � � � ¨ z � � � £ y z � �
� � z � � � z � � ~ � � � � � � ~ � � � � � ® � � � z � � � z � � � � ~ � � ~ z � z � � � z � �
� ~ � ® � ~ ¯ � � � � � ¨ z � � ¡ z � � � � � � � � � � � ¨ �
� z � � � ~ � � � � � ~ � � � � � � � � ~ � � ¨ � � z � � � � � � � � ~ � � � � � � � z � �
� � ~ � � � � � z � � � � z � � � z � ® � ~ ¯ � � � � � ¨ z � � £ ¼ � � � z � � z � � z � � z � �
~ � � � � � � � z � � « z � � ~ � � � � � � � � ~ � � � � � � � � ~ � � � � � � � � � � � � � ¡ � � z � � � ¡
� ¬ � � � � � � � � � � � z � � � � z � � � z � ® � ~ ¯ � � � � � ¨ z � � z � � � � � � � � � � �
� � � � � � � � � ¯ � � � ~ � � z � z � � � � � � � � � � � � � � � � � � ® � ~ ¯ � � � � � ¨ z � �

z � � ~ � � � � � � � � � � ~ � � � ¨ � � ¡ � � � � � � � � � � � � � � ð � � � ~ � � � z � � � ¡ � � �
� ~ � z � � 4 � � � � � z � � ~ � � � � � � � � � � � � � z � � ~ � Æ � z � � � � � � z � � � � � z ¨ � � £
y z � � � z � � � � � � � � � � � ~ � � � � � ¯ � � � ¨ � � � � ~ � � � ¨ � � ¯ � � � � � � � ¬ � � �

� � ~ � � � � � � � � ¨ � � ¨ � � ~ ¯ ¯ � � � ¨ � z � � � � � � � � £
¤ � z � � � � ~ � � � � � ¨ z � � � � � � � � � z � � ~ � ¡ � � � � ~ � � � ~ � � � � � � � � z � � ~ �

� � � ~ � � � ~ � � z � � � � � ~ � z � � � � z � � � � � z � � z � � ~ � ¨ � � � � z � �
Æ � z � � � � ¨ � � � � � � � � � � � z � � � � � � ¯ ~ � ® z � � ¨ � � � � B � � � � y ~ � � �
� � � � � � � � � � � � � � z � � £ ¼ � ~ � � ¯ � � � � � z � ¨ � � � � � z � � � � ¨ � � � � � � �
� ¬ � � � � � ~ � � z � � � � � � ~ � � ~ ¯ � � � Ú

� Å � � � � � � � � � � � � � � ~ � � � � � � � � � � � ¬ � � � � � � ~ � � � � � � ~ ¨ � � z � ® � � £
Ù ~ � � ¬ z � � � � ¡ � � � � � � � � � Â � � � z � � ß Ã y { � Â � � � z � � � ~ � �
� ~ � � ~ � � � z � � � | � { � ¡ ¯ � � � � � � � � � � ³ � � z � � � � � z � z � � � ¨ � z � �
� � � � � � � � � £ ¼ � � � ~ � � � ~ � � ~ � � � � � � � � ~ � � � ¨ � � � � � � � � � �
� � � � � � � � � � � ~ � � � � � � � � ~ � � � � � � � � z � � � Æ � � � � � ¬ � � � � � � � �
� � � � � � � ~ � � £

� 5 ~ � � � � � � z � � Æ � � � z � � � � � � � � � � ¨ � � z � � � ¬ � � � � � � � ~ z � ~ � � � �
� � � � z � � � � � � � � � � � � z � � ~ � � £ ¤ � � � � ~ � � � � z � � � � � 7 � � � � ~ � î ¡

� ~ � � ¬ z � � � � ¡ � z � � ~ � � � ~ � � � ¨ � � � � � � � � ~ � � ³ � � z � � ~ � � � � z � � �
¨ � z � � � � � � � ¡ z � � � ¯ � � � � � � � ¨ � � ¯ � � � � � ³ � � � � ~ � � � � � � � � z � � � �
� � � � � � � � z � � � z � � � � � � � � z � � � � ~ � z � ~ ¨ � � ~ � � � Æ � � � z � � � � � £ Ù ~ �
� � z � ~ � � � � � � � � ~ � � � ¡ � � � � Æ � � � z � � � � � � � � � � z ¨ � � � � � � ¨ � z � � �
� � � � � � � � � � � ~ � ¡ � � � ~ � � � ~ � � � � � z � � � � z � � � ¡ ¨ � z � � ¨ � � ~ ~ � £

� ¤ � � � � � ~ � z � ¡ � � � � � � � � � � � z � � ~ � � � � � � z � � � ³ � � � � ~ � � � � z � � z � �
� ~ � � � � � z � � � � ~ � � � z � ~ � � � � � � � � ~ � � � � z � � � � � ~ � � � � � � � �
� � � � z � � ~ � � z � z ¨ � � � � � � � � � � � � ³ � z � � � � £ ¼ � � � � z � � � ¡ z ¬ � ~ � � � � z �
z � � � ¬ � � � � � � � z � � ~ � � ~ � � � ~ � � � � � � � � � � � � z � � � ~ ~ � � ~ � � � � �

� ~ � ¨ � � � � � � � � � � � � � ³ � � � � ~ � � ¡ ¯ � � � � � � � z � � � ~ � � ¨ � ¬ � � � � � � ~ � �
� � z � z � � � z � � � � � z � z ¬ � ~ � z � � z � � � � ® � � � � ~ ¨ � � � � � � � ¨ � � z �
� � � � � � � � � z � � � � � � � � � � � � � ~ ~ � � £

¼ � � � � � � � � Æ � � � � � � � � � ¨ � � � ~ � z � � z � � � � � � � � ~ � � � � � � ~ ~ � � �
� z � � ~ � ~ � � � z � � � ® � ~ ¯ � � � � � ~ � � � � � z � � � � � � ~ � � � � � � ~ � � � � ~ � �
� ~ � � � � � � ~ � � � ~ ¨ � � � � ~ � � � � � � � � � ~ � � � £ Ù ~ � � � � � � � � z � � ~ � � � �
� ~ � � � ¡ � � � � � z � � � ¯ ~ � � � � z � � � � z � � � ~ � � � ~ � � � � � ~ � � � � � � � � � � �

� � � � � � � � � z � � ~ � ¡ ¯ � z � � ~ � � z � z ¨ � � � � � � � Ú

� ¼ � � � ~ � � � � � � ~ � ¨ � � ¯ � � � � z � � � � z � � � z � ~ ¨ | � � � � z � � B � � � �
y ~ � � � ~ ¨ | � � � � � � � ~ ~ � � � � � � ¡ � ~ ~ � �

� ~ ~ � � � ~ � � � � � ~ � � � � � � � £ ¼ � � � � � � � z � � � � � � � � � z � � � � � z ¨ � � � ~
� ~ � z � � � � � � � ¡ ¨ � � � ~ � � ~ � ~ � � � � � z � � ~ � � z � � � � � � � � � � � � � � � � £

� ¼ � � � � � z � � � ® � ~ ¯ � � � � � ð � £ � £ ¡ � � ~ ~ � � ¡ � ¬ z � � � � � 4 � � � � � � �
� � � � � � � ~ ~ � ~ z � � � � � z � � � � z � � ~ � z � � � � � ³ � � z � � � � � � ~ � � � ¡

¯ � � � � � � � � � � � z � � z � � ~ � � � ~ � � � � � � � � � � � � � £

¼ � � � � � � ~ � � � ~ � � � � � z � � z � � � � � z � � � � z � z � � � � � z � � � � � � ¨ � �
z � � ¡ � � � � � � � � � ~ � � � � ¬ � � � ~ � � � � � � � � � � z � � � � � � � ~ � � � � � � z � ® �

� ~ � Û â º í ¸ � � � � � � � � ~ � � � £ Ù ~ � � � � � � � � ¬ � � � � � ~ � � ¡ � � � � � z � �
� ~ ~ � � z � � � � z � � � � ~ � � � � ® � � � � ~ � � � � � � � � � � � � z � � � ~ � � � � � � � � ~ ~ � � £

Heiner Stuckenschmidt
65

� Ð 1 h J h Ë Ï Î É J h 1 Ê Î 1 e 1 É � 1 ÿ É � É Ë �

¼ � � ¶ · ¸ ¹ º � � � � � � � � z � z � � z ¨ � � ~ � � � � Å � � � � � � � z �
� � � 	 � � � � � � � � � � � � � � � � ! # $ % & # � � £ Å � � z � ¨ � � � � � z � � z � � � � �
� � � � � � � � � z � � � � � � � � � ¡ ¯ � � � � � z � � ¨ � � � � z � � � � � ~ � � � ~ � � z � �
� � � � � � � ~ � � � � ~ � � � z � � � ¨ � � � � ~ � � � � � ~ � � � � � � � � � �) z � z � ~ �
� � Æ � � � � � ¡ ¶ · ¸ ¹ º � ® � ~ ¯ � � � � � ¨ z � � � � ~ � � z � � � � � � � � � � � z � � ~ �
� � z � � � � � � ~ � z � z � � � � � ~ � � � ¨ � ~ � z � � � ¡ � � � � � � � � � Ú

* + - + / s 0 0 2 o 3 � � � � � � � � ~ � � � � z � � z � � � � � � ~ � � z ¨ ~ � � � � � � � � ~ � �
z � � � � Æ � � � � � � z � � � ~ � � � � � � � � ~ � � � � � � � ~ � � £

l 4 q 0 6 t q 8 v v 9 t o o 8 : v t q 8 0 = 0 2 s A o 8 B 4 A + v 9 t o o o q s 4 v q 4 s A o 3
< � ~ ~ � � ~ � � � ~ � � � � � � � ~ � � � � � � � � � � z � � � � z � � z ¨ ~ � � � � ~ � ~ �
� � � � � � ¨ � � ¯ � � � � � � � � � � � � z � � � � � � � � � � � � £

F = q A s t v q 8 G A / s 0 0 2 / 9 t = = 8 = H 3 ¤ � ~ � ¨ � � z � � ~ � ~ � ¶ ë ì Ü í
z � � Û è é Ü ê ¯ z � � � � � � ~ � � � � ~ � � � � � � � � � � z � � � � � � ¬ � � ~ � z � � ~ �

~ � � � � � � � � � � z � � � � z � � � ~ � � ~ � � � � � ~ � � � � z ¨ ~ � � � � ~ � � � � � � �
~ � � � ~ � � � ~ � ~ � ~ � � � � � � � � � � � � � � � � � ¬ � � � � � � � £

I A q q J A 0 s K 3 ¶ ë ì Ü í � z � ¨ � � � z � � � � � � ¯ � � � G ¢ � � � � � ¡ z �
z � � ~ � z � � � � � � ~ � � � � � ~ � � � ¡ z � � z � ~ � � � � � � � � z � ~ � � ~ � � ~ � �
~ � � � � � � ~ � � � � � � Æ � z � � ~ � � £

L s 0 4 / q J A 0 s K 3 ¤ Æ � � � z � � � � � ~ � � � @ � � � � � � � ~ � � � � ³ � � � � ~ � � ¡
� � � Æ � � � � � � ~ � � � � � � � � � � � � � � � z � � � � � � � � � � � � � � � � £

¼ � � � ~ � � ¯ z � � � ~ � � ~ � � � � � � � � � � � � � � ~ � � � � � � � z � � � z � � � � �
� � � � � � � � � � ¨ � � z � � � � � ~ � � ~ ¯ � � � ¯ � ¨ � � � � � Ú

� ¶ · ¸ ¹ º Ú � � � 	 � � � � � � � � � � � � � � � � ! # $ % & # � � � % O � % & # � �
� ¿ Á Â Ã Ä Ú � � � 	 � � � � � � � � � � � � � � � � ! # $ 	 Q # R
� Û â º í ¸ Ú � � � 	 � � � � � & � � � � # � � % Q � & � � � #

S Ð Í Ê Ð � Ï h É Í Ê 1 Ê Î Î É h Ð Ï h h É Í Ê

Å � � ~ � � z � � � ~ � � ~ ~ � � � � � ~ � z � � � ¡ � � � � Æ � z � � � � � � � � � � � � � z � � ~ � �
z � � � � Æ � � � � � ¡ � ~ � � z � � � � � � z � ~ � � � ¨ � � � ~ � � � � � � � z � z � �
� � z � � � � � z � � � � £ ¤ � z � � � � ~ � � � z � Æ � z � � � � z � � � � � ¡ ¨ � � � � � � � ~ �
� ~ � ~ � � � � � ~ � � � � � ~ � z � � ~ � � z � � � � z � � � � � z � � � � ~ � � � � � � � ¨ �
� ~ � � � � � � � � � � � � � � w � � � � � � z � z � � � � � z � � z � ® � ~ � z � ~ � � � � � ~
� z � � Ú

� ï z � � � � � � � � ~ � � � ~ � � � z � z � ~ � � z � z � � £

� ¼ � � � � � � z � � � � � � � � � � ~ � z � � � � � � � � z ¨ ~ � � � � � � ~ � z � � � ~ �
� � � � �) � � � � � � � z � � � � � � � � � � � � ~ � � � � � z � � � � � z � � � � � � � � � � � � � z

� � ~ � � z � � z � � � ¡ � ~ � � z � � ¡ z � � � ~ � � � � � � ~ � � £

� ¤ � � � ~ � � � � � � � ~ � z � � z � z ¯ � ~ � � � � � � � � � z � � � ¡ � � � z � ¨ � � � z
� ~ � z ¨ � � ¯ � � � ¨ � ~ ® � � � ~ ¯ � � � � ~ � � ¨ � ~ � z � � � ~ � � z � z � � z ¨ � �
� � « � £

Å � � ~ � � � � � � � ¡ � � � � ~ � z � � � � z � � � � � z � ¡ � � � � � � � � � ~ � z � � ~ ¨
| � � � � z � � � ~ � � � � � � � � z � � � ³ � � z � � � ~ � � � � � � z � ~ � � � � � � � � � � � � � � � ¡

¯ � � � � � � � ¬ � � � � � ~ � ~ � � � « « � � � � ¨ � ~ � z � � � £ Ù � ~ � � � � � � � � � � � z
� � ~ � � � � � � � � � � � � ¡ � ~ ¯ � � � � ¡ � � � � � � � � � � � � z � � ~ � � � � � ~ � � � z � � � ~ �
� � � � � � @ � � � � � � � ~ � ~ � � � � � ~ � z � � � £ ¼ � � � � ~ � � @ � � � � � � � � �
~ � � � � � � � � � z � � � � � � � � � ~ � � z � � � � � ¡ ¯ � � � � � � � ~ � � � � � � � � � � �
~ � � � ~ � z � � � � � ~ � � z � � � ~ � � ~ � z � � z � � � � � £ 5 ~ � � � Æ � � � � � � ¡ ~ � �
B � � � � y ~ � � � � � � � � � � � z � ~ � � ~ � � � � ~ � � � � � � ¨ � < � � � z � Ó Õ × ¡
~ � � � � � � � ~ � � � � � � � � ~ � � ~ � � ¬ � � � � � � ¨ � � � � � £ ¼ � � � z � � � � � � z � � �
� � ~ � � z � � � ~ z � � � � � � � z ¨ � � � � � � � z ¨ z � � � � � � � � ~ � � � z ¨ � � � � � £

¤ � � ~ � � � � � � ¡ ¯ � � z � � � � ~ ¯ � � � z � � � � � � � � � � z � � ~ � z � � � � � � � �
� z � � ~ � � � � � ~ � � � � � � � � � ~ � z � � ~ � � z � � � � z � � � z � � z � ¨ � � � � ¨ �
� � � � � � ¨ � � � � ® � ~ ¯ � � � � � ¨ z � � � ¡ ¯ � � � � � @ � � � � � ~ � � z � � « z � � ~ � � � � �
� � � � � � ¡ � ~ � � � � � � � � z � � � ~ � � � z � � ¡ z � � � � � � � z � � � � ® � � � ¡ ¯ � � � �

� � � � � � � � � � � z � � � � � z � � � � @ ~ � � £ G ~ � � � � � � � � � � � � � ¡ � � � � � � � � � � ¡

� � � � � � � � � � � � ¡ � � � ~ � � � � � � � � z � � ~ � � ~ � � � � ~ � � � z � � � � � � � � ~ � z �
� � � £ Å � � � � � � z � ¡ � � ~ � � � ~ � � � � � � � � � � � � � � � � � z � � ~ � � z � � � z � � �
� � � z � � � � � z � � z � ¨ � � � � ¨ � � � ¨ � � ¬ � � � � � ~ � � � � � � � � z � �
� � z � � � z � � � � � � � � � � z � � ~ � � ~ � � ~ � � � � ~ � ¨ � � ~ � � � ~ � � � � � � z �
� z � � � � � z � � � � � � � � � � � � � � � � � z � � ~ � � £ ± � � z � � � � � � � � ³ � � � � � � � z �
~ � � � � � � � � ~ � � � ~ � � � � � ¡ ¯ � � � � ¯ � ¯ � � � z � � � � � � � � � � � � � � ¯ ~ � ® £
± � � � � ~ � � � � � � � ¡ ¯ � � ¬ � � � � z � � � � � � ~ � � ~ � � z � ~ � � ~ � ~ � � � � ¡ � � � �
z � � � � � � � � � z � � � � � � � Ó U × ¡ � ~ ¨ � � ~ � � � � � � � z � � � ~ � ~ � � � � � � � �

� z � � ~ � � z � � z � ¯ � � � £

Ì J 9 J Ì J Ê Ð J h

V A W X � ñ � � ÿ ÷ ø ô ÿ ý � Z � 0 � 3 ÿ 	 õ ø ù � X � þ � ô ó ó ù ø � ÿ ý � Z � ñ � \ ' ü ÷ �
ý ø � �] ñ + ø ý ø ù ÿ � ó ù + ÿ ý ü ^ ÿ ÷ ü ó ý ó (ý ó ` � ø � + ø (ó ù ý ÿ ÷ ö ù ÿ � � ÿ ý + ö ÿ + ø
õ ù ó û ø 	 	 ü ý + b ÷ ' ø � ø ý ô ÿ ý ö õ õ ø ù ô ó � ø � c � 0 ø û ' ý ü û ÿ � ù ø õ ó ù ÷ � � ý ü �
� ø ù 	 ü ÷ � ó (ú ó ö ÷ ' ø ù ý ò ÿ � ü (ó ù ý ü ÿ � d ý (ó ù ô ÿ ÷ ü ó ý ú û ü ø ý û ø d ý 	 ÷ ü ÷ ö ÷ ø �

o A f f � r �
V k W ò � � ø ý ^ ô �ö � � ø ù ÿ ý � h � ú ó ù + ø �] Y � j l f t n ñ ý ó õ ø ý ÿ õ õ ù ó ÿ û ' ÿ ÷

û ó ô � ü ý ü ý + d ý ÷ ø ù ÿ û ÷ ü � ø ÿ ý � ñ ö ÷ ó ô ÿ ÷ ø � 0 ' ø ó ù ø ô � ù ó � ü ý + c � ü ý
õ ÷ p q ö p r s u v q w v ø x w z { | ~ ~ ~ � ø � 	 � � ô � 3 ø ù � ø ù ÿ ý � ô � 3 ó ' � ' ÿ 	 ø �

ñ 3 � ø ÷ ø ù 	 � o k � � A r �
V � W � � ò ' ø ü ' ù ó ö ' ó ö ÿ ý � h � ú ó ù + ø �] � � � � ñ 0 ' ù ø ø �

þ ü ô ø ý 	 ü ó ý ÿ � þ ÿ ÷ ÿ ú ÷ ù ö û ÷ ö ù ø (ó ù � ù ó ó (� � ÿ ý 	 c � ü ý õ ÷ p q ö p r
� s � � s � � | ~ ~ ~ � o k � � � r �

V � W ñ � ò ü ø � � ø ù �] þ ü ÿ � ó + � � ù ü � ø ý ÿ � ÿ õ ÷ ÿ ÷ ü ó ý ó (ø � õ � ÿ ý ÿ ÷ ü ó ý 	 ó (
õ ù ó ó (c � ü ý õ ÷ p q ö p r � � ø � � � � � � � ø ÷ � u � � p � u v � p � � � s p � r ø ÷ ø � q ø

p � � ÷ � � � q � u v � � � ø v v � � ø � q ø � � � s � � � � ø � � � � � � ø � ø � � õ õ � A k f � n
A � � � � ú ø ÿ ÷ ÷ � ø � \ ñ � o k � � A r � ô ó ù + ÿ ý 3 ÿ ö (ô ÿ ý ý �

V � W ñ � ò ù ÿ ý ø ÿ ý � ô � 3 ó ' � ' ÿ 	 ø �] ú � 	 ÷ ø ô � ø 	 û ù ü õ ÷ ü ó ý b e ` f g k
h \ j � ÿ ý ÿ + ø ý ÷ � � ÿ 	 ø � û ó ô ô ö ý ü û ÿ ÷ ü ó ý � ÿ � ø ù (ó ù � ü 	 ÷ ù ü � ö ÷ ø �
ÿ ö ÷ ó ô ÿ ÷ ø � ÷ ' ø ó ù ø ô õ ù ó � ü ý + c � ü ý õ ÷ p q ö p r s � � � { � � ø � � �
ý � # ÿ ý ^ ü ý + ø ù � ý ö ô � ø ù A � � k ü ý � � ñ d � ú õ ù ü ý + ø ù � o A f f f r �

V � W ñ � ò ù ÿ ý ø ÿ ý � ô � 3 ó ' � ' ÿ 	 ø �] ú � 	 ÷ ø ô � ø 	 û ù ü õ ÷ ü ó ý b e m ` t \ � ÿ ý
ó õ ø ý ô ÿ ÷ ' ø ô ÿ ÷ ü û ÿ � ý ó ` � ø � + ø � ÿ 	 ø c � ü ý õ ÷ p q ö p r s � � � { � � �
ø � � � þ � ô û ñ � � ø 	 ÷ ø ù � ý ö ô � ø ù A ¤ � A ü ý � � ñ d � ú õ ù ü ý + ø ù � o k � � � r �

V ¥ W � � # ö ÿ ù ü ý ó ÿ ý � ò � \ ø � ÷ � �] d � ø ý ÷ ü ÷ � � ö ý ü ÷ � � ÿ ý � ü ý � ü � ü � ö ÿ � ü ÷ � b
0 ó ` ÿ ù � 	 ÿ (ó ù ô ÿ � ÷ ó ó � ü ÷ (ó ù ó ý ÷ ó � ó + ü û ÿ � ÿ ý ÿ � � 	 ü 	 c � ü ý õ ÷ p q ö p r

� s � � { | ~ ~ ~ � d � ú � ù ø 	 	 � o k � � � r �
V ¤ W § � ý ö ÿ ý + ÿ ý � ñ � ò ü ø � � ø ù �] � ù ó ó (� ø ù � ÿ � ü ^ ÿ ÷ ü ó ý ÿ 	 ÿ ý ÿ õ õ � ü û ÿ �

÷ ü ó ý ó (� � # c � ü ý õ ÷ p q ö p r � � ø � ¨ � � � � � ø ÷ � u � � p � u v � p � � � s p � {
r ø ÷ ø � q ø p � � ÷ � � � q � u v � � � ø v v � � ø � q ø � � � s � � � � ø � � � ô � ª � � ó � � ÿ û �

õ õ � f � � n f ¥ � � � ÿ + ó � ÿ � X ÿ õ ÿ ý � o A f f ¥ r � ô ó ù + ÿ ý 3 ÿ ö (ô ÿ ý ý �
V f W þ � ý ö ÷ ÷ ø ù �] ô ÿ ý ÿ + ø ô ø ý ÷ ó (û ' ÿ ý + ø ü ý 	 ÷ ù ö û ÷ ö ù ø � � ø ù ü « û ÿ ÷ ü ó ý c �

ü ý õ ÷ p q ø ø ¬ � � � z � w � p x u � ø ¬ p r � ® u ÷ ø � � � � � ø ø ÷ � � � � � � { | ~ ~ ~ � �
d ª ª ª � ù ø 	 	 � o k � � � r �

V A � W 0 ' ø ° [² t ó ý � ü ý ø ÷ ' ø ó ù � � ü � ù ÿ ù � � d ý ÷ ø ù ý ø ÷ ü ý ÷ ø ù (ÿ û ø ÿ ÷ ³ ´ ´ µ ¶
· · ¸ ¹ µ º » ¹ ¼ ¹ ½ º ´ ¾ ¿ » ¼ ½ · ´ ³ ¾ À ¿ ¸ ¾ º · ´ ³ ¾ À ¿ Á Â Ã ¸ Ä ¿ ½ ¿ Á » ³ ´ ¹ Ã �

V A A W ª � ô ø � ü 	 ÿ ý � ñ � ô ø ü ø ù �] � ù ó ó (� � ÿ ý ý ü ý + ` ü ÷ ' ô ö � ÷ ü õ � ø ú ÷ ù ÿ ÷ ø �
+ ü ø 	 c � ü ý õ ÷ p q ö p r s Æ { | ~ ~ ~ � � ó � ö ô ø A ¤ � A ó (Æ Ç � � � ú õ ù ü ý + ø ù �

o k � � � r �
V A k W ò � � ÿ ý ÿ + ø ÷ �] � 	 ü ý + ÿ ÷ ø � ÷ ö ÿ � ù ø õ ù ø 	 ø ý ÷ ÿ ÷ ü ó ý ÿ � � ø � ø � û ó ô õ ó ý ø ý ÷

ü ý ÷ ' ø û ó ý ÷ ø � ÷ ó (� ü 	 û ó ö ù 	 ø ó ù � ü ÿ � ó + ö ø + ø ý ø ù ÿ ÷ ü ó ý c � ü ý õ ÷ p q ö p r
� � ø � � � � � � ø ÷ � u � � p � u v È p ÷ É z � p Ê p � Ç u � w ÷ u v Æ u � � w u � ø Í ø � {
ø ÷ u � � p � � õ õ � A k ¥ n A � � � 3 ø ý ý ø � ö ý õ ó ù ÷ � ô ª � o A f f � r � d � � # �

V A � W � ü ó ÷ ù Z ö � ý ü û ü �] ñ ý ó � ø ù � ü ø ` ó (÷ ' ø ô ü ^ ÿ ù õ ù ó Ï ø û ÷ c � ü ý õ ÷ p q ø ø ¬ {
� � � z p r � � ø � Ð Ð | È p ÷ É z � p Ê p � Ò Ó Ê ø z u � ¬ õ ÷ p p r z u z õ ÷ p � ÷ u x
z � õ õ � � A A n � � k � o A f f k r �

V A � W X � ú ü ø ô ÿ ý ý � ò � � ø ý ^ ô �ö � � ø ù � h � � ù ø ^ ' ý ø � � � � ò ' ø ü ' ù ó ö ' ó ö �
ñ � ò ü ø � � ø ù � ñ � ò ù ÿ ý ø � ý � ý ó ù ÿ û ø � ô � 3 ó ' � ' ÿ 	 ø � ñ � ô ø ü ø ù �
ª � ô ø � ü 	 � ô � ô ó 	 û ' ý ø ù � d � � ó ù ô ÿ ý ý � ô � � ó � � ø ÷ � h � ú ó ù + ø �
ò � � � � ù ü û ' � ò � � � � \ ü ù ÷ ' � ÿ ý � X � Õ ü ô ô ø ù �] � ù ó ó (� ø � ø � ó õ ô ø ý ÷

` ü ÷ ' Y [\ ^ ` c � ü ý õ ÷ p q ö p r s � � � { � Ö � ò ó õ ø ý ' ÿ + ø ý � þ ø ý ô ÿ ù �
o k � � k r � (ó ù ÷ ' û ó ô ü ý + �

V A � W X � ú ü ø ô ÿ ý ý � ú � ý ø 	 	 � ò � � ø ý ^ ô �ö � � ø ù � � � ò ' ø ü ' ù ó ö ' ó ö �
ñ � ò ü ø � � ø ù � ý � ý ó ù ÿ û ø � ô � 3 ó ' � ' ÿ 	 ø � 3 � 3 ó ý ù ÿ � � ñ � ô ø ü ø ù �
ª � ô ø � ü 	 � ô � � ó � � ø ÷ � ÿ ý � h � ú ó ù + ø �] × Ø Ù Ú b × ó � ø � � Y [\ ^ `

Ù 	 ø ù Ú ý ÷ ø ù (ÿ û ø c � Û p ÷ x u v � z Ê ø q � z p r s p x Ê w � � � � � U U � � k � n � � k �
o A f f f r �

V A � W ò ó Ü þ ø � ø � ó õ ô ø ý ÷ 0 ø ÿ ô � Ò � ø s p Ý õ ÷ p p r � z z � z � u � � Þ ø r ø ÷ ø � q ø
ß u � w u v � d � Z d ñ � 	 ø ø ³ ´ ´ µ ¶ · · ¼ À à » ¸ á ¿ ¸ ½ » â ¿ · ã À ¼ · ¹ ½ ¸ á » ³ ´ ¹ Ã �

Heiner Stuckenschmidt
66

SEEKing Knowledge in Legacy Information Systems to
Support Interoperability

Joachim Hammer, Mark Schmalz, William O’Brien¥, Sangeetha Shekar and Nikhil Haldevnekar
Dept. of Computer & Information Science & Engineering

University of Florida
Gainesville, FL 32605, U.S.A.

¥ Rinker School of Building Construction, University of Florida, Gainesville, FL 32634-6134

Abstract. The SEEK project (Scalable Extraction of Enterprise
Knowledge) is developing methodologies to overcome the
problems of assembling knowledge resident in numerous
legacy information systems by enabling rapid connection to,
and privacy-constrained filtering of, legacy data and
applications with little programmatic setup. In this report we
outline our use of data reverse engineering and code analysis
techniques to automatically infer as much as possible the
schema and semantics of a legacy information system. We
illustrate the approach using an example from our construction
supply chain testbed.

1 MOTIVATION
We are developing methodologies and algorithms to facilitate
discovery and extraction of enterprise knowledge from legacy
sources. These capabilities are being implemented in a toolkit
called SEEK (Scalable Extraction of Enterprise Knowledge).
SEEK is being developed as part of a larger, multi-disciplinary
research project to develop theory and methodologies in
support of computerized decision and negotiation support
across a network of firms (general overview in [6]). SEEK is
not meant as a replacement for wrapper or mediator
development toolkits. Rather, it complements existing tools by
providing input about the contents and structure of the legacy
source that has so far been supplied manually by domain
experts. This streamlines the process and makes wrapper
development scalable.

Figure 1 illustrates the need for knowledge extraction
tools in support of wrapper development in the context of a
supply chain. There are many firms (principally, subcontractors
and suppliers), and each firm contains legacy data used to
manage internal processes. This data is also useful as input to a
project level decision support tool. However, the large number
of firms working on a project makes it likely that there will be a
high degree of physical and semantic heterogeneity in their
legacy systems. This implies practical difficulties in connecting
firms’ data and systems with enterprise-level decision support
tools. It is the role of the SEEK toolkit to help establish the
necessary connections with minimal burden on the underlying
firms, which often have limited technical expertise. The SEEK
wrappers shown in Fig. 1 are wholly owned by the firm they
are accessing and hence provide a safety layer between the
source and end user. Security can be further enhanced by
deploying the wrappers in a secure hosting infrastructure at an
ISP, for example, as shown in the figure.

We note that SEEK is not intended to be a general-
purpose data extraction tool: SEEK extracts a narrow range of

data and knowledge from heterogeneous sources. Current
instantiations of SEEK are designed to extract the limited range
of information needed by these process models to support
project optimization.

Supplier

Sub/
Supplier

Sub/
Supplier

Coordinator/
Lead

Extended Enterprise

SEEK
wrapper

SEEK
wrapper

SEEK
wrapper

Analysis
(e.g., E-ERP)Secure Hosting Infrastructure

…

…

Figure 1: Using the SEEK toolkit to improve coordination in extended

enterprises.

2 SEEK APPROACH TO KNOWLEDGE
EXTRATCION

SEEK applies Data Reverse Engineering (DRE) and Schema
Matching (SM) processes to legacy database(s), to produce a
source wrapper for a legacy source. The source wrapper will be
used by another component (for the analysis component in
Figure 1) wishing to communicate and exchange information
with the legacy system.

First SEEK generates a detailed description of the legacy
source, including entities, relationships, application-specific
meanings of the entities and relationships, business rules, data
formatting and reporting constraints, etc. We collectively refer
to this information as enterprise knowledge. The extracted
enterprise knowledge forms a knowledgebase that serves as
input for subsequent steps. In particular, DRE connects to the
underlying DBMS to extract schema information (most data
sources support some form of Call-Level Interface such as
JDBC). The schema information from the database is
semantically enhanced using clues extracted by the semantic
analyzer from available application code, business reports, and,
in the future, perhaps other electronically available information
that may encode business data such as e-mail correspondence,
corporate memos, etc. It has been our experience (through
visits with representatives from the construction and

Heiner Stuckenschmidt
67

manufacturing domains) that such application code exists and
can be made available electronically. Second, the semantically
enhanced legacy source schema must be mapped into the
domain model (DM) used by the application(s) that want(s) to
access the legacy source. This is done using a schema mapping
process that produces the mapping rules between the legacy
source schema and the application domain model. In addition
to the domain model, the schema mapper also needs access to
the domain ontology (DO) describing the model.

 Finally, the extracted legacy schema and the mapping
rules provide the input to the wrapper generator (not shown),
which produces the source wrapper. In this paper, we focus on
our implementation of the DRE algorithm.

3 Data Reverse Engineering
Data reverse engineering (DRE) is defined as the application of
analytical techniques to one or more legacy data sources to
elicit structural information (e.g., term definitions, schema
definitions) from the legacy source(s) in order to improve the
database design or produce missing schema documentation. So
far in SEEK, we are applying DRE to relational databases only.
However, since the relational model has only limited semantic
expressability, in addition to the schema, our DRE algorithm
generates an E/R-like representation of the entities and
relationships that are not explicitly defined in the legacy
schema (but which exist implicitly). Our approach to data
reverse engineering for relational sources is based on existing
algorithms by Chiang [1, 2] and Petit [8]. However, we have
improved their methodologies in several ways, most
importantly to reduce the dependency on human input and to
eliminate some of the limitations of their algorithms (e.g.,
consistent naming of key attributes, legacy schema in 3-NF).

Dictionary Extraction

Inclusion
Dependency Mining

Relation
Classification

Entity
Identification

Attribute
Classification

Knowledge
Encoder

Relationship
Classification

Data
DB Interface

Module

To Schema Matcher

Metadata
Repository

Queries

Application Code Application Code

AST Generation

Code
Analysis

AST

Schema

Business
Knowledge

6

1

2

4

5

7

8

3

configuration

Legacy
Source

XML DTD

XML DOC

Figure 2: Conceptual overview of the DRE algorithm.

Our DRE algorithm is divided into schema extraction and
semantic analysis, which operate in interleaved fashion. An
overview of the two algorithms, which are comprised of eight
steps, is shown in Figure 2. In addition to the modules that
execute each of the eight steps, the architecture in Figure 3
includes three support components: the configurable Database
Interface Module (upper-right hand corner), which provides
connectivity to the underlying legacy source. Note that this
component is the ONLY source-specific component in the
architecture: in order to perform knowledge extraction from
different sources, only the interface module needs to be
changed. The Knowledge Encoder (lower right-hand corner)
represents the extracted knowledge in the form of an XML

document so that it can be shared with other components in the
SEEK architecture (e.g., the semantic matcher). The Metadata
Repository is internal to DRE and used to store intermediate
run-time information needed by the algorithms including user
input parameters, the abstract syntax tree for the code (e.g.,
from a previous invocation), etc.

We now highlight each of the eight steps and related
activities outlined in Figure 3 using an example from our
construction supply chain testbed. For a detailed description of
our algorithm, refer to [3]. For simplicity, we assume without
lack of generality or specificity that only the following relations
exist in the MS-Project application, which will be discovered
using DRE (for a description of the entire schema refer to [5]):

MSP-Project [PROJ_ID, ...]
MSP-Availability[PROJ_ID, AVAIL_UID, ...]
MSP-Resources [PROJ_ID, RES_UID, ...]
MSP-Tasks J_ID, TASK_UID, ...] [PRO
MSP-Assignment [PROJ_ID, ASSN_UID, ...]

In order to illustrate the code analysis and how it enhances
the schema extraction, we refer the reader to the following C
code fragment representing a simple, hypothetical interaction
with the MS Project database.

char *aValue, *cValue;
int flag = 0;
int bValue = 0;
EXEC SQL SELECT A,C INTO :aValue, :cValue
FROM Z WHERE B = :bValue;
if (cValue < aValue)

{ flag = 1; }
printf(“Task Start Date %s “, aValue);
printf(“Task Finish Date %s “, cValue);

Step 1: AST Generation
We start by creating an Abstract Syntax Tree (AST) shown in
Figure 3. The AST will be used by the semantic analyzer for
code exploration during step 3. Our objective in AST
generation is to be able to associate “meaning” with program
variables. Format strings in input/output statements contain
semantic information that can be associated with the variables
in the input/output statement. This program variable in turn
may be associated with a column of a table in the underlying
legacy database.

dclns

Program

embSQL

if

print

printembSQL
beginSQL

SQLselectone

columnlist
hostvariablelist

1

2

3

4

52

<id>
<id>

A
C

<id>

<id>
aValue

cValue

SQLAssignment

<id>
<id>

B
bValue

Figure 3: Application-specific code analysis via AST decomposition
and code slicing. The direction of slicing is backwards (forward) if the
variable in question is in an output (resp. input or declaration)
statement.

Heiner Stuckenschmidt
68

Step 2. Dictionary Extraction.
The goal of step 2 is to obtain the relation and attribute names
from the legacy source. This is done by querying the data
dictionary, stored in the underlying database in the form of one
or more system tables. Otherwise, if primary key information
cannot be retrieved directly from the data dictionary, the
algorithm passes the set of candidate keys along with
predefined “rule-out” patterns to the code analyzer. The code
analyzer searches for these patterns in the application code and
eliminates those attributes from the candidate set, which occur
in the rule-out pattern. The rule-out patterns, which are
expressed as SQL queries, occur in the application code
whenever programmer expects to select a SET of tuples. If,
after the code analysis, not all primary key can be identified,
the reduced set of candidate keys is presented to the user for
final primary key selection.

Result. In the example DRE application, the following
relations and their attributes were obtained from the MS-
Project database:
MSP-Project [PROJ_ID, ...]
MSP-Availability[PROJ_ID, AVAIL_UID, ...]
MSP-Resources [PROJ_ID, RES_UID, ...]
MSP-Tasks [PROJ_ID, TASK_UID, ...]
MSP-Assignment [PROJ_ID, ASSN_UID, ...]

Step 3: Code Analysis
The objective of step 3, code analysis, is twofold: (1) augment
entities extracted in step 2 with domain semantics, and (2)
identify business rules and constraints not explicitly stored in
the database, but which may be important to the wrapper
developer or application program accessing the legacy source.
Our approach to code analysis is based on code analysis, which
includes slicing [4] and pattern matching [7].

The first step is the pre-slicing. From the AST of the
application code, the pre-slicer identifies all the nodes
corresponding to input, output and embedded SQL statements.
It appends the statement node name, and identifier list to an
array as the AST is traversed in pre-order. For example, for the
AST in Figure 3, the array contains the following information
depicted in Table 1. The identifiers that occur in this data
structure maintained by the pre-slicer form the set of slicing
variables.

Table 1: Information maintained by the pre-slicer.

Node
number

Statement Text String
(for print
nodes)

Identifiers Direction
of Slicing

2 embSQL
(Embedded
SQL node)

----- aValue
cValue

Backwards

The code slicer and analyzer, which represent steps two
and three respectively, are executed once for each slicing
variable identified by the pre-slicer. In the above example, the
slicing variables that occur in SQL and output statements are
aValue and cValue. The direction of slicing is fixed as
backwards or forwards depending on whether the variable in
question is part of a output (backwards) or input (forwards)
statement. The slicing criterion is the exact statement (SQL or
input or output) node that corresponds to the slicing variable.

 During code slicing sub-step we traverse the AST for the
source code and retain only those nodes that have an
occurrence of the slicing variable in sub-tree. This results in a
reduced AST, which is shown in Fig. 4.

dclns

embSQL

if

print

Figure 4: Reduced AST.

During the analysis sub-step, our algorithm extracts the
information shown in Table 2, while traversing the reduced
AST in pre-order.
1. If a dcln node is encountered, the data type of the identifier

can be learned.
2. embSQL contain the mapping information of identifier

name to corresponding column name and table name in the
database.

3. Printf/scanf nodes contain the mapping information from
the text string to the identifier. In other words we can
extract the ‘meaning’ of the identifier from the text string.

Table 2: Information inferred during the analysis sub-step.

Identifier
Name

Meaning Possible Business Rule

aValue Task Start
Date

if (cValue < aValue)
{
}

cValue Task
Finish
Date

if (cValue < aValue)
{
}

Data type Column Name
in Source

Table Name in
Source

Char * =>
string

A Z

Char * =>
string

C Z

The results of analysis sub-step are appended to a result
report file. After the code slicer and analyzer have been
invoked on every slicing variable identified by the pre-slicer,
the results report file is presented to the user. The user can base
his decision of whether to perform further analysis based on the
information extracted so far. If the user decides not to perform
further analysis, code analysis passes control to the inclusion
dependency detection module.

It is important to note, that we identify enterprise
knowledge by matching templates against code fragments in
the AST. So far, we have developed patterns for discovering
business rules which are encoded in loop structures and/or
conditional statements and mathematical formulae, which are
encoded in loop structures and/or assignment statements. Note,
the occurrence of an assignment statement itself does not
necessarily indicate the presence of a mathematical formula,
but the likelihood increases significantly if the statement
contains one of the “slicing variables.”

Heiner Stuckenschmidt
70

Step 4. Discovering Inclusion Dependencies.

After extraction of the relational schema in step 2, the goal of
step 4 is to identify constraints to help classify the extracted
relations, which represent both the real-world entities and the
relationships among them. This is done using inclusion
dependencies (INDs), which indicate the existence of inter-
relational constraints including class/subclass relationships.

Let A and B be two relations, and X and Y be attributes or
a set of attributes of A and B respectively. An inclusion
dependency A.X << B.Y denotes that a set of values appearing
in A.X is a subset of B.Y. Inclusion dependencies are
discovered by examining all possible subset relationships
between any two relations A and B in the legacy source.

Without additional input from the domain expert,
inclusion dependencies can be identified in an exhaustive
manner as follows: for each pair of relations A and B in the
legacy source schema, compare the values for each non-key
attribute combination X in B with the values of each candidate
key attribute combination Y in A (note that X and Y may be
single attributes). An inclusion dependency B.X<<A.Y may be
present if:
1. X and Y have same number of attributes.
2. X and Y must have pair wise domain compatibility.
3. B.X Ì A.Y

In order to check the subset criteria (3), we have designed
the following generalized SQL query templates, which are
instantiated for each pair of relations and attribute
combinations and run against the legacy source:
C1 = C2 =
SELECT count (*) SELECT count (*)
FROM R1 FROM R2
WHERE U NOT IN WHERE V NOT IN

(SELECT V (SELECT U
 FROM R2); FROM R1);

If C1 is zero, we can deduce that there may exist an
inclusion dependency R1.U << R2.V; likewise, if C2 is zero
there may exist an inclusion dependency R2.V << R1.U. Note
that it is possible for both C1 and C2 to be zero. In that case,
we can conclude that the two sets of attributes U and V are
equal.

The worst-case complexity of this exhaustive search,
given N tables and M attributes per table (NM total attributes),
is O(N2M2). However, we reduce the search space in those
cases where we can identify equi-join queries in the application
code (during semantic analysis). Each equi-join query allows us
to deduce the existence of one or more inclusion dependencies
in the underlying schema. In addition, using the results of the
corresponding count queries we can also determine the
“direction” of the dependencies. This allows us to limit our
exhaustive searching to only those relations not mentioned in
the extracted queries.

Result: Inclusion dependencies are as follows:
1 MSP_Assignment[Task_uid,Proj_ID] << MSP_Tasks [Task_uid,Proj_ID]
2 MSP_Assignment[Res_uid,Proj_ID] << MSP_Resources[Res_uid,Proj_ID]
3 MSP_Availability [Res_uid,Proj_ID] << MSP_Resources [Res_uid,Proj_ID]
4 MSP_Resources [Proj_ID] << MSP_Project [Proj_ID]
5 MSP_Tasks [Proj_ID] << MSP_Project [Proj_ID]
6 MSP_Assignment [Proj_ID] << MSP_Project [Proj_ID]
7 MSP_Availability [Proj_ID] << MSP_Project [Proj_ID]

The last two inclusion dependencies are removed since
they are implicitly contained in the inclusion dependencies
listed in lines 2, 3 and 4 using the transitivity relationship.

Step 5. Classification of the Relations.

When reverse-engineering a relational schema, it is important
to understand that due to the limited expressability of the
relational model, all real-world entities are represented as
relations irrespective of their types and role in the model. The
goal of this step is to identify the different “types” of relations,
some of which correspond to actual real-world entities while
others represent relationships among them.

In this step all the relations in the database are classified
into one of four types – strong, regular, weak or specific.
Identifying different relations is done using the primary key
information obtained in step 2 and the inclusion dependencies
from step 4. Intuitively, a strong entity-relation represents a
real-world entity whose members can be identified exclusively
through its own properties. A weak entity-relation represents an
entity that has no properties of its own that can be used to
identify its members. In the relation model, the primary keys of
weak entity-relations usually contain primary key attributes
from other (strong) entity-relations. Both regular and specific
relations are relations that represent relationships between two
entities in the real world (rather then the entities themselves).
However, there are instances when not all of the entities
participating in an (n-ary) relationship are present in the
database schema (e.g., one or more of the relations were
deleted as part of the normal database schema evolution
process). While reverse engineering the database, we identify
such relationships as special relations.

Result:
Strong Entities: MSP_Projects
Weak Entities: MSP_Resources, MSP_Tasks,

MSP_Availability
Regular Relationship: MSP-Assignment

Step 6. Classification of the Attributes.

We classify attributes as (a) PK or FK (from DRE-1 or DRE-
2), (b) Dangling or General, or (c) Non-Key (rest).

Result: Table 3 illustrates attributes obtained from the example
legacy source.

Table 3. Example of attribute classification from MS-Project legacy
source.

 PKA DKA GKA FKA NKA
MS-Project Proj_ID
MS-
Resources

Proj_ID Res_uid

MS-Tasks Proj_ID Task_uid
MS-
Availability

Proj_ID Avail_uid Res_uid+
Proj_ID

MS-
Assignment

Proj_ID Assn_uid Res_uid+
Proj_ID,
Task_uid
+
Proj_ID

All
Remaining
Attributes

Step 7. Identify Entity Types.

Strong (weak) entity relations obtained from step 5 are directly
converted into strong (resp. weak) entities.

Heiner Stuckenschmidt
71

Result: The following entities were classified:
Strong entities:
 MSP_Project with Proj_ID as its key.
Weak entities:
 MSP_Tasks with Task_uid as key and

MSP_Project as its owner.
 MSP_Resources with Res_uid as key and

MSP_Project as its owner.
 MSP_Availability with Avail_uid as key and

MSP_Resources as owner.

Step 8. Identify Relationship Types.
The inclusion dependencies discovered in step 4 form the basis
for determining the relationship types among the entities
identified above. This is a two-step process:
1. Identify relationships present as relations in the relational

database. The relation types (regular and specific) obtained
from the classification of relations (Step 5) are converted
into relationships. The participating entity types are derived
from the inclusion dependencies. For completeness of the
extracted schema, we may decide to create a new entity
when conceptualizing a specific relation.
The cardinality between the entities is M:N.

2. Identify relationships among the entity types (strong and
weak) that were not present as relations in the relational
database, via the following classification.
¶ IS-A relationships can be identified using the PKAs of

strong entity relations and the inclusion dependencies
among PKAs. The cardinality of the IS-A relationship
between the corresponding strong entities is 1:1.
¶ Dependent relationship: For each weak entity type, the

owner is determined by examining the inclusion
dependencies involving the corresponding weak entity-
relation. The cardinality of the dependent relationship
between the owner and the weak entity is 1:N.
Aggregate relationships: If the foreign key in any of the
regular and specific relations refers to the PKA of one
of the strong entity relations, an aggregate relationship
is identified. The cardinality is either 1:1 or 1:N.
¶ Other binary relationships: Other binary relationships

are identified from the FKAs not used in identifying the
above relationships. If the foreign key contains unique
values, the cardinality is 1:1, else the cardinality is 1:N.

Result:
We discovered 1:N binary relationships between the following
weak entity types:

Between MSP_Project and MSP_Tasks
Between MSP_Project and MSP_Resources
Between MSP_Resources and MSP_Availabilty

Since two inclusion dependencies involving
MSP_Assignment exist (i.e., between Task and
Assignment and between Resource and Assignment),
there is no need to define a new entity. Thus,
MSP_Assignment becomes an M:N relationship between
MSP_Tasks and MSP_Resources.

At the end of Step 8, DRE has extracted the following
schema information from the legacy database:

¶ Names and classification of all entities and attributes.
¶ Primary and foreign keys.
¶ Data types.
¶ Simple constraints (e.g., unique) and explicit assertions.
¶ Relationships and their cardinalities.
¶ Business rules

A conceptual overview of the extracted schema is
represented by the entity-relationship diagram shown in Figure
5 (business rules not shown), which is an accurate
representation of the information in encoded in the original MS
Project schema.

Proj_ID Res_UID

MSP_PROJECTS MSP_RESOURCESUse
1 N

MSP_TASKS MSP_AVAILABILITY

Has Have

1

N

MSP_
ASSIGN

M

N

Task_UID Avail_UID

Figure 5: E/R diagram representing the extracted schema.

4 STATUS AND FUTURE WORK
We have manually tested our approach for a number of
scenarios and domains (including construction, manufacturing
and health care) to validate our knowledge extraction algorithm
and to estimate how much user input is required. In addition,
we have also conducted experiments using nine different
database applications that were created by students during
course projects. The experimental results so far are
encouraging: the DRE algorithm was able to reverse engineer
all of the sample legacy sources encountered so far. When
coupled with semantic analysis, human input is reduced
compared to existing methods. Instead the user is presented
with clues and guidelines that lead to the augmentation of the
schema with additional semantic knowledge.

The SEEK prototype is being extended using sample data
from a large building construction project on the University of
Florida campus in cooperation with the manager, Centex
Rooney Inc., and several subcontractors or suppliers. This data
testbed will support much more rigorous testing of the SEEK
toolkit. Other plans for the SEEK toolkit are:
¶ Develop a formal representation for the extracted

knowledge.
¶ Develop a matching tool capable of producing mappings

between two semantically related yet structurally different
schemas. Currently, schema matching is performed
manually, which is a tedious, error-prone, and expensive
process.

¶ Integrate SEEK with a wrapper development toolkit to
determine if the extracted knowledge is sufficiently rich
semantically to support compilation of legacy source
wrappers for our construction testbed.

Heiner Stuckenschmidt
72

ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under grant numbers CMS-0075407 and
CMS-0122193. The authors also thank Dr. Raymond Issa for
his valuable comments and feedback on a draft of this paper.

REFERENCES
[1] R. H. Chiang, “A knowledge-based system for performing

reverse engineering of relational database,” Decision
Support Systems, 13, pp. 295-312, 1995.

[2] R. H. L. Chiang, T. M. Barron, and V. C. Storey, “Reverse
engineering of relational databases: Extraction of an EER
model from a relational database,” Data and Knowledge
Engineering, 12:1, pp. 107-142., 1994.

[3] J. Hammer, M. Schmalz, W. O'Brien, S. Shekar, and N.
Haldavnekar, “Knowledge Extraction in the SEEK
Project,” University of Florida, Gainesville, FL 32611-
6120, Technical Report TR-0214, June 2002.

[4] S. Horwitz and T. Reps, “The use of program dependence
graphs in software engineering,” in Proceedings of the
Fourteenth International Conference on Software
Engineering, Melbourne, Australia, 1992.

[5] Microsoft Corp., “Microsoft Project 2000 Database Design
Diagram”,
http://www.microsoft.com/office/project/prk/2
000/Download/VisioHTM/P9_dbd_frame.htm.

[6] W. O'Brien, R. R. Issa, J. Hammer, M. S. Schmalz, J.
Geunes, and S. X. Bai, “SEEK: Accomplishing Enterprise
Information Integration Across Heterogeneous Sources,”
ITCON - Journal of Information Technology in
Construction, 2002.

[7] S. Paul and A. Prakash, “A Framework for Source Code
Search Using Program Patterns,” Software Engineering,
20:6, pp. 463-475, 1994.

[8] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and J.
Kouloumdjian, “Towards the Reverse Engineering of
Denormalized Relational Databases,” in Proceedings of the
Twelfth International Conference on Data Engineering
(ICDE), New Orleans, LA, pp. 218-227, 1996.

Heiner Stuckenschmidt
73

Finding and Integration of Information
- A Practical Solution for the Semantic Web -

Ubbo Visser and Gerhard Schuster1

Abstract. If we believe the numerous publications concerning in-
telligent approaches for better information retrieval from the WWW
the Semantic Web is already alive. However, the nature of most of the
approaches is more theoretical. One major outcome of the research
being undertaken over the last few years in the area of artificial in-
telligence for the Semantic Web is the benefit of using ontologies
for content-based information retrieval. This led to a number of sys-
tems that provide user interfaces and intelligent reasoning services
to access and integrate information sources (e.g. Ontobroker, SHOE,
OntoSeek, BUSTER). This paper deals with a practical solution for
finding and integrating information from the Web. Since some of the
ideas of our BUSTER system are already known we focus on two
issues: we introduce the Comprehensive Source Description (CSD),
a necessary description for information sources that allows extra ser-
vices such as integration or translation and a new feature that allows
a combined search for concepts at a certain location, introducing the
concept@location query. We discuss implementation issues and pro-
vide an example for better understanding.

1 INTRODUCTION

The Internet as de facto biggest information source electronically
available consists of a vast amount of data, which are mainly
loosely structured. Mostly, these data belong to proprietary systems,
which are not build for interoperability in the first place. With the
comprehensive networking it is nowadays possible to link the items
in the network together. Thus, there is a need for tools that are able
to find, access, and integrate the information sources. The main
obstacles are schematic and semantic heterogeneity problems, which
are thoroughly discussed in various papers [6, 14, 25]. Over the last
decade several approaches with regard to intelligent information
integration have been proposed (e.g. IM, SIMS, OBSERVER,
COIN; see [25] for an overview). The majority of these systems
provide representation mechanisms for ontology-based content
explication. The systems mainly use some kind of description logics
(e.g. OIL). The main reason behind this is the option to explicitly
describe concepts of an application domain using a language that
provides formal semantics. Lately, this general approach of using
ontology-based systems for information integration has been widely
accepted [8].

Ontologies became a popular research topic in the 90ies and are
still the focus of researchers in the artificial intelligence area. There
is still a need for more fundamental research in various areas: the role
of ontologies, acquisition of ontologies, semantic mapping and trans-

1 Center for Computing Technologies, Universität Bremen, Universitätsallee
21-23, D-28359 Bremen, Germany, email:{visser|schuster}@tzi.de

lation to name only a few topics. This may only be one reason why
ontology-based systems are mainly theoretical approaches with some
prototypical front-ends. A new article in a trendy computer magazine
[27] states that there are numerous publications with respect to the
Semantic Web but there are only a few applications available. There
is a need for practical solutions. The BUSTER system is a contribu-
tion for this demand as it provides means for ontology-based search
and integration.

In this paper we discuss the BUSTER approach focussing on
the description of information sources and describe our prototyp-
ical implementation. We introduce a new feature of the system,
namely the option to search for concepts using a terminological
reasoning service and to search for locations using a spatial rea-
soning service. A combination of both leads to a new query type
concept@location, e.g. ”Are there land cover sources available that
cover Lower-Saxony?” or searching for ”suppliers for product X in
region Y”.

2 APPROACH

The Bremen University Semantic Translator for Enhanced Retrieval
(BUSTER), a middleware based also on ontologies, has been devel-
oped at the Center for Computing Technologies. BUSTER is based
on the hybrid ontology approach, i.e. it can access more than one
ontology and integrate them. The only restriction is that there is a
common vocabulary the ontologies are based on. Schuster and Stuck-
enschmidt [21] describe a method that leads to a common vocabulary
using known but domain dependent thesauri.

The concept view of the system is shown in figure 1. It shows the
query phase on the right hand side and the acquisition phase on the
left hand side. Since the description of information sources with meta
data is crucial we focus on theComprehensive Source Descriptions
(CSD), located at the site of the data source or service, and formal-
ized in XML/RDF format. A thorough description about concept of
BUSTER can be found in [22].

Comprehensive Source Description

In order to describe existing data metadata have to be used. Hence,
we have to find an eligible language for the description. Over the last
decade numerous meta data formats have emerged (e.g. Dublin Core,
ISO/TC211). A good overview about existing meta information sys-
tems can be found in [23]. Since we are not dependent on any specific
domain, in fact we would like to use a general way to describe the
data, we use the Dublin Core Element Set, version 1.1 as a de facto
basis for our CSD. The definitions utilize a formal standard for the
description of metadata elements. The authors claim that the formal-
ization helps to improve consistency with other metadata communi-

Heiner Stuckenschmidt
74

Figure 1. BUSTER: concept view

ties and enhances the clarity, scope, and internal consistency of the
Dublin Core metadata element definitions.

However, some of the given elements are not sophisticated enough
in their expressivity (e.g. the relation element) or lack formal seman-
tics (e.g. description element). Thus, there is a need for additional
qualifiers for those elements, which are described in a language that
provides formal semantics (e.g. DAML, OIL, SHIQ). We can use this
kind of description logics to encode additional features. We use the
RDF(S) syntax if possible to ensure a wide acceptance with respect to
accessibility and usability. We then refer to explicit ontologies avail-
able on the WWW. The following Dublin Core elements are refined
for our CSD:

• Coverage: Since there is no further distinction between spatial and
temporal coverage, this element has to be refined.

– Spatial: The recommended best practice from DCMI is to select
a value from a controlled vocabulary and that, where appro-
priate, named places or time periods be used in preference to
numeric identifiers such as sets of coordinates or date ranges.
Examples areDCMI Point to describe a point in space using
its geographic coordinates,ISO 3166 a code for the represen-
tation of names of countries,DCMI Box that identifies a re-
gion of space using its geographic limits. The last recommenda-
tion is TGN, the GETTY Thesaurus of Geographic Names (see
http://shiva.pub.getty.edu/tgnbrowser/). We decided on the lat-
ter because the use of place names is more intuitive and there-
fore more valuable with respect to users on the WWW.

– Temporal: The recommend best practice here is to use one of
the two following encoding schemes:DCMI Period, a specifi-
cation of the limits of a time interval, andW3C-DTF, the W3C
encoding rules for dates and times - a profile based on ISO 8601
(see also: http://www.w3.org/TR/NOTE-datetime). We use the
latter since the main reason to have this CSD is to describe in-
formation sources on the WWW.

• Description: Description may include but is not limited to: an ab-

stract, table of contents, reference to a graphical representation of
content or a free-text account of the content. The semantics of this
kind of representation are limited with regards to machine read-
able meaning of the content. Hence, we restrict the description
to a formal description logic, namely DAML+OIL or SHIQ. The
vocabulary used to describe this A-Boxes has to be one of the vo-
cabularies used in the ”relation” element.

• Relation: The qualifiers that refine the relation element as recom-
mended by DCMI is limited. Therefore, we need to extend these
qualifiers by references that also point to ontologies, gazetteers
or thesauri. A relation is described as a XML namespace describ-
ing the URI of the corresponding vocabulary and a prefix to mark
terms from this vocabulary.

• Subject: The qualifiers recommended by DCMI for the subject el-
ement contain common lists of keyword from various sources (e.g.
the Library of Congress Subject Headings, Medical Subject Head-
ings, Universal Decimal Classification). In BUSTER, we use the
subject element accordingly, it remains a list of significant key-
words to describe the information source but the keywords have
to be chosen from a controlled vocabulary referred by the relation
element.

• Rights: Despite the intellectual property rights we also have to
consider access rights for special user groups. In the moment,
there is no further specification.

Figure 2 shows an extract from a typical CSD, a CSD for a data
set concerning land use in Lower-Saxony, Germany in this particular
case. We only show the relevant parts according to the refined ele-
ments mentioned above. The subject contains links to a ”topic-area”
described in the general CSD ontology and some concepts concern-
ing the content of the topic-area described in the GEMET ontology.
The ”description” element consists of two additional properties of
that information source (a) the fact the data set consist of a Bessel-
ellipsoid from 1841, which is described in a geodesic ontology, and
(b) the meaning of the attributes of the underlying relational table.
One might think that this is additional modeling effort for no good

Heiner Stuckenschmidt
75

Figure 2. Extract of a typical Comprehensive Source Description (CSD)

reason but we are now able to enable additional services such as auto-
matic translation processes between catalogue systems as described
in [17].

Based on the metadata provided by the CSDs and appropriate
qualitative terminological (conceptual ontologies) and spatial mod-
els (spatial ontologies), BUSTER supports integrated queries of the
type concept@location. These type of queries are described in the
next section.

3 IMPLEMENTATION

The prototype of the BUSTER is based on an open server-client
architecture, and can be divided into two main parts: the so-called
BUSTER-cluster on the server side and a BUSTER client.

3.1 Architecture

BUSTER clients can be started as local applications or as java applets
in a standard browser supporting Java Swing. The BUSTER client
provides an ontology-driven user interface to specify queries and to
present the results of the retrieval. Additional services such as au-
tomatic translation process will be made available dependent on the
result and if applicable. The communication between the clients and
the cluster is implemented via Remote Method Invocation (RMI).

The BUSTER cluster comprises several modules relevant for intel-
ligent querying and semantic translation purposes: a BUSTER server,
a database for CSDs and available domains, a web server, and spatial
and logical reasoning modules (see figure 3). Examples for the latter
available on the WWW are the FaCT system provided by the Uni-
versity of Manchester [13] and the RACER system provided by the
University of Hamburg [10]. These modules are within the BUSTER
cluster to fit the minimum requirements for terminology and spatial
queries, but its open architecture allows to use arbitrary services for
reasoning, translation or other tasks if needed.

An Apache web server provides the platform for the applets. The
server handles client queries depending on the users selection. It con-
trols the process of the query(concept@location) by retrieving do-
main specific information from a SQL-database via JDBC interface,
downloading distributed CSDs and knowledge bases, and triggering
reasoning services within or outside the BUSTER cluster.

3.2 Queries

Once an information source has been annotated with all the informa-
tion needed, complex queries can be made to the BUSTER system.
BUSTER is based on terminological ontologies that have been mod-
elled in advance. The system allows two different types of queries,
a terminological and a spatial query. We introduced the querycon-
cept@location however, it is possible to submit a terminological
query alone without spending time on the spatial part. Also it is pos-
sible to submit a spatial query on its own.

3.2.1 Terminological Queries

The terminological query can be divided into two parts, namely a
simple concept query and a defined concept query.

Simple Concept Query The user chooses one terminology (ontol-
ogy) depending on current domain, e.g. ”installation supplies”. These
terminologies are registered at the BUSTER server. The user can then
select on one of the concepts of the taxonomy that fits his query best
(e.g. ”installation pipe”). The BUSTER server receives the query and
integrates the known terminologies for the current domain by loading
them into the connected reasoner. This is possible, because every ter-
minology is annotated with a common vocabulary (hybrid approach,
see section 2). After re-classification, all sub-concepts (children) of
the query concepts form the result.

Defined Concept Query According to the domain, the user
chooses a query-template provided by the BUSTER server. This
template contains attributes (slots) and values (filler) from the com-
mon vocabulary. The user-interface is ontology-driven, which simply
means that the available attributes and fillers are automatically loaded
and presented dynamically. This way the user can’t make a mistake,
e.g. using unknown terms. The user defines his query by selecting

Figure 3. BUSTER: system architecture

Heiner Stuckenschmidt
76

Figure 4. Example for a defined concept and spatial query

reasonable values for the given attributes. ’Yes’ specifies the occur-
rence of the related filler, ’no’ prohibits the occurrence and ’n/a’ is
chosen, if the value does not matter. Figure 4 shows an example of
a defined concept query. The user is interested in information about
the land cover of Lower-Saxony, a state of Germany. He chooses an
appropriate query-template ”DataObject”, which provides attributes
and values for the definition of information sources like databases.
He selects the value ”landcover” for the attribute ”topic”. He is not
interested in information sources that deal with tourism or statistics.
No statements are made about the other values. The filled query-
template is translated into a logical term. During the query process
all CSDs related to the current domain are parsed for the subject-tag.
Each subject references to a namespace, which points to an ontol-
ogy that contains a concept description of the subject term. These
ontologies are then downloaded from ontology servers available on
the WWW, are merged with the defined concept query and trans-
ferred into available inference machines. After re-classification, all
sub-concepts (children) of the query concepts form the result.

In case of a simple concept query, the user has to choose a specific
terminology. This makes the query simpler to understand for a user,
but it assumes that the user knows at least one terminology or concept
from the hierarchy. Simple concept queries are fast, but not always
expressive enough. To overcome these problems one could use the
defined concept query. On the base of the given common vocabulary
the user is able to define a concept that fits his vision of a concrete
concept. A defined query is more complex to build, but it is much
more unrestricted.

3.2.2 Spatial Queries

A user-friendly and, from a cognitive perspective, sound method
to specify spatial queries as well as to index data sources and ser-
vices is the use of placenames. Placenames are typically organized
in gazetteers [12, 18]. Schlieder et al. [19, 20] propose an extension
to gazetteers in the form of placename structures based on qualitative
spatial models. A placename structure can be seen as a hierarchical
tree, where the nodes of the tree represent well known name descrip-
tors for geographic features, and the edges reflect their binary part-of
relations. These models, or spatial ontologies, use graph represen-
tations of hierarchically organized polygonal tessellations as a basis
to reason about the spatial relevance of one placename with respect
to another. In a qualitative spatial model tree leaves corresponding to
nodes of the used connection graph represent the tessellation (see fig-

ure 5). Spatial relevance, a combined evaluation of partonomic and
neighborhood relations between placenames, is computed by calcu-
lating the horizontal and vertical (or hierarchical) graph-theoretical
distances.

In BUSTER the user is able to select a specific spatial ontology
to initialize a spatial query. In our example the spatial model of
Germany is selected. By selecting a placename (e.g. ”Niedersach-
sen”), the user defines the target area of the spatial query. Using
the selected spatial ontology, the spatial reasoner integrated in the
BUSTER server evaluates the query and computes a list of place-
names that are spatially relevant to the target placename. The user is
able to parameterize the query by adjusting weight sliders for hori-
zontal and vertical relevance. The example query is configured to find
only information sources that are vertical relevant, like sources anno-
tated with ”Niedersachsen” or ”Hannover” (district of lower-saxony).

3.2.3 Combined Spatio-Terminological Queries

BUSTER combines both lists, the list of relevant concepts, and the
list of spatially relevant placenames, into one database query. This
database query is applied to the BUSTER CSD database. The result
is a weighted list of data sources and services matching both the ter-
minological and the spatial query. Figure 6 shows the result of our
combined query example. The data source found is an excel sheet
with data classified by the Corine land cover nomenclature [4]. Rel-
evant information as well as applicable services from the retrieved
CSD are presented. As for the additional service, the user can choose
the context translation from Corine to ATKIS [1].

4 Related work

Ontobroker [5] is a well known approach that relies on a single on-
tology for a group of web users. Therefore, both the data providers
and the users have complete access and knowledge to all the concepts
described in the ontology. Ontobroker is tailored to homogenous In-
tranet applications, e.g. for knowledge management within compa-
nies. Ontobroker relies on F-Logic and offers therefore advanced in-
ference possibilities. KAON, the KArlsruhe ONtology and Semantic
Web infrastructure [3] provides a general three-tier conceptual archi-
tecture, which consists of a client layer, a management layer, and a
storage layer. The idea of this infrastructure based on RDF and on-
tologies is to provide services for advanced Semantic Web applica-
tions. KAON is a growing family of tools for engineering, discovery,
management, and visualisation of ontologies.

OntoSeek [9] is designed for content-based information retrieval
from online yellow pages and product catalogues. The retrieval tech-
niques are based on lexical conceptual graphs and large linguistic
ontologies (Sensus, WordNet). The basic architecture is similar how-
ever, BUSTER uses JAVA applets running in an arbitrary browser on

Figure 5. Example for placename structure. The nodes on thee base line
represent the tessellation whereas the nodes above represent the placenames

Heiner Stuckenschmidt

Heiner Stuckenschmidt
77

Figure 6. Result for a defined and spatial query

an arbitrary OS. The main difference lies in the expressiveness ca-
pabilities of the ontology representation language. In BUSTER we
use a more expressive description logic to describe concepts. An-
other major difference is the possibility to use further services such
as a translation service between catalogue systems (if applicable) or
a combined search for concepts at locations.

The SHOE Search Tool [11] allows a user to access a SHOE
knowledge base by submitting structured queries. This query cor-
responds to the defined query in our system. The result is presented
in a separate window and the user can doubleclick the found URIs
to open the corresponding documents. The main differences with re-
spect to BUSTER are the use of ontologies, the query service and
other features such as translation services. In Buster, we can use sev-
eral ontologies for one query, we are able to combine terminological
and spatial search, and we can adopt additional mediators for further
services shown in the result window.

The Information Manifold (IM) system [15] implements a client
with a knowledge base for organizing and querying Internet informa-
tion sources. The knowledge base contains a rich domain model that
enables the description of properties of the information sources. The
language used is based on a combination of Horn rules and concepts
from the CLASSIC description logic [2]. In contrast to BUSTER IM
is based on a single ontology approach using one global ontology.
This approach can be applied to integration problems where all in-
formation sources to be integrated provide nearly the same view on a
domain. If one information source has a different view on a domain,
e.g. by providing another level of granularity, finding the minimal
ontology commitment becomes a difficult task [7]. Another differ-
ence is the restriction of the IM system to only use database sources
whereas BUSTER is also able to process other information sources
such as XML-based sources.

A major difference between BUSTER and all other mentioned sys-
tems is the ability of BUSTER to combine both terminological rea-
soning and spatial reasoning.

5 CONCLUSION

We proposed a practical solution for finding information sources that
have been annotated with metadata and offering additional services
for processing the underlying data. We introduced the Comprehen-
sive Source Description (CSD), a necessary description for informa-
tion sources that allows extra services such as integration or transla-
tion. We also proposed a new feature that allows a combined search
for concepts at a certain location, introducing theconcept@location

query.
We have seen thatinteroperability between terminologies is possi-

ble if we use the hybrid approach [25]. With our proposed practical
solution we claim thatsystem interoperability is now also feasible.
The CSDs are flexible enough to annotate information sources pro-
viding additional knowledge to offer extra services. One important
extra service could be a translation between different catalogue sys-
tems, which we already implemented and introduced elsewhere [17].
A definite drawback is the fact that there is an additional modeling
effort. We think that there is a need for automatic annotation facili-
ties. Promising new approaches are Text-To-Onto [16] or the MESA
tool [24] for the construction of ontologies. The open architecture
of our approach allows the use of additional mediators such as the
Feature Manipulation Engine or MECOTA [26].

We think that theconcept@location query with the included op-
tions to regulate both the spatial and the thematic distances are valu-
able for the Semantic Web. More than 80% of all the data available
have an spatial context as we know and we think that our approach
is a promising step in the right direction.

REFERENCES

[1] AdV, Amtliches Topographisch-Kartographisches Informationssystem
ATKIS, Landesvermessungsamt NRW, Bonn, 1998.

[2] Ronald Brachman, Deborah McGuiness, Peter Patel-Schneider, Lori
Resnik, and Alexander Borgida, ‘Living with classic: When and how to
use a kl-one-like language’, inPrinciples of Semantic Networks: Expo-
rations in the Representation of Knowledge, ed., John Sowa, 401–456,
Morgan Kaufman, San Mateo, CA, (1991).

[3] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer, ‘On-
tobroker: Ontology based access to distributed and semi-structured in-
formation.’, in Proceedings of Database Semantics 8, ed., R. Meers-
man, Semantic Issues in Multimedia Systems., pp. 351–369. Kluwer
Academic Publisher, Boston, (1999).

[4] EEA, ‘Corine land cover’, technical guide, European Environmental
Agency, ETC/LC, European Topic Centre on Land Cover, (1997-1999
1997-1999).

[5] Dieter Fensel, Stefan Decker, M. Erdmann, and Rudi Studer, ‘Onto-
broker: The very high idea’, in11. International Flairs Conference
(FLAIRS-98), Sanibal Island, USA, (1998). AAAI Press.

[6] Cheng Hian Goh,Representing and Reasoning about Semantic Con-
flicts in Heterogeneous Information Sources, Phd-thesis, MIT, 1997.

[7] Thomas R. Gruber, ‘Toward principles for the design of ontologies used
for knowledge sharing?’,International Journal of Human Computer
Studies, 43(5/6), 907–928, (1995).

[8] Michael Gr̈uninger and Mike Uschold, ‘Ontologies and semantic in-
tegration’, inSoftware Agents for the Warfighter, Institute for Human
and Machine Cognition (IHMC), University of West Florida, (2002).
in preparation.

[9] Nicola Guarino, Claudio Masolo, and Guido Vetere, ‘Ontoseek:
Content-based acess to the web’,IEEE Intelligent Systems, 14(3), 70–
80, (1999).

[10] Volker Haarslev and Ralf M̈oller, ‘High performance reasoning with
very large knowledge bases’, inInternational Joint Conferences on Ar-
tificial Intelligence (IJCAI), ed., Bernhard Nebel, volume 1, pp. 161–
166, Seattle, WA, (2001). Morgan Kaufman.

[11] Jeff Heflin and James Hendler, ‘A portrait of the semantic web in ac-
tion’, IEEE Intelligent Systems, 16(2), 54–59, (2001).

[12] Linda L. Hill, ‘Core elements of digital gazetteers: placenames, cate-
gories, and footprints’, inECDL 2000, eds., J. Borbinha and T. Baker,
Research and Advanced Technology for Digital Libraries, pp. 280–290,
Lisbon, Portugal, (2000).

[13] I. Horrocks, ‘Fact and ifact’, in Proceedings of the Interna-
tional Workshop on Description Logics (DL’99), eds., P. Lambrix,
A. Borgida, M. Lenzerini, R. Mö ller, and P. Patel-Schneider, 133–
135, CEUR-Workshop Proceedings at http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS, (1999).

[14] Won Kim and Jungyun Seo, ‘Classifying schematic and data hetero-
geinity in multidatabase systems’,IEEE Computer, 24(12), 12–18,
(1991). problem classification of semantic heterogeneity.

Heiner Stuckenschmidt
78

[15] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava, ‘The Information Man-
ifold’, in Information Gathering from Heterogeneous, Distributed En-
vironments, eds., C. Knoblock and A. Levy, Stanford University, Stan-
ford, California, (1995).

[16] Alexander Maedche and Steffen Staab, ‘Ontology learning for the se-
mantic web’,IEEE Intelligent Systems, 16(2), 72–79, (2001).

[17] Holger Neumann, Gerhard Schuster, Heiner Stuckenschmidt, Ubbo
Visser, and Thomas V̈ogele, ‘Intelligent brokering of environmental
information with the buster system’, inInternational Symposium Infor-
matics for Environmental Protection, eds., Lorenz M. Hilty and Paul W.
Gilgen, volume 30 ofUmwelt-Informatik Aktuell, pp. 505–512, Z̈urich,
Switzerland, (2001). Metropolis.

[18] W.-F. Riekert, ‘Erschließung von fachinformationen im internet mit
hilfe von thesauri und gazetteers’, inManagement von Umweltinfor-
mationen in vernetzten Umgebungen, 2nd workshop HMI, eds., C. Dade
and B. Schulz, N̈urnberg, (1999).

[19] Christoph Schlieder, Thomas Vögele, and Ubbo Visser, ‘Qualitative
spatial representation for information retrieval by gazetteers’, inCon-
ference of Spatial Information Theory COSIT, volume 2205 ofSpatial
Information Theory: Foundations of Geographic Information Science,
pp. 336–351, Morrow Bay, CA, (2001). Springer.

[20] Christoph Schlieder and Thomas Vögele, ‘Indexing and browsing digi-
tal maps with intelligent thumbnails’, inaccepted at Spatial Data Han-
dling 2002 (SDH’02), Ottawa, Canada, (2002). Springer. to appear.

[21] Gerhard Schuster and Heiner Stuckenschmidt, ‘Building shared termi-
nologies for ontology integration’, inKünstliche Intelligenz (KI), pp.
105–123, Wien, (2001).

[22] Heiner Stuckenschmidt, Holger Wache, Thomas Vögele, and Ubbo
Visser, ‘Enabling technologies for interoperability’, inWorkshop: In-
formation Sharing: Methods and Applications at the 14th International
Symposium of Computer Science for Environmental Protection, eds.,
Ubbo Visser and Hardy Pundt, volume 20, pp. 35–46, Bonn, (2000).
TZI.

[23] Ubbo Visser, Heiner Stuckenschmidt, Holger Wache, and Thomas
Vögele, ‘Using environmental information efficiently: Sharing data and
knowledge from heterogeneous sources’, inEnvironmental Informa-
tion Systems in Industry and Public Administration, eds., Claus Raut-
enstrauch and Susanne Patig, 41–73, IDEA Group, Hershey, USA &
London, UK, (2001).

[24] Holger Wache, Thorsten Scholz, Helge Stieghahn, and B. König-Ries,
‘An integration method for the specification of rule-oriented media-
tors’, in International Symposium on Database Applications in Non-
Traditional Environments (DANTE’99), eds., Yahiko Kambayashi and
Hiroki Takakura, pp. 109–112, Kyoto, Japan, (1999).

[25] Holger Wache, Thomas V̈ogele, Ubbo Visser, Heiner Stuckenschmidt,
Gerhard Schuster, Holger Neumann, and Sebastian Hübner, ‘Ontology-
based integration of information - a survey of existing approaches’, in
IJCAI-01 Workshop: Ontologies and Information Sharing, eds., Asun-
cion Gómez Ṕerez, Michael Gr̈uninger, Heiner Stuckenschmidt, and
Mike Uschold, pp. 108–117, Seattle, WA, (2001).

[26] Holger Wache, ‘Towards rule-based context transformation in media-
tors’, in International Workshop on Engineering Federated Informa-
tion Systems (EFIS 99), eds., S. Conrad, W. Hasselbring, and G. Saake,
Kühlungsborn, Germany, (1999). Infix-Verlag.

[27] Cai Ziegler, ‘Deux ex machina’,c’t - magazin für computer technik,
2002(6), 132–137, (2002).

Heiner Stuckenschmidt
79

Towards a Modularized Semantic Web

Raphael Volz, Daniel Oberle
Institute AIFB,

University of Karlsruhe,
76128 Karlsruhe, Germany

Alexander Maedche
FZI Forschungszentrum Informatik

University of Karlsruhe,
76131 Karlsruhe, Germany

ABSTRACT
Modularization is an established principle in software engineering.
It has also been considered as a core principle when developing the
World Wide Web. Along the same lines, the Semantic Web has to
be based on modularization principles. This paper provides a first
step into a modularized Semantic Web. It provides an elaborated
and carefully evaluated view on existing technologies for naming,
referring and modularization in the Web. Based on this analysis
we propose means to import and include (parts) of RDF models by
extending the RDF(S) meta-model, introducing new primitives for
modularity.

1. INTRODUCTION
One general principle of powerful software systems is that they

are built of many elements. Thus, when designing a system, the
features of a system should be broken into relatively loosely bound
groups of relatively closely bound features. Power comes from the
interplay between the different elements. This interplay results in
essential interdependencies and increases the ability to reuse and
modify. Hence, future changes and consecutive testing can be lim-
ited to the relevant module. This will allow other people to inde-
pendently change other parts at the same time. Modular design
hinges on the simplicity and abstract nature of the interface defi-
nition between the modules. Notably, modularity was one of the
core design goals for the World Wide Web.1. Along the same lines,
the Semantic Web will not consist of neat ontologies that expert AI
researchers have carefully constructed. Instead of a few large, com-
plex, consistent ontologies that great numbers of users share, one
will see a great number of small ontological elements consisting
largely of pointers to each other [1].

We agree with this view and carefully evaluate existing technolo-
gies for naming, referring and modularization in the Web. We show
that these technologies do not suffice for the task of building a truly
modular Semantic Web. Based on our analysis we propose means
to support this vision by extending the RDF meta-model, introduc-
ing new primitives for modularity. Namely, means for import and
inclusion of (parts) of other RDF models. Additionally, we present
�
see http://www.w3.org/DesignIssues/Principles.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission by the authors.
Semantic Web Workshop 2002 Hawaii, UAS
Copyright by the authors.

an architectural setting for tools implementing this kind of modu-
larization and finally give a set of engineering guidelines for build-
ing modularized Semantic Web applications on the basis of these
novel means.

The structure follows the outlined procedure, thus section 2 pro-
vides an elaborated overview and evaluation of technologies rel-
evant for modularization. Section 3 presents requirements for a
modular Semantic Web and crafts an extension of the RDF meta-
model to reflect these requirements. Section 4 provides reference
applications using modularized ontologies and the aforementioned
engineering guidelines for modularized Semantic Web applications
from an ontology building perspective. Before we conclude and re-
capitulate our contribution in section 6, we give a short survey on
related work in section 5.

2. TECHNOLOGIES
This section provides an elaborated overview and evaluation of

technologies providing modularization technology for the Web in
general. Our overview is roughly separated into referring technolo-
gies and modularization technologies defined for XML.

2.1 Referring technologies
Links between Web resources are commonly called arches. Us-

ing or following a link for any purpose is called traversal. The
traversal’s origin is called the starting resource and the destination
is the ending resource.

HTML Arches. present the simplest and oldest mechanism for
referring in the Web. They provide simple outbound links between
different resources which can be named for display purposes. Links
to points inside other HTML documents are implemented using
URI fragments.

XLink. [3] presents the referring technology adopted for XML
and extends HTML’s possibilities tremendously. Xlink allows to
specify binary relations as found in RDF (see figure 1).

Additionally, it allows to link sets of elements with another by
using arcs. Each set is qualified using a string label, all set ele-
ments use xlink:label with the same attribute value to specify set
membership. In figure 2 for example, a one-to-many link has been
generated, something neither possible in HTML nor in RDF. Inter-
esting is also that XLink permits both inbound and outbound links.
An inbound link is constituted by an arc from an external resource,
located with a locator-type element, into an internal resource and is
one possibility for modularity in XML.

Arc-type elements may have traversal attributes, one category
are behavioral attributes which allows a certain kind of modularity,
namely presentation time inclusion. If the attribute show=”embed”

<!-- A local resource -->
<actress xlink:label="maria">

<firstname>Brigitte</firstname<
<surname>Helm</surname<

</actress>
<!-- A remote resource -->

<movie xlink:label="metropolis"
xlink:href="metropolis.xml"/>

<!-- An arc that binds them -->
<acted xlink:type="arc" xlink:from="maria"

xlink:to="metropolis"/>

Figure 1: Binary links with XLink

<divas xlink:title="German divas 1920s">
<actress xlink:label="maria">

<firstname>Brigitte</firstname>
<surname>Helm</surname>

</actress>

<movie xlink:label="silent" xlink:title="Metropolis"
xlink:href="metropolis.xml"/>

<movie xlink:label="silent" xlink:title="Alaraune"
xlink:href="alaraune.xml"/>

<acted xlink:type="arc" xlink:from="maria"
xlink:to="silent"/>

...
<divas>

Figure 2: N-ary links for XLink

is stated for an Xlink arc, the referenced resource is embedded into
the current document at interpretation-time (this is kı́nd of a lazy-
load). The additional attribute actuate controls the event when the
arc should be traversed2.

This kind of lazy evaluation is problematic with regard to on-
tologies. As ontologies provide logical theories, “all knowledge”
of any inferencing or deduction task must be gathered a-priori to
ensure logical correctness. Additionally, the handling of an XLink
is left to the application3

2.2 Inclusion technologies
In this subsection we focus on the modularization technologies

recently proposed for XML. These technologies may be distin-
guished into:

1. External parsed (or text) entities, as defined by the XML 1.0
Recommendation [2]

2. XLinks (with embed behavior), as defined by the W3C XLink
Working Draft.

3. XInclusions [10], as defined by the W3C XInclusion Work-
ing Draft.

External entities. An external parsed entity is declared in an
XML (or SGML) document by an entity declaration without a nota-
tion. A reference to a parsed entity may occur practically anywhere
in a document, between elements or within them, using the syntax
&entity;. The entity itself may contain text, complete elements, or
a mixture of them. It may not contain any declarations. XML does
require that entity content be well-formed XML. In other words,
�
traversal can take place onload or onactivate�
“...embedding affects only the display of the relevant resources; it

does not dictate permanent transformation of the starting resource”
[3]. If for example the ending resource is XML, it is not parsed as
if it was part of the starting resource. Thus, embedded functionality
of XLink is aimed at display behavior and not at true inclusion.

one cannot have an element start tag in the document whose end
tag is in a referenced entity, or vice versa. This is necessary so
that a document may be checked to be well-formed even if the en-
tity references are not replaced. This technology is not suitable for
the Semantic Web, as the declaration of external entities requires
DTDs. Additionally, the DOCTYPE declaration requires that the
document element must be named, which is a unnecessary require-
ment.

XInclude [10]. is a processing model and syntax for general
purpose inclusion. Inclusion is accomplished by merging a number
of XML Infosets into a single composite Infoset. This implies that
such processing occurs b̈elowẗhe application level and without its
intervention. Thus, the XInclude processor is responsible for vali-
dating the result infoset. The merging of infosets possibly leads to
ID/IDREF conflict resolution and namespace preservation issues,
not addressed by the working draft. Furthermore, the possibility
to use XPOINTER range references exists, which makes maintain-
ability questionable again.

XML Schema. The need for inclusion was also recognized for
XML Schema. Due to the non-existence of general solutions at the
time of creation a proprietary solution was sought. XML Schema
[11] provides means to export certain elements of the schema for
public usage. Additionally, facilities for importing elements from
other schemas and a mechanism to completely include a referenced
schema exist. This inclusion is not made visible to agents consum-
ing the composite schema. This raises severe digital rights prob-
lems as the original provider is not recognizable anymore. The idea
of defining a set of exported elements, stemming from experience
with programming languages and distributed database schema def-
inition systems, does not make sense for the Semantic Web. This
export set suggests that there is value in distinguishing the inter-
nal implementation of a module from the features or interfaces that
it provides for reuse by others4, which is surely not the intent for
ontologies.

3. EXTENDING RDF
This section is separated into two main parts. First, we collect

different requirements for enabling a modularized Semantic Web.
Second, these different requirements serve as input for defining a
language extension to RDF that enables a modularized Semantic
Web that recognizes the means offered by existing technologies.

3.1 Requirements

3.1.1 Import mechanisms
RDF only supports binary named links between different resources.

While this is sufficient for schemaless metadata it only presents
the basic technologies for conceptual relations, viz. the means for
references between concepts in ontologies, but no means exist to
determine whether referenced entities are actually defined and con-
ceptually valid structures.

For example (see figure 3) the property hasFather in the peo-
ple ontology is supposed to be a sub property of hasParent, which
was defined in the animal ontology. Neither can one assure that
hasParent exists nor that it is a property6.
�
[11] : “For example, a schema defined to describe an automobile

might intend that its definitions for ’automobile’ and ’engine’ be
building blocks for use in other schemas, but that other constructs
such as ’screw’ or ’bolt’ be reserved for internal use.”.�
Thus, the people ontology cannot be validated to be correct RDF

Animal ontology (available at &animal; 5):

<rdf:RDF
xmlns="&animal;#"
xmlns:rdf="&rdf;#"
xmlns:s="&s;#">

<s:Class rdf:about="#Animal"/>
<s:Class rdf:about="#Male">

<s:subClassOf rdf:resource="#Animal"/>
</s:Class>
<s:Class rdf:about="#Female">

<s:subClassOf rdf:resource="#Animal"/>
</s:Class>
<s:Class rdf:about="#Human">

<s:subClassOf rdf:resource="#Animal"/>
</s:Class>
<s:Class rdf:about="#Lion">

<s:subClassOf rdf:resource="#Animal"/>
</s:Class>

<rdf:Property rdf:about="#hasParent">
<s:domain rdf:resource="#Animal"/>
<s:range rdf:resource="#Animal"/>

</rdf:Property>

<rdf:Description rdf:about="#Marjan">
<rdf:type rdf:resource="#Lion" />

</rdf:Description> </rdf:RDF>

People ontology

<rdf:RDF
xmlns="&people;#"
xmlns:rdf="&rdf;#"
xmlns:s="&s;#">

<s:Class rdf:about="#Man">
<s:subClassOf rdf:resource="&animal;#Human"/>
<s:subClassOf rdf:resource="&animal;#Male"/>

</daml:Class>

<s:Class rdf:about="#Woman">
<s:subClassOf rdf:resource="&animal;#Human"/>
<s:subClassOf rdf:resource="&animal;#Female"/>

</s:Class>

<rdf:Property rdf:about="#hasFather">
<s:subPropertyOf

rdf:resource="&animal;#hasParent"/>
<s:range

rdf:resource="&animal;#Male"/>
</rdf:Property> </rdf:RDF>

Figure 3: Two Example RDF ontologies

Thus, in order to enable conceptual references across RDF mod-
els in a Web-like manner, we need a means to import entities that
are defined somewhere else to take RDF out of ontological opaque-
ness. Clearly such an import primitive must locate the point of im-
port. The established URIs without fragments suffice for this task,
of course. We do not consider URNs here as they are not widely
used.

3.1.2 Inclusion mechanisms
Inclusion mechanisms are different from import mechanisms with

respect to the extension: Here, the complete RDF model is included
whereas only specific parts are included with respect to importing.

Inclusion allows the decomposition of ontologies into individual
parts and should therefore be a requirement for the Semantic Web,
as it minimizes the effort to construct new ontologies. First, the
overall effort required for the engineering of ontologies can be split
among many shoulders. Second, decomposition not only simplifies
construction and maintenance of ontologies, but also facilitates that

Schema using tools such as the validating RDF parser [12]

ontologies become logically cohesive. Therefore leading to loosely
coupled modules that denote single abstractions - a requirement for
reusability in other applications.

3.1.3 Digital rights
It is clear that when using modularization in the Semantic Web

one has to provide means for copyright management. This is needed
in order to know who provided which information and created which
artefact.

3.2 RDF Language Extension

3.2.1 rdfm:include
We propose to extend the basic RDF vocabulary by a new prop-

erty rdfm:include (cf. figure 4) for the inclusion of another RDF
model into the calling RDF model. This primitive can be under-
stood by RDF parsers and specialized processors (working after
parse time).

<rdf:RDF
xmlns="&rdfm;#"
xmlns:rdf="&rdf;#"
xmlns:s="&s;#">

<!-- Source tagging -->

<rdf:Property rdf:ID="source">
<s:comment>
Identifies the source URI of a statement
</s:comment>
<s:domain rdf:resource="#Statement" />

</rdf:Property>

<!-- Inclusion mechanism -->

<rdf:Property rdf:ID="include" />

<!-- Import mechanisms -->

<rdf:Property rdf:ID="importFrom" />

<rdf:Property rdf:ID="transitiveImportFrom">
<s:subPropertyOf rdf:resource="#importFrom"/>

</rdf:Property>

<rdf:Property rdf:ID="schemaAwareImportFrom">
<s:subPropertyOf rdf:resource="#transitiveImportFrom"/>

</rdf:Property>
</rdf:RDF>

Figure 4: Modular RDF: the extended RDF vocabulary
7

This property could be used in any RDF model to include the
statements declared in another RDF model. Thus, the following
statement would include the content of the animal ontology (cf.
figure 3) in another RDF model:

<rdf:Description rdf:about="">
<rdfm:include rdf:resource="&animal;"/>

</rdf:Description>

To meet the aforementioned requirement of digital rights, all
statements found in the included RDF file have to be identified
with their source. This can be implemented by tagging statement
with their respective source URIs. Tagging statements can only be
achieved using reification. Thus, we need to augment the RDF vo-
cabulary (cf. figure 4) with a new property rdf:source that can only
be validly applied to Statements 8.
�
The reader may note that multiple source tags can be defined if

identical statements occur in different source files

Thus, for each statement in an included RDF model, new reified
statements are added to the calling RDF model. Consider the fol-
lowing statement in the animal ontology (cf. figure 3) for example

<s:Class rdf:about="&animal;#Animal"/>

This statement would be added in reified and tagged form, using
the following set of statements:

<rdf:Description>

<rdf:subject rdf:resource="&animal;#Animal" />

<rdf:predicate
rdf:resource="&rdf;#type"/>

<rdf:object rdf:resource=&s;#Class"/>

<rdf:type
rdf:resource="&rdf;#Statement"/>

<rdfm:source rdf:resource="&animal;"/>

</rdf:Description>

3.2.2 rdfm:import
Notably, rdfm:include includes all statements found in another

RDF file. This does not meet the demands of an import mechanism,
which has to work on a lower granularity. To meet this demand, the
RDF vocabulary has to be augmented with several new primitives
that provide:

� A means to import statements about a given resource
� A means to transitively import statements about a given re-

source
� A means to schema-aware import of statements

rdfm:importFrom. In the simplest case only all statements on
a given resource should be imported into the calling RDF model.
We introduce a new property rdfm:importFrom to achieve this (cf.
figure 4). The subject of a statement using the property9 speci-
fies the resource which should be imported into the calling RDF
model whereas the object of the statement specifies the source RDF
model, where statements about the subject should be taken from.
Imported statements are represented in reified form with additional
source identification to meet the digital rights requirement.

For example, the following statement

<rdf:Desciption rdf:about="&animal;#Male">
<rdfm:importFrom rdf:resource="&animal;" />

</rdf:Description>

would add all statements about the resource Male from the ani-
mal ontology to the calling RDF model. In our example only one
statement is found about Male, namely that it is a class. Hence,
only one statement would be added:

<rdf:Description>

<rdf:subject rdf:resource="&animal;#Male"/>

<rdf:predicate
rdf:resource="&rdf;#type" />

<rdf:object
rdf:resource="&s;#Class"/>

<rdf:type
rdf:resource="&rdf;#Statement"/>

<rdfm:source rdf:resource="&animal;"/> </rdf:Description>

�
These are statements of the following form: (resource,

rdfm:importFrom, source)

rdfm:transitiveImportFrom. In many applications the import-
From is not sufficient as we can only embed the first level of re-
source references using importFrom. Consider the following ex-
ample:

<rdf:Desciption rdf:about="&animal;#hasParent">
<rdfm:transitiveImportFrom

rdf:resource="&animal;"/>
</rdf:Description>

Here, the importFrom operation would only add statements that
have hasParent as a subject, viz. the information that hasParent is
a property whose domain is a resource Animal and whose range is
again Animal. No information about Animal, e.g. that it is a class,
would be included by importFrom.

The operation transitiveImportFrom targets this issue by addi-
tionally importing all statements on referenced resources. Thus,
for the given example the following set of statements would addi-
tionally be pasted into the calling RDF model10:

<rdf:Description>

<rdf:subject rdfm:resource="&animal;#Animal"/>

<rdf:predicate
rdf:resource="&rdf;#type"/>

<rdf:object
rdf:resource="&s;#Class"/>

<rdf:type
rdf:resource="&rdf;#Statement"/>

<rdfm:source rdf:resource="&animal;"/>

</rdf:Description>

rdfm:schemaAwareImportFrom. One can easily see that even
transitiveImportFrom is not sufficient to take RDF out of ontolog-
ical opaqueness. For example if one transitively imports all infor-
mation on the lion Marjan11, of course all information on Marjan
as well as all super classes of Lion are imported into the calling on-
tology but not the properties that are valid for any of these classes,
thus another primitive is required to take the semantics of a RDF
schema into account. Eventually

<rdf:Desciption rdf:about="&animal;#Marjan">
<rdfm:schemaAwareImportFrom
rdf:resource="&animal;" />

</rdf:Description>

would therefore add all statements on the property hasFather.
Of course, the implementation of schemaAwareImportFrom is the
most complex operation a processor has to fulfill.

Discussion. The following points are finally important to men-
tion with respect to our presented proposal for extending RDF with
import facilities:
�	�

Additionally to the statements about hasParent, which are not
shown for sake of brevity.�
�
Marjan is the lion who survived years of conflict and ill-treatment

in Afghanistan and died at Kabul zoo. The 25 year-old beast who
was half-blind, lame and almost toothless died of old age only
weeks after an international animal rescue mission arrived to help
him. The only lion in Kabul zoo, he was a gift from Germany in
more peaceful times 23 years ago, and became something of a sym-
bol of survival against the odds. Among his reported exploits are
killing and eating a Taleban fighter who climbed into his enclosure
to prove his bravery. The man’s brother attacked the lion with a
grenade in revenge, leaving it lame and blind in one eye.

� It does not rely on XInclude, as this approach is not appli-
cable for RDF. The proposed merging of infosets would lead
to two � RDF �� /RDF � elements, which is incompatible
with the RDF syntax specification. Furthermore, the source
identification is not possible, as inclusion is invisible to the
document consumers.

� The operation rdfm:include and the rdfm:importFrom prop-
erty family are left in the RDF model. As statements from
modules are only inserted at runtime this is not problematic.
It is also important information for consuming agents that are
interested in the way the viewed information is assembled.

� Modularization operations are generally transitive. Cyclic
references are allowed. The usefulness of cyclic references
has been shown in [4]. Even if cyclic references suggest that
modules should be merged. We still keep the ability for orga-
nizational purposes. Infinite recursion can be avoided using
simple means.

4. APPLICATIONS AND GUIDELINES
In this section we introduce applications where the foundations

of our conceptual framework for modularizing RDF-based models
have been successfully used. Additionally, we provide engineering
guidelines for modularized ontologies.

4.1 Re-engineering Existing Resources
Experiences have shown that when developing an ontology-based

system, conceptual resources, e.g. in the form of thesauri, lexical-
semantic nets, related domain and application ontologies are al-
ready available. Furthermore, it has been seen that for the devel-
opment of ontology-based information systems typically only parts
of existing resources are to be used. Therefore, in our approach,
we convert existing resources onto a common representation for-
mat, namely RDF-Schema. Based on this representation we gen-
erate application specific modules by applying bottom-up ontology
pruning techniques based on a given set of text relevant for a spe-
cific domain [7].

Figure 5: Applying Ontology Pruning to create modules

We take the assumption that the occurrence of specific concepts
and conceptual relations in web documents are vital for the decision
whether or not a given concept or relation should remain in an on-
tology. We take a frequency based approach determining concept
frequencies in a corpus. Entities that are frequent in a given corpus
are considered as a constituent of a given domain. To determine
domain relevance ontological entities retrieved from a domain cor-
pus are compared to frequencies obtained from a generic corpus.

The user can select several relevance measures for frequency com-
putation. The ontology pruning algorithm uses the computed fre-
quencies to determine the relative relevancy of each concept con-
tained in the ontology. All existing concepts and relations which
are more frequent in the domain-specific corpus remain in the on-
tology. The user may also control the pruning of concepts that are
neither contained in the domain-specific nor in the generic corpus.
This pruning approach has been successfully applied in the follow-
ing domains:

� GermaNet pruning for an insurance intranet application [7]:
In this approach we used the German version of WordNet
as a basis for generating an insurance-specific module, that
supported an intranet-based knowledge management appli-
cation.

� WordNet pruning for Reuters news document clustering: Word-
Net has been used as a semantic backbone for clustering
Reuters news documents. The overall Wordnet lexical se-
mantic net has been pruned on the basis of a set of selected
Reuters documents, thus a news-specific module has been
generated

� AGROVOC12 pruning for the animal feed application: Fi-
nally, AGROVOC is a thesaurus provided by United Nations
Food and Agricultural Organization, describing terms in the
context of food and agriculture. It has been used as a ba-
sis for developing a module that exclusively describes the
“animal feed” domain, for which a metadata-driven search
engine will be built.

Using modularization techniques on top of the pruning results has
the advantage that we do not create new ontologies. Instead we
focus on the application specific part of a given ontology without
defining new resources.

In general, we want to mention that there is a lack of modu-
larity in current ontologies. Although, there exists the clear and
good separation of top-level, domain, task and application ontolo-
gies (see [6]), there are no real-world ontologies and applications
that are based on this principle. Most ontologies are not modular,
neither by task, nor by domain. Therefore, ontology integration
should modularize the namespace of a domain and separate task-
oriented knowledge from the domain knowledge.

4.2 Engineering Guidelines
Much work has been described in the area of merging, mapping

and integrating ontologies using very different approaches. The
point of all those approaches is that they try to establish interoper-
ability between syntactically and semantically heterogeneous con-
ceptual models. Typically, this is done in an “ex-post” way, when
the systems have already been established and are running.

Our engineering approach for modularized ontologies pursues
another idea, namely the “ex-ante” establishment of interoperabil-
ity. This approach allows the ontology engineer to import reusable
modules from existing ontologies. The reader may note that this
approach is already implicitly used in several existing commer-
cial software products, e.g. in the area of knowledge management.
Typically, these systems are divided in a standard basic conceptual
model (describing basic concepts like documents, person’s meta-
data, etc.) and a domain specific part of the conceptual model (de-
scribing domain-specific concepts like topic hierarchies, etc.). The
point is that every KM application based on the basic conceptual
data model can exchange data on this level, but it cannot exchange
���

http://www.fao.org/agrovoc/

data on the domain-specific part of the conceptual model. We pick
up this approach in an explicit way in the sense that we provide
basic conceptual models in the form of ontology modules, e.g. for
documents, persons, etc. There are many design goals within this
modularization framework, e.g. to create coherent sets of semanti-
cally related modules, to support the creation of subsets and super-
sets of ontology modules for specific purposes, to facilitate future
development by allowing modules to be upgraded or replaced in-
dependently of other modules and to encourage and facilitate the
reuse of common modules by developers.

In the Semantic Web, modules have to be made accessible via a
search engine for ontology modules. The search allows to query on
a lexical (e.g. by providing a set of concept and property labels that
should be contained in the module) and a conceptual layer (e.g. by
providing a set of RDF statements that should be contained in the
module). We are currently developing such a “ontology search en-
gine” on the basis of our previous work for measuring the similarity
between ontologies and parts of it [9].

5. RELATED WORK
Modularization is an established principle in software engineer-

ing, nevertheless, generally only acyclic inclusions are possible.
Import mechanisms exist in all major programming languages and
allow programmers to use classes, functions and methods defined
in other modules by explicit naming.

Knowledge based systems introduced means for modularization
in the early nineties. The LOOM system [8] provided an acyclic
graph of inclusion relationships. Means for importing are not in-
cluded, although references to symbols defined in other (non-included)
ontologies are possible. Notably, the declarative semantics of on-
tologies are endangered by this, as the definition of those symbols
is not visible.

Ontolingua [4] allows for modular organization in the ontology
library system, organizes units into modules and allows cyclic in-
clusions. Additionally referenced ontologies can be extended by
polymorphic refinement and restriction. RDF automatically sup-
ports some of those refinements (i.e. adding new domains and
ranges13). Notably, we cannot support restrictions as RDF is not
expressive enough to support the required translation axioms.

ONIONS [5] is a methodology that highlights the stratified de-
sign of ontologies. They propose different naming policies to achieve
the modular organization or stratified storage of ontologies [5].
They show that disjointed partitioning of classes can facilitate mod-
ularity, assembling and integrating of ontologies.

As reported in section 2, several means for modularization are
proposed for the XML world. XLink allows presentation time in-
clusion. Handling of inclusion in XLink is left to the application,
which is not sufficient for the Semantic Web. No means for im-
porting exist. XInclude introduces real inclusion for XML but does
not allow for importing either. Furthermore the issue of conflicting
XML identifiers is not recognized, which will come up in imple-
mentations.

XML Schema introduces proprietary means for inclusion as well
as importing, but these operations are not made visible to agents
consuming the composite schema. This raises severe digital rights
problems as the original provider is not recognizable anymore. The
idea of defining a set of exported elements, stemming from expe-
rience with programming languages and similar schema definition
systems, does not make sense for the Semantic Web. This export set
suggests that there is value in distinguishing the internal implemen-
tation of a module from the features or interfaces that it provides for
�	�

Multiple ranges are demanded by the RDF Working Group

reuse by others.
The recently proposed DAML+OIL ontology language recog-

nized the need for modularity but only considers inclusion. Unfor-
tunately, the established wording was not conceived. DAML+OIL
follows the tradition of SHOE, where usage of other ontologies can
be specified. Both approaches make the source of modular infor-
mation opaque and present specialized approaches for ontologies
only. Neither one presents means for imports.

6. CONCLUSION
Based on the general principle of modularization that has been

an important design issue for the World Wide Web, and, in general
the basis for powerful software systems, we have presented general
principles and an approach for establishing a modularized Semantic
Web.

Thus, ontologies and other RDF models can become a unit of
composition which make context dependencies explicit. RDF mod-
els can be deployed independently and are subject to composition
by third parties. This way, ontologies become logically cohesive,
loosely coupled modules that denote single abstractions. There-
fore they simplify the construction and maintenance and ensure
reusability in other contexts. They also meet modularization re-
quirement that was recognized for the upcoming Ontology Web
Language14 .

In the future we plan to provide a simple implementation for a
modularity processor and embed modularity management in our
ontology engineering environment. We will also further our con-
siderations of using URNs to allow replication of mission-critical
RDF models.

7. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic

Web. Scientific American, 2001.
[2] T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible

markup language (XML) 1.0. Technical report, W3C, 1998.
http://www.w3.org/TR/1998/REC-xml-19980210.

[3] Steve DeRose, Eve Maler, and David Orchard. XML Linking
Language (XLink) Version 1.0, W3C Recommendation,
2001. http://www.w3.org/TR/xlink/.

[4] R. Fikes, A. Farquhar, and J. Rice. Tools for assembling
modular ontologies in ontolingua. Technical Report
KSL-97-03, Knowledge Systems Laboratory,Stanford
University, 1997.

[5] Aldo Gangemi, Domenico M. Pisanelli, and Geri Steve. An
overview of the ONIONS project: Applying ontologies to the
integration of medical terminologies. Data Knowledge
Engineering, 31(2):183–220, 1999.

[6] N. Guarino. Formal ontology and information systems. In
Proceedings of FOIS’98 – Formal Ontology in Information
Systems, Trento, Italy, 6-8 June 1998. IOS Press, 1998.

[7] J.-U. Kietz, R. Volz, and A. Maedche. A method for
semi-automatic ontology acquisition from a corporate
intranet. In EKAW-2000 Workshop “Ontologies and Text”,
Juan-Les-Pins, France, October 2000., 2000.

[8] R. MacGregor. LOOM users manual. Technical Report
ISI/EP-22, USC/ Information Sciences Institute, 1990.

[9] A. Maedche and S. Staab. Measuring similarity between
ontologies. In Technical Report, E0448, University of
Karlsruhe, 2001.

� �
See requirement 3 in the OWL requirements document, currently

at http://km.aifb.uni-karlsruhe.de/owl

[10] Jonathan Marsh and David Orchard. XML Inclusions
(XInclude) Version 1.0, W3C Working Draft , 2001.
http://www.w3.org/TR/xinclude/.

[11] Henry S. Thompson, David Beech, Murray Maloney, and
Noah Mendelsohn. XML Schema – W3C Recommendation,
2001. http://www.w3.org/TR/xmlschema-1/.

[12] Karsten Tolle. Validating rdf parser: A tool for parsing and
validating rdf metadata and schemas. Master’s thesis,
University of Hannover, 2000.

