

Multi-dimensional Ontology Views via Contexts in the
ECOIN Semantic Interoperability Framework

Aykut Firat
Northeastern University

Boston, MA 02115, USA
a.firat@neu.edu

Stuart Madnick
Massachusetts Institute of Technology

Cambridge, MA 02142, USA
smadnick@mit.edu

 Frank Manola
Independent Consultant

Wilmington, MA 01887, USA
fmanola@acm.org

Abstract
This paper describes the coupling of contexts and ontologies
for semantic integration in the ECOIN semantic
interoperability framework. Ontological terms in ECOIN
correspond to multiple related meanings in different
contexts. Each ontology includes a context model that
describes how a generic ontological term can be modified
according to contextual choices to acquire specialized
meanings. Although the basic ECOIN concepts have been
presented in the past, this paper is the first to show how
ECOIN addresses the case of “single-ontology with multiple
contexts” with an example of semantic integration using our
new prototype implementation.

Introduction
With the globalization of information over the internet,
achieving semantic interoperability among heterogeneous
and autonomous systems has become an increasingly
important endeavor. A key issue in applying ontologies in
practical semantic interoperability problems has proven to
be reducing the amount of work needed to agree on a
shared model, to describe the different assumptions made
by sources and receivers, and to express (or generate) the
mappings required to transform the data when moving it
between different sources and receivers. In this paper, we
discuss the ECOIN1 approach and how it is able to address
this important issue.

In the ECOIN semantic interoperability framework,
ontologies describe both the shared domain model and the
ways in which contexts can specialize the shared model.
This is done by providing a terminology with generic
meanings, which are modified in local contexts to express
specialized meanings. A context model coupled with the
shared model explicitly specifies possible modification
dimensions of an ontological term. For example, the
meaning (and representation) of a generic term like airfare
can be modified along the currency, coverage, and
inclusion dimensions. A context, then, expresses the
specific specializations of the shared model that define a

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

1 ECOIN stands for Extended Context Interchange (see [Firat, 2003]).

given local model (and hence a local model is described by
the combination of the shared model and a particular
context.) In the airfare example, for instance, the meaning
of airfare objects is made explicit by local sources when
they specify the currency used (e.g. USD); and declare
whether the coverage is one-way or round-trip and what is
included in the airfare (e.g. tax and shipping).
 In the rest of this paper, we first review the ECOIN
framework. We then elaborate on this approach in more
detail by using a practical example from the air-travel
domain and continue with a brief overview of the related
work which is contrasted with the ECOIN approach.
Finally, we discuss the benefits of our approach in reducing
the amount of work needed to (a) construct a shared model,
(b) describe local models, and (c) express mappings
between contexts.

The ECOIN Framework
The ECOIN framework is a generic logic-based data model
that provides a template for the integration of
heterogeneous data sources. This template is defined as
follows:

Definition: (ECOIN Framework)
An ECOIN framework is a quadruple (O, S, C, M) where
each component is a set of logical predicates. O
corresponds to ontology that includes both the domain and
context model; S corresponds to source declarations; C
corresponds to context (instances); and M corresponds to
mappings (conversion function network) defined between
contexts.

In this framework, sources (S) and contexts (C) are
described with respect to the ontology (O). Mappings (M)
are structured according to the context model to enable
translation between different contexts. Below each
component is described in detail.

Ontology
Ontology in ECOIN includes both the domain and context
model. As in other data integration frameworks, an ECOIN
domain model is used to define a common type system for
the application domain (e.g., financial analysis, travel

1

 2

information) corresponding to the data sources that are to
be integrated. Like many other conceptual models, an
ECOIN domain model consists of a collection of (object)
types, which may be related in a subtype hierarchy. Types
have attributes to represent both the individual properties
of objects and relationships between objects (both things
and their properties are uniformly represented as objects).

The types in an ECOIN domain model are semantic
types, in that they represent the generic semantics of the
concepts used in the various data sources. A semantic type
is impartial to the exact representation or meaning of its
instances in specific contexts and encapsulates all. The
various specializations of these concepts used by different
sources or receivers are described using a special kind of
property called a modifier. The modifiers in an ontology
are chosen to explicitly describe the contextual

specializations of the generic types used by the sources and
receivers. For example, in Figure 1 the generic ontological
term airfare represented by the large cube can be
specialized along three modification dimensions of
{Coverage, Currency, Inclusion}. Different values of these
modifiers identify the different component cubes of the
overall airfare cube.

The modifiers in an ontology collectively define its
context model; and the collection of modifier objects that
describe the specializations that can be made by a given
source or receiver defines its context. Context declarations
are source independent, thus multiple sources or receivers
may use the same context (use the same specializations for

various values), but often different sources use different
contexts.

Modifiers themselves are semantic types, thus can be
subject to specialization (e.g. how do you represent
currency? USD vs. $.) This can be handled via defining
modifiers of modifiers. In Figure 2, this situation is
illustrated by a CurrencyFormat modifier for the Currency

modifier.
For objects without modifiers, the context model implies

a current existence of a common representation and
meaning across the sources and receivers. If this
assumption changes at a later time, new modifiers can be
introduced, further slicing and dicing the generic concepts.

In Figure 3, we illustrate a simplified ontology for the air
travel domain. The domain and context model
corresponding to the figure are represented in ECOIN with
the following logical predicates: (The omitted predicates
are indicated with three dots.)

Ontology

Domain Model
Types:
semanticType(country). semanticType(idType)….
semanticType(coverageType).

Type hierarchy:
isa(airfare, moneyAmt). isa(tax, moneyAmt).

Attributes/Relationships:
cxnCountry(ticket,country),.…,hasID(ticket, idType).

Context Model
Modifiers:
lformat(airport, Context, airportFormat).
dformat(date, Context, dateFormat).
inclusion(airfare, Context, inclusionType).
coverage(airfare, Context, coverageType).
currency(moneyAmt, Context, currencyType).
The variable ‘Context’ in the Context Model signifies that a
modifier is defined with respect to a given context, thus
may acquire different values in different contexts.

NN
OO

TT

AA
XX

Figure 2 Modifiers themselves can be modified

 UUSSDD UUSS
 $$

Currency Format

RROOUUNNDD--TTRRIIPP

$

round-trip

no tax

one-way

 tax
 £

AAIIRRFFAARREE

C
u

rren
cy

Inclusion

AAIIRRFFAARREE iinn
CCoonntteexxtt CCnn

AAIIRRFFAARREE iinn
CCoonntteexxtt CC11

Coverage

M
odifiers

Figure 1 Multi-dimensional modification
of the ontological term airfare

2

Admin
Rectangle

 3

Sources
Sources in the ECOIN framework are uniformly treated as
relational sources (i.e., as having relational schemas). Many
non-relational sources, such as HTML and XML web sites
and web services, can be transformed into relational
sources via wrappers [Firat at al. 2000]. A wrapped web
source, for example, can be represented in logical
predicates as (refer to Figure 5):

cheaptickets(Id, Airline, Price, Tax, DepDate, ArrDate,
DepCity, CxnCountry, ArrCity)

In the ECOIN framework, these are called primitive
relations, because these sources are not yet tied to an
ontology. These primitive relations are elevated into
semantic relations by annotating the semantic type and
context of each primitive relation.
The semantic relation cheaptickets’ can then be expressed
as follows2:

cheaptickets’(Id’, Airline’, Price’, Tax’, Depdate’,
ArrDate’, DepCity’, CxnCountry’,ArrCity’) ←

Id’=object(idType, Id, c_ct, cheaptickets(Id, Airline,
Price, Tax,Depdate,ArrDate, DepCity, CxnCountry,
ArrCity)), …,ArrCity’ = object(…).

With this elevation each column of the cheaptickets
relation is indirectly tied to the air travel ontology. For the
Id column, for instance, this is accomplished by associating
the value Id with the idType semantic type in the
cheaptickets context c_ct. Id’ in the above declaration is
the semantic object corresponding to the primitive object Id
from the cheaptickets relation.

2 Notation: We add a single quote ‘ to semantic objects/relations
to distinguish them from primitive ones.

In addition, the attribute relationships defined by the
ontology are instantiated as part of source declarations. For
example, the cxnCountry relationship would be declared
for this source as follows:
cxnCountry(T’,C’)←cheaptickets’(T’,_,_,_,_,_,_,C’,_).3
This declaration says that the cxnCountry of a semantic
object T’ is another semantic object C’, both of which can
be obtained from the semantic relation cheaptickets’. This
is also known as the Global As View (GAV) approach of
relating sources and the global model.

Context (Instances)
For sources, contexts define the specializations used for the
underlying data values; and for receivers contexts describe
the specializations assumed in viewing the data values.
These specializations may be about the representation of
data (e.g. European vs. American style date formats) or
nuances in meaning (e.g. nominal vs. bottom-line prices).

To define a source or receiver context, modifier
assignments need to be made. For example, the context
labeled as c_ct can be described with the following
predicates :

currency(Airfare’, c_ct, Currency’) ←
transitFee(Ticket’,Airfare’),
cxnCountry(Ticket’,Country’) ,
countryCurrency(Country’, Currency’).4
currency(MoneyAmt’, c_ct, Currency’) ← Currency’ =
object(currencyType, “USD”, c_ct,
constant("USD")).

3 Underscores, as in Prolog, are used to designate any value.
4 Here, countryCurrency is a semantic relation that relates
countries and currencies.

airfare date airport tax

moneyAmt

idType

ticket country

Figure 3 Simple Ontology for the Air Travel Example

return

depart
origin

destination

hasTax hasID

transitFee
shippingCost
serviceFee

cxnCountry

dateFormat airportFormat inclusionType coverageType

currencyType

currency

lformat dformat inclusion coverage

Attribute

Modifier

IS-A

3

Admin
Rectangle

 4

inclusion(Airfare’, c_ct, Inclusion’) ← Inclusion’ =
object(inclusionType, “nominal”, c_ct,
constant("nominal")).
coverage(Airfare’, c_ct, Coverage’) ← Coverage’ =
object (coverageType, “oneway”, c_ ct,
constant("oneway")).
lformat(Airport’, c_ct, LFormat’)← LFormat’ =
object(airportFormat, “airport”, c_ct,
constant("airport")).
dformat(Date’, c_ct, DFormat’) ← DFormat’ = object
(dateFormat, “American”, c_ct,
constant("American")).
These modifier declarations, which use attribute
declarations, semantic relations, and some other constructs,
explicitly specify which view of the ontology is adopted by
the cheaptickets source. Accordingly, the ontology
corresponding to the cheaptickets source treats airfare as
the one-way nominal price of a ticket in US dollars.
Currency in the cheaptickets context is US dollars except
for transitFees which are given in the currency of the transit
country. The arrival and departure locations are expressed
as airport codes, and date is given using the American style.

Mappings
Mappings in ECOIN ensure that a view of the ontology
adopted in a context is appropriately mapped to a
corresponding ontological view in another context. This is
accomplished by defining a conversion function network
for each ontological term. Conversion functions are
atomically defined for each modifier dimension as
illustrated in Figure 4.

As an example, the conversion function for the currency
modifier dimension is encoded declaratively in terms of
logical predicates as follows:

ƒcurrency(X, VS, SC, VCurrencyS, VCurrencyT, TC, VT)
←

value(Today, SC, VToday), system_date(VToday),
value(CurrencyS,SC,VCurrencyS),
value(CurrencyT,SC,VCurrencyT),
currencyrates’(CurrencyS,CurrencyT, Today, Rate),
value(Rate, SC, VRate), mul(VS, VRate, VT).

For semantic airfare objects, this function uses the modifier
value VCurrencyS in source context SC, and modifier
value VCurrencyT in target context TC to translate the
source value VS of semantic object X to value VT in target
context. The value(A,C,B) predicate used above is read as
“the value of semantic object A in context C is B”. The
function is also using another semantic relation
currencyrates’; a system function system_date(VToday)
and an arithmetic predicate mul to express multiplication.

As in the currency conversion function example above,
conversion functions can sometimes be defined
parametrically, thus may cover all of the modifier value
pairs with a single function. When this can not be done,
conversion functions can be defined as a network to
minimize the number of declarations, leaving the tasks of
combining, inverting, and simplifying to the mediator.
Furthermore, most conversion functions are orthogonal, i.e.
they can be applied in any order. When they are not
orthogonal, priorities are used to determine the order they
are to be executed. The details of conversion function
network organization can be found in [Firat et al. 2005].

Practical Application
Consider the simplified scenario shown in Figure 5 having
a single source cheaptickets and a single receiver (user)
with conflicting assumptions. (This scenario, including the
technical details of query mediation, is discussed more
thoroughly in [Firat et al. 2005].) Surprisingly, even the
semantic differences between a single source and a receiver
provide enough complexity to highlight some of the
interesting issues. Under this scenario, the user is an
international student looking for a round trip airfare from
Boston to Istanbul, with departure on June 1st and return
on August 1st 2004. He wants to obtain the price and
airline information for his trip and formulates the following
SQL query Q1 using column names from the source:

Q1: SELECT Airline, Price
FROM CheapTickets
WHERE DepDate = “01/06/04” and ArrDate = “01/08/04”
and DepCity = “Boston” and ArrCity = “Istanbul”;

As a result of the contextual differences illustrated in
Figure 5, without any mediation the user's query would
return an empty answer, because cheaptickets has city
codes instead of city names; and dates are in American
format (refer to sample data). Even if these specific

Inclusion

Coverage C
u

rren
cy

$

£ round-trip
one-way

no tax

tax

Figure 4 Organization of Conversion Functions
for the Ontological term Airfare

AAIIRRFFAARREE

4

Admin
Rectangle

 5

Context of User

* Fares are expected to be bottom-line price
 (round trip, includes taxes, ticket shipment, and transit fees)
* Date is expressed in European style (dd/mm/yy)
* Departure and Destination locations are expressed as city names
* Currency is US $
* Today’s date: 01/05/04

cheaptickets
ID
(I)

Airline
(A)

Price
(P)

Tax
(T)

DepDate
(DD)

ArrDate
(AD)

DepCity
(DC)

CxnCountry
(CC)

ArrCity
(AC)

1 British Airways 495 75 06/01/04 08/01/04 BOS United Kingdom IST
2 Lufthansa 525 79 06/01/04 08/01/04 BOS Germany IST
… … … … … … … … …

SELECT Airline, Price
FROM cheaptickets
WHERE DepDate = “01/06/04” and
ArrDate= “01/08/04” and DepCity= “Boston”
and ArrCity= “Istanbul”;

FromCur ToCur ExchangeRate Date
£ $ 1.75 05/10/04
… … … …

Context of Ancillary Sources

Date is expressed in American style

City Airport
Boston BOS
Istanbul IST
… …

cityairport currencyrates

Query

Figure 5 Airfare Example Scenario

Context of cheaptickets
* All fares are for each way of travel and do not include fees and taxes. * Ticket shipping cost is $20
* Date is expressed in American style (mm/dd/yy) * Service fee of $5 is charged
* Departure and Destination locations are expressed as three letter airport codes
* Currency is US dollars except for transit fees, which are in the currency of the country that issues the fee.
* Direct air transit fee of £27 is applied if the plane has a connecting flight from United Kingdom

differences were dealt with, for example by writing a new
query Q2 with changed city codes and date formats (which
itself might be a significant challenge for the user,
especially if unfamiliar with the details of each of the
multiple sources involved):
Q2: SELECT Airline, Price
FROM CheapTickets
WHERE DepDate = “06/01/04” and ArrDate = “08/01/04”
and DepCity = “BOS” and ArrCity = “IST”;

the results returned would be:

Airline Price
British Airways 495
Lufthansa 525

which is not the correct bottom line price the user expects.
Given these results, the user may incorrectly think that
British Airways is the cheaper option. If the original query
Q1 were submitted to the ECOIN system, however, the
semantic conflicts between the sources and the receiver
would be automatically determined and reconciled, and Q1
would be rewritten into the following mediated query:

MQ1:SELECT Airline, 2*(Price+Tax+27*exchangeRate)+25
FROM cheaptickets, currencyrates,
(select Airport from cityairport where city=“Boston”) dCode,
(select Airport from cityairport where city=“Istanbul”) aCode
WHERE DepDate = “06/01/04” and ArrDate=”08/01/04”
and DepCity= dCode.Airport and ArrCity=aCode.Airport
and CxnCountry= “United Kingdom” and fromCur= “GBR”
and toCur= “USD” and Date= “05/10/04”;
UNION
SELECT Airline, 2 * (Price+Tax) +25
FROM cheaptickets,
(select Airport from cityAirport where city=”Boston”) dCode,
(select Airport from cityAirport where city=”Istanbul”) aCode
WHERE DepDate = “06/01/04” and ArrDate=”08/01/04”
and DepCity= dCode.Airport and ArrCity=aCode.Airport
and CxnCountry <> “United Kingdom”;

In the mediated query MQ1, in addition to representational
conflicts such as format differences in date and city codes,
semantic conflicts in the interpretation of airfare (price) are
also resolved. Mediating such semantic conflicts involves
creating a conflict table by comparing the modifiers
involved in the query; identifying which mappings to use
from the conversion function network to resolve the

5

Admin
Rectangle

 6

conflicts; and applying symbolic equation solving
techniques to a number of equational relations for
inversion, composition and simplification under the
Abductive Constraint Logic Programming framework [Firat
et. al. 2005].

The ECOIN system further processes this mediated query
by an optimizer to produce an efficient plan, and executes
it by a query processor, which submits subqueries to
individual sources that can optimally execute the
subqueries and perform the data transformations. The final
results reported by the system below now allow the user to
make the right choice and choose Lufthansa over British
Airways:

Airline Price
British Airways 1260
Lufthansa 1233

As this practical application shows, despite sharing the
same ontology, the users and sources are not locked into a
single integrated view. Multiple integrated views can co-
exist with a well defined context model coupled with the
ontology.

Related Work and Discussion
One of the fundamental issues of information integration is
achieving interoperability between multiple local models.
There have been various approaches proposed in the past.
Although there are some similarities, ECOIN has a number
of important distinct differences and advantages.
 In database integration, for instance, local models are in
the form of database schemas and achieving
interoperability among multiple schemas constitutes the
fundamental problem. The traditional centralized solution
maps local models (schemas) to a shared standard ontology
(global schema) to eliminate representational and semantic
disparities. This approach has been criticized for lack of
scalability and difficulty of maintenance over time.
Furthermore, it is seen as overly restrictive and inflexible in
trying to reconcile local models that suit different needs in
a single shared model [Bouquet and Serafini 04].

Modularized versions of the traditional centralized
approach with the explicit use of “contexts” appears in
[McCarthy and Buvac 97], and in CYC [Lenat et al., 1990;
Guha, 1991]. In these approaches, axioms and statements
are true only in a context. This is expressed by a modality5
called ist(c,p)6. For example,

c0: ist(context-of(“Sherlock Holmes stories”), “Holmes is
a detective”).

means that the statement “Holmes is a detective” is true in
the context of Sherlock Holmes stories. The preceding c0

5 The classification of propositions on the basis of whether they
assert or deny the possibility, impossibility, contingency, or
necessity of their content.
6 Read as “p is true in context c”

denotes that this statement is asserted in an outer context,
thus points out to the nested composition of context
dependent statements. Formulas between contexts can be
related together with the use of lifting axioms. In
[McCarthy and Buvac 97], an example of integrating Navy
and General Electric (GE) databases, which differ on the
definition of engine prices, is given. In the Navy database
price includes assortment of spare parts and warranty,
whereas in GE price is the plain engine price. Contexts
defined in this example are cGE, cnavy corresponding to the
GE and navy databases and cps, the problem solving
context. The details of this example are shown in Table 1
(i.e. the query posed in the problem solving context, the
existing facts expressed in their own context, and lifting
axioms that define translations between different contexts).

Query
cps: ist(cnavy, price(FX-22-engine, $3611K))
Facts
ist(cGE, price(FX-22-engine, $3600K)).
ist(cGE, price(FX-22-engine-fan-blades, $5K)).
ist(cGE, price(FX-22-engine-two-year-warranty, $6K)).
ist(cnavy,spares(FX-22-engine,FX-22-engine-fan-
blades)).
ist(cnavy, warranty(FX-22-engine,FX-22-engine-two-
year-warranty)).
Lifting axioms
value7(cGE, price(x)) = GE-price(x)
value(cnavy, price(x)) = GE-price(x) + GE-
price(spares(CNavy, x)) + GE-price(warranty(CNavy, x)).
Table 1 Navy and General Electric Integration Example

An opposite approach, called “compose and conquer”
[Bouquet et. al. 01], is based on the premise that the
existence of a global ontology is not viable in open settings
such as the envisioned Semantic Web. In the proposed
solution, relations between local models are established on
a peer-to-peer basis, as a collection of constraints on what
can (or cannot) be true in a local model given that there is
some relation with what holds in another local model. This
approach has been used in [Ghidini and Serafini 98, 00], in
integrating information systems. They provide an example
that integrates the databases of four fruit sellers with
different contexts. Conflict resolution between contexts is
done pair wise for each database, since they do not
subscribe to a common global theory. In the example, one
of the sellers (1) provides fruit prices without including
taxes, the other denoted as the mediator (m) considers
prices with taxes (7% percent). This conflict is resolved by
defining a view constraint as following:

1: has-price(x,y) → m:∃y′ has-price(x,y′) ∧ y′ =y +(0.07*y)

7 value(c,t) is a function which returns the value of term t in
context c

6

Admin
Rectangle

 7

This view constraint establishes the link between differing
price definitions of source 1 and mediator m.
 While this approach offers important benefits, especially
in providing a viable architecture for open settings, the lack
of a shared model creates a number of serious problems.
Even finding a way to query disparate data sources,
connected on a peer-to-peer basis, becomes a non-trivial
task. Furthermore, the coordination of establishing
relationships between local models on a peer-to-peer basis
is problematic. ECOIN provides a much simpler solution.

Contextual Coupling of Ontology and Local
Models in ECOIN
The ECOIN strategy of relating local models favors the use
of ontologies to relate local models, albeit in a much more
flexible way than the traditional centralized approaches. It
may be too early to predict how the Semantic Web will
ultimately evolve, but it is perceivable that similar local
models will be linked via ontologies, which in turn may be
treated as local models and linked via higher level
ontologies thus achieving gradual semantic interoperability.
Given such a possibility, the ECOIN approach introduces a
contextual coupling of ontology and local models.

Our approach may seem similar to the efforts discussed
in [McCarthy and Buvac 97], [Lenat et al., 1990; Guha,
1991], [Kashyap and Sheth 96], [Bouquet et al. 2004] at
the surface level, but there are important differences. While
we like the explicit treatment of contexts in these efforts;
and share their concern for sustaining an infrastructure for
data integration, our realization of these differ significantly.
First, the ontology in ECOIN only defines generic terms
without specifying their exact semantics, which has no
equivalent in the aforementioned approaches. Second,
lifting axioms [Guha 1991] in our case operate at a finer
level of granularity: rather than writing axioms which map
“statements” present in a data source to a common
knowledge base, they are used for translating “properties"
of individual “data objects" and organized as a conversion
function network between contexts. These differences
account largely for the scalability and extensibility of our
approach.

Compared with the Context-OWL (C-OWL) approach
discussed in [Bouquet et al. 2004], our effort is more
focused on query mediation than trying to come up with a
general theory of contextual reasoning. Furthermore, the
contextual mappings in our case go beyond the rather
limited set of mappings that exist in C-OWL (i.e.
equivalent, onto (superset), into (subset), compatible, and
incompatible). The limited expressiveness of the C-OWL
language fails to address the contextual differences found
in most practical settings.

The description logic based context representation as
contextual coordinates in [Kashyap and Sheth 96] has
compelling similarities with our approach. While the desire
to dynamically express the context of data is paramount in

both approaches, there are also important conceptualization
differences. While the contextual coordinates denote
aspects of the context in [Kashyap and Sheth 96], modifiers
denote aspects of an ontological term in ECOIN. Our
conceptualization results in a simpler context model, which
works very well for query mediation by allowing us to
organize, compose, invert and simplify conversion
functions that maps between different contexts.

Compared with the “compose and conquer” approach,
the ECOIN approach is similar in its desire to perform peer
to peer mappings (although mappings need not be defined
between every peer). Unlike “compose and conquer”,
however, ECOIN assumes the existence of an ontology to
tie the sources, but this ontology does not act like a “global
schema”. The ontology acknowledges the minimal
agreements between the local models, and defines a well-
defined (yet extensible) context model to facilitate the
reconciliation of possible conflicts between local models.

With these differences in mind, the benefits of the
ECOIN approach can be summarized as follows.

First, ontology developers do not have to standardize the
exact meaning and representation of ontological terms; but
only need to agree on generic identities without exposing
the specific details. A major advantage of this approach is
that ontology developers frequently find it straightforward
(if not necessarily "easy") to agree on the generic concepts;
it is getting all the precise details worked out that creates a
lot of the work. Moreover, it's often the case that
differences in these precise details are only discovered later
(sometimes even after the system is in operation). The
ECOIN approach enables these details to be factored out,
reducing the amount of work needed to introduce these
details all at once.

Second, allowing the same ontological term to assume
nuances of meaning and varying representations in local
contexts saves the ontology from being cluttered with non-
essential terms such as airfareIn$, airfareWithTax,
airfareRoundTrip, etc. In ECOIN, only the essential term
airfare with its modification dimensions belongs to the
ontology, and takes its specialized meanings in local
contexts with corresponding modifier values.

Third, because the ontology is impartial to the precise
semantics defined in the various contexts, mappings are not
defined between the sources and the ontology as it is done
in most current approaches to information integration.
Instead, mappings are structured with respect to a context
model and defined for each modification dimension as a
conversion function network. This modularization of
mappings allows a mediator to create custom point to point
translations between contexts by selecting or composing
appropriate mappings from the conversion function
network. These capabilities of ECOIN have been
demonstrated in an example application requiring the
integration of counter-terrorism intelligence information,
where ECOIN was able to generate over 22,000 conversion
programs to enable semantic integration amongst 150 data
sources and receivers using just six parameterized
conversion rules [Zhu and Madnick 2004].

7

Admin
Rectangle

 8

 Conclusion
The ECOIN semantic information integration framework
couples ontologies and contexts in a unique way for the
semantic integration of disparate data sources. The
approach presupposes the existence of an ontology, but
unlike traditional approaches this ontology does not
provide a rigid specification of the meanings and
representations of its terms. In this novel conceptualization,
ontological terms are modified according to a context
model, thus correspond to multiple integrated views
according to contextual choices.

We have implemented these ideas in a prototype [Firat
2003] using the Eclipse Prolog engine [Cheadle et al.
2003] and procedural programming languages. This
prototype provides mediated access to traditional
databases, as well as semi-structured web sites, and web
services, creates and maintains metadata that are used in
ECOIN through graphical interfaces, and supports merging
multiple applications.

We believe that semantic information integration should
have the dual purpose of: (1) reconciling semantic
heterogeneity across information sources; and (2)
supporting semantic heterogeneity across information
receivers. The ECOIN approach achieves this objective by
providing an interoperability framework that requires
minimal agreement on a generic ontology, and allowing the
local models to modify the ontology to fit their context.

References
Bouquet P., and Serafini, L. 2004. Meaning Coordination and

Negotiation. In Working Notes of the ISWC Workshop on
Meaning Coordination and Negotiation, 3rd International
Semantic Web Conference, Hiroshima, Japan.

Bouquet P., Ghidini C., Giunchiglia F., and Blanzieri E.
2001. Theories And Uses Of Context In Knowledge
Representation And Reasoning. Technical Report #
0110-28, Istituto Trentino di Cultura.

Bouquet P., and Serafini L. 2003. On the Difference
between Bridge Rules and Lifting Axioms. In
Proceedings of Modeling and Using Context, 4th
International and Interdisciplinary Conference,
CONTEXT: 80-93

Bouquet P., Giunchiglia F., Harmelen, F., Serafini, L., and
Stuckenschmidt, H. 2004. Contextualizing Ontologies,
Journal of Web Semantics , vol. 26, 2004: 1-19.

Cheadle, A. M., Harvey, W., Sadler, A.J., Schimpf, J., Shen,
K., and Wallace M. G. 2003. ECLiPSe: An Introduction,
Imperial College London, Technical Report ICParc-03-1.

Firat, A. Madnick S., Siegel M., Grosof, B., and Manola, F.
2005 Reconciling Semantic Heterogeneity with Symbolic
Equation Solving Techniques. Forthcoming.

Firat, A. 2003. Information Integration using Contextual
Knowledge and Ontology Merging, Ph.D. Thesis,
Massachusetts Institute of Technology.

Firat, A., Madnick, S., and Siegel, M. 2000. The Caméléon
Web Wrapper Engine, In Proceedings of the VLDB2000
Workshop on Technologies for E-Services, 1-9.

Ghidini, C., and Giunchiglia, F. 2001. Local Models
Semantics, or Contextual Reasoning = Locality +
Compatibility. Artificial Intelligence. 127(2):221-259.

Ghidini, C., and Serafini, L. 1998. Information Integration
for Electronic Commerce. In Agent Mediated Electronic
Commerce. First International Workshop on Agent
Mediated Electronic Trading, AMET-98, Volume 1571
of LNAI. Springer.

Guha R. V. (1991). Contexts: a formalization and some
applications, MCC Tech Rep ACT-CYC42391.

Kashyap, V.; Sheth, A.P. 1996. Semantic and Schematic
Similarities between Database Objects: A Context-Based
Approach, VLDB Journal 5(4):276-304.

Lenat, D., R. V. Guha, K. Pittman, D. Pratt, and M.
Shepherd. 1990. Cyc: Towards programs with common
sense. Communications of the ACM 33(8).

McCarthy, John and Buvac, S, 1997. Formalizing context
(expanded notes). In: Aliseda, A., van Glabbeek, R. and
Westerstrahl, D., Editors, 1997. Computing natural
language, Center for the Study of Language and
Information, Stanford, CA.

Zhu, H., and Madnick, S. 2004. Context Interchange as a
Scalable Solution to Interoperating Amongst
Heterogeneous Dynamic Services. In Proceedings of the
Third Workshop on eBusiness (Web2004) .

8

Admin
Rectangle

Putting Things in Context:
A Topological Approach to Mapping Contexts and Ontologies

Aviv Segev, Avigdor Gal
Technion - Israel Institute of Technology

Haifa 32000
Israel

{asegev@tx, avigal@ie}.technion.ac.il

Abstract

Ontologies and contexts are complementary disciplines for
modeling views. In the area of information integration, on-
tologies may be viewed as the outcome of a manual ef-
fort of modeling a domain, while contexts are system gen-
erated models. In this work, we aim at formalizing the
inter-relationships between a manually generated ontology
and automatically generated contexts. We provide a formal
mathematical framework that delineates the relationship be-
tween contexts and ontologies. We then use the model to de-
fine the uncertainty associated with automatic context extrac-
tion from existing documents and provide a ranking method,
which ranks ontology concepts according to their suitabil-
ity with a given context. Throughout this work we motivate
our research using QUALEG, a European IST project that
aims at providing local government an effective tool for bi-
directional communication with citizens.
Keywords: Ontology, Context, Topology mapping

Introduction
Ontologies and contexts are both used to model views,
which are different perspectives of a domain. Some con-
sider ontologies as shared models of a domain and contexts
as local views of a domain. In the area of information inte-
gration, an orthogonal classification exists, in which ontolo-
gies are considered a result of a manual effort of modeling a
domain, while contexts are system generated models (Segev,
Leshno, & Zviran 2004). As an example, consider an orga-
nizational scenario in which an organization (such as a local
government) is modeled with a global ontology. A task of
document classification, in which new documents are clas-
sified upon arrival to relevant departments, can be modeled
as an integration of contexts (automatically generated from
documents) into an existing ontology. A simple example of
a context in this setting would be a set of words, extracted
from the document.

This approach was recently taken in QUALEG, a Euro-
pean Commission project aimed at increasing citizen partici-
pation in the democratic process.1 In QUALEG, contexts are
used to specify the input from citizens and then to provide
services - routing emails to departments, opinion analysis on

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1http://www.qualeg.eupm.net/

topics at the forefront of public debates, and the identifica-
tion of new topics on the public agenda.

The two classifications are not necessarily at odds. In
the example given above, documents may be email mes-
sages from citizens, expressing a local view of a domain.
Yet, the classification of manual vs. automatic modeling
of a domain has been the center of attention in the area
of data integration and schema matching in the past few
years. In particular, many heuristics were proposed for
the automatic matching of schemata (e.g., Cupid (Madha-
van, Bernstein, & Rahm 2001), GLUE (Doanet al. 2002),
and OntoBuilder (Galet al. 2005b)), and several theoret-
ical models were proposed to represent various aspects of
the matching process (Madhavanet al. 2002; Melnik 2004;
Galet al. 2005a).

In this work, we aim at formalizing the inter-relationships
between an ontology, a manually generated domain model,
and contexts, partial and automatically generated local
views. We provide a formal mathematical framework that
delineates the relationships between contexts and ontolo-
gies. Following the motivation given above, we discuss
the uncertainty associated with automatic context extrac-
tion from existing documents and provide a ranking model,
which ranks ontology concepts according to their suitability
with a given context. We provide examples from the QUA-
LEG project.

Our contributions are as follows:

• We present a framework for combining contexts and on-
tologies using topological structures, and model the un-
certainty inherent to automatic context extraction.

• We provide a model for ranking ontology concepts rela-
tive to a context.

• Using real world scenario, taken from email messages
from citizens in a local government, we demonstrate three
tasks that involve mapping contexts to ontologies, namely
email routing, opinion analysis, and public agenda identi-
fication.

The rest of the paper is organized as follows. We first
discuss related work on the topic. Next, we propose a model
for combining contexts and ontologies and present a ranking
model to map contexts to ontologies. The last section in-
cludes concluding remarks and suggestions for future work.

9

Related Work
This section describes related work in four different research
areas, namely context representation, ontologies, context ex-
traction, and topologies.

Context Representation
The context model we use is based on the definition of
context as first class objects formulated by McCarthy (Mc-
Carthy 1993). McCarthy defines a relationist(C, P), assert-
ing that a propositionP is true in a contextC. We shall use
this relation when discussing context extraction.

It has been proposed to use a multilevel semantic network
to represent knowledge within several levels of contexts
(Terziyan & Puuronen 2000). The zero level of represen-
tation is a semantic network that includes knowledge about
basic domain objects and their relations. The first level of
representation uses a semantic network to represent contexts
and their relationships. The second level presents relation-
ships of metacontexts, the next level describes metameta-
context, and so on and so forth. The top level includes
knowledge that is considered to be true in all contexts. In
this work we do not explicitly limit the number of levels in
the sematic network. However, due to the limited capabil-
ities of context extraction tools nowadays (see below), we
define context as sets of sets of descriptors at zero level only
and the mapping between contexts and ontology concepts is
represented at level 1. Generally speaking, our model re-
quiresn + 1 levels of abstraction, wheren represents the
abstraction levels needed to represent contexts and their re-
lationships.

Previous work on contexts (Siegel & Madnick 1991) uses
metadata for semantic reconciliation. The database meta-
data dictionary (DMD) defines the semantic and assignment
domains for each attribute and the set of rules that define
the semantic assignments for each of these attributes. The
application semantic view (ASV) contains the applications
definition of the semantic and assignment domain and the
set of rules defining the applications data semantic require-
ments. They define the semantic domain of an attribute T
as the set of attributes used to define the semantics of T.
Work by (Kashyap & Sheth 1996) use contexts that are or-
ganized as a meet semi-lattice and associated operations like
the greatest lower bound for semantic similarity are defined.
The context of comparison and the type of abstractions used
to relate the two objects form the basis of a semantic tax-
onomy. They define ontology as the specification of a rep-
resentational vocabulary for a shared domain of discourse.
Both these approaches use ontological concepts for creating
contextual descriptions and serve best when creating new
ontologies. The approach proposed herein assumes the ex-
istence of an ontology to which contexts should be mapped.
Another difference is that in (Kashyap & Sheth 1996), an
ontology concept is taken to be the intersection of context
sets, while we view ontology concepts as the union of con-
text sets.

Ontology
Ontologies were defined and used in various research ar-
eas, including philosophy (where it was coined), artificial in-

telligence, information sciences, knowledge representation,
object modeling, and most recently, eCommerce applica-
tions. In his seminal work, Bunge defines Ontology as a
world of systems and provides a basic formalism for ontolo-
gies (Bunge 1979). Typically, ontologies are represented
using a Description Logic (Borgida & Brachman 1993;
Donini et al. 1996), where subsumption typifies the se-
mantic relationship between terms; or Frame Logic (Kifer,
Lausen, & Wu 1995), where a deductive inference system
provides access to semi-structured data.

The realm of information science has produced an exten-
sive body of literature and practice in ontology construc-
tion, e.g., (Vickery 1966). Other undertakings, such as
the DOGMA project (Spyns, Meersman, & Jarrar 2002),
provide an engineering approach to ontology management.
Work has been done in ontology learning, such as Text-To-
Onto (Maedche & Staab 2001), Thematic Mapping (Chung
et al. 2002), OntoMiner (H. Davulcu & Nagarajan 2003),
and TexaMiner (Kashyapet al. 2005) to name a few. Fi-
nally, researchers in the field of knowledge representation
have studied ontology interoperability, resulting in systems
such as Chimaera (McGuinnesset al. 2000) and Prot̀eg̀e
(Noy & Musen 2000).

Our model is based on Bunge’s terminology. We aim at
formalizing the mapping between contexts and ontologies
and provide an uncertainty management tool in the form of
concept ranking. Therefore, in our model we assume an on-
tology is given, designed using any of the tools mentioned
above.

Context Extraction
The creation of taxonomies from metadata (in XML/RDF)
containing descriptions of learning resources was under-
taken in (Papatheodorou, Vassiliou, & Simon 2002). Fol-
lowing the application of basic text normalization tech-
niques, an index was built, observed as a graph with learning
resources as nodes connected by arcs labeled by the index
words common to their metadata files. A cluster mining al-
gorithm is applied to this graph and then the controlled vo-
cabulary is selected statistically. However, a manual effort is
necessary to organize the resulting clusters into hierarchies.
When dealing with medium-sized corpora (a few hundred
thousand words), the terminological network is too vast for
manual analysis, and it is necessary to use data analysis tools
for processing. Therefore, Assadi (Assadi 1998) has em-
ployed a clustering tool that utilizes specialized data analy-
sis functions and has clustered the terms in a terminological
network to reduce its complexity. These clusters are then
manually processed by a domain expert to either edit them
or reject them.

Several distance metrics were proposed in the literature
and can be applied to measure the quality of context ex-
traction. Prior work had presented methods based on in-
formation retrieval techniques (van Rijsbergen 1979) for ex-
tracting contextual descriptions from data and evaluating the
quality of the process. Motro and Rakov (Motro & Rakov
1998) proposed a standard for specifying the quality of data-
bases based on the concepts of soundness and complete-
ness. The method allowed the quality of answers to arbitrary

10

queries to be calculated from overall quality specifications
of the database. Another approach (Menaet al. 2000) is
based on estimating loss of information based on navigation
of ontological terms. The measures for loss of information
were based on metrics such as precision and recall on exten-
sional information. These measures are used to select results
having the desired quality of information.

To demonstrate our method, we propose later in this paper
the use of a fully automatic context recognition algorithm
that uses the Internet as a knowledge base and as a basis
for clustering (Segev, Leshno, & Zviran 2004). Both the
contexts and the ontology concepts are defined as topolog-
ical sets, for which set distance presents iteself as a natural
choice for a distance measure.

Topology

In recent years different researchers have applied principles
from the mathematical domain of topology in different fields
of Artificial Intelligence. One work uses topological local-
ization and mapping for agent problem solving (Choset &
Nagatani 2001). Other researchers have implemented topol-
ogy in metrical information associated with actions (Shatkay
& Kaelbling 1997; Koenig & Simmons 1996). In another
method of topological mapping, which describes large scale
static environments using a hybrid topological metric model,
a global map is formed from a set of local maps organized
in a topological structure, where each local map contains
quantitative environment information using a local refer-
ence frame (Simhon & Dudek 1998). Remolina and Kuipers
present a general theory of topological maps whereby sen-
sory input, topological and local metrical information are
combined to define the topological maps explaining such in-
formation (Remolina & Kuipers 2004).

In this work we use topologies as a tool of choice for in-
tegrating contexts and ontologies.

A Model of Context and Ontology
In this section we formally define contexts and ontologies
and propose a topology-based model to specify the relation-
ships between them.

Contexts and Ontologies

A contextC =
{
{〈cij , wij〉}j

}
i

is a set of finite set of de-

scriptorscij from a domainD with appropriate weightswij ,
defining the importance ofcij . For example, a contextC may
be a set of words (hence,D is a set of all possible charac-
ter combinations) defining a documentDoc, and the weights
could represent the relevance of a descriptor toDoc. In clas-
sical Information Retrieval,〈cij , wij〉may represent the fact
that the wordcij is repeatedwij times inDoc.

An ontology O = (V, E) is a directed graph, with
nodes representing concepts (thingsin Bunge’s terminology
(Bunge 1977; 1979)) and edges representing relationships.
A single concept is represented by a name and a contextC.
Figure 1 (top) displays the graphical representation of an on-
tology.

Example 1. To illustrate contexts and ontologies, consider
the local government of Saarbrücken. Two ontology con-
cepts in the ontology of Saarbrücken are:
(Perspectives du Theatre,{{〈

Öffentlichkeitsarbeit, 2
〉}

,
{〈Multimedia, 1〉}, {〈Kulturpolitik, 1〉}, {〈Musik, 6〉}, ...})
and
(Long Day School, {{〈Förderbedarf, 1〉},
{〈Mathematik, 2〉}, {〈Musik, 2〉}, {〈Interkulturell, 1〉}})
A context, which was generated from an email message us-
ing the algorithm in (Segev, Leshno, & Zviran 2004) (to be
described later) is{{〈Musik,8〉} , {〈Open Air,1〉}}.

Modeling Context-Ontology Relationships
The relationships between ontologies and contexts can be
modeled using topologies as follows. Atopological struc-
ture (topology)in a setX is a collective familyϑ = (Gi/i ∈
I) of subsets ofX satisfying

1. J ⊂ I ⇒ ⋃
i∈J Gi ∈ ϑ

2. J finite;J ⊂ I ⇒ ⋂
i∈J Gi ∈ ϑ

3. ∅ ∈ ϑ,X ∈ ϑ
The pair (X,ϑ) is called atopological spaceand the sets

in ϑ are calledopen sets. We now define a context to be an
open set in a topology, representing a familyϑ of all possible
contexts in some setX. Using the concrete example given
above, letX be a set of sets of tuples〈c, w〉, wherec is a
word (or words) in a dictionary andw is a weight. Note that
ϑ is infinite since descriptors are not limited in their length
and weights are taken from some infinite number set (such
as the natural numbersN).

A family B = (Bi/i ∈ I) is called afilter base(also
known as a directed set, indexed set, or a base) if

1. (∀i) : Bi 6= ∅
2. (∀i) (∀j) (∃k) : Bk ⊂ Bi ∩ Bj

A filtered familyis a family of sets(xi/i ∈ I) associated
with a filter baseB on indexI. A filtered family (xi) =
(x(i)/i ∈ I, i ∈ B) forms a sequence of sets with the filter
base.

We define a specific filtered family based on the concept
of a context, as defined above. The definition is illustrated
in Figure 2. Let Context SetA1 define all the context sets
that can be created out of one given context - this is only
one context. Let Context SetA2 be the sets of contexts that
can be created from two given contexts. Context SetA2

contains each of the contexts and the union of both contexts.
This filtered family can continue expanding indefinitely.

Whenever a filtered family contains contexts that describe
a single topic in the real world, such as school or festival, we
would like to ensure that this set of contexts converges to one
ontology conceptv, representing this topic,i.e., An →n→∞
v. In topology theory, such a convergence is termed apoint
of accumulation, defined as follows.

Let A be a subset of a topological spaceX; An element
x ∈ X is apoint of accumulationof the setA if every neigh-
borhoodV (x) meets the setA − x, that is, if x ∈ A− x.
Figure 1(bottom) and Figure 2 illustrates ontology concepts
as points of accumulation.

To illustrate the creation of an ontology concept
let a context be a set containing a single descriptor

11

Figure 1: Contexts and Ontology Concepts

�

�

�

�

�

1

�

�

�

�

�

2

�

�

�

�

�

3

�

�

�

�

�

n

Contexts
set A1

Contexts
set A2

Contexts
set A3

Contexts
set An

Ontology Concept

n � �

Figure 2: Contexts Sets Converging to Ontology Concept

12

{〈Mathematik, 2〉}. If we add another context con-
taining a single descriptor of{〈Musik, 2〉} we form a
set of three contexts:{{〈Mathematik, 2〉}, {〈Musik, 2〉},
{〈Mathematik, 2〉 , 〈Musik, 2〉}}. As the possible sets of de-
scriptors describing documents create an accumulating cov-
erage, we can converge to an ontology concept, such as Long
Day School, defined by a set, to which all the contexts set of
descriptors belongs.

With infinite possible contexts, can we ensure the exis-
tence of a finite number of ontology concepts to which the
contexts are mapped? As it turns out, such a guarantee exists
in compact topologies. A topological spaceX is said to be
compactif every family of open sets(Gi/i ∈ I) forming a
cover ofX contains a finite subcover{Gi1 , Gi2 , ..., Gin}.
That is, any collection of open sets whose union is the
whole space has a finite subcollection whose union is still
the whole space. The Bolzano-Weierstrass theorem (Berge
1997) ensures that ifX is a compact space, every infinite
subsetA of X possesses a point of accumulation. Therefore,
if the contexts’ domain can be covered by a finite cover, such
as the number of topics, we can be certain that any infinite
set of contexts will accumulate to an ontology concept.

Discussion and Examples
A context can belong to multiple context sets, which in
turn can converge to different ontology concepts. Thus, one
context can belong to several ontology concepts simultane-
ously. For example, a context〈Musik, 2〉 can be shared by
many ontology concepts who has interest in culture (such
as schools, after school institutes, non-profit organizations,
etc.) yet it is not in their main role definition. Such over-
lap of contexts in ontology concepts affects the task of email
routing. The appropriate interpretation of a context of an
email that is part of several ontology concepts, is that the
email is relevant to all such concepts. Therefore, it should be
delivered to multiple departments in the local government.

Of particular interest are ontology concepts that are con-
sidered “close” under some distance metric. As an exam-
ple, consider the task of opinion analysis. With opinion
analysis, a system should judge not only the relevant area
of interest of a given email, but also determine the opinion
that is expressed in it. Consider an opinion analysis task,
in which opinions are partitioned into two categories (e.g.,
“for” and “against”). We can model such opinions using
a common concept ontology (say, that of Perspectives du
Theatre), with the addition of words that describe positive
and negative opinions. An email whose context fit with the
theme of Perspective du Theatre will be further analyzed to
be correctly classified to the “for” or “against” bin. Opinion
analysis can be extended to any number of opinions in the
same way.

Earlier we have discussed the issue of topological space
compactness and its impact on ontology generation. Since
there are infinite number of contexts, it may be impossible
to suggest a single ontology to which all concepts can be
mapped. For local governments, shifting public agenda sug-
gests that a notion of fixed ontology is not at all natural.
Nevertheless, we would like to use the Bolzano-Weierstrass
theorem to our benefit, and ensure that the contexts domain

can be covered by a finite cover, to ensure the existence of
points of accumulation.

From the discussion above, it is clear that a fixed ontology
cannot serve as a solution. However, when taking a snap-
shot of a local government, ontology is fixed. Some aspects
of the world are beyond the scope of the local government
and if we add to the local government ontology a concept
that represents all these aspects, we are ensured to have a fi-
nite cover of sizen + 1, with n representing the concepts of
current interest. Over time, emails that are beyond the cur-
rent scope of the local government are accumulated under
the n + 1 concept, and may be clustered to achieve a new
point of accumulation, and thus a new topic of interest in the
public agenda.

To summarize, the proposed model employs topological
definitions to delineate the relationships between contexts
and ontologies. A context is a set of descriptors and their
corresponding weights. A filter base is a set of contexts that
includes all of their possible unions. If the filter base has a
point of accumulation to which the set of contexts converges,
then it is defined as an ontology concept. The use of points
of accumulations defines ontology concepts to be the union
of contexts rather than intersection, as suggested in earlier
works. We next turn our attention to the uncertainty inherent
in automatic extraction of contexts.

Ranking Ontology Concepts
Up until now, the model we have provided assumed perfect
knowledge in the sense that a context is a true representa-
tive of a local view and an ontology concept (and its related
context) is a true representative of a global view. In the real
world, however, this may not be the case. When a context is
extracted automatically from some information source (e.g.,
an email message), it may not be extracted accurately and
descriptors may be erroneously added or eliminated. Also,
even for manually crafted ontology concepts, a designer may
err and provide an inaccurate context for a given concept.

In this section we highlight the uncertainty involved in
automatic knowledge extraction and propose a method for
managing such uncertainty. In particular, we discuss the
impact of uncertainty on the three tasks presented above,
namely email routing, opinion analysis, and public agenda.

Context Recognition Algorithms
Several methods were proposed in the literature for extract-
ing context from text. A set of algorithms were proposed
in the IR community, based on the principle of counting
the number of appearances of each word in the text, assum-
ing that the words with the highest number of appearances
serve as the context. Variations on this simple mechanism
involve methods for identifying the relevance of words to a
domain, using methods such as stop-lists and inverse docu-
ment frequency. For illustration purposes, we next provide
a description of a context recognition algorithm that uses
the Internet as a knowledge base to extract multiple contexts
of a given situation, based on the streaming in text format
of information that represents situations (Segev, Leshno, &
Zviran 2004). This algorithm has been used in identifying

13

context of chat discussions and medical documents, and is
currently part of the QUALEG solution.

LetD = {P1, P2, ..., Pm} be a series of textual descriptors
representing a document, where for allPi there exists a col-
lection of sets of contextsCij so that for eachi, ist(Cij , Pi)
for all j. That is, the textual propositionPi is true in each
of the set of contextsCij . The granularity of the descrip-
tors varies, based on the case at hand, and may be a single
sentence, a single paragraph, a statement made by a single
participant (in a chat discussion or a Shakespearian play),
etc. The context recognition algorithm identifies the outer
context setC defined by

ist(C,
m⋂

i=1

ist(Cij , Pi))∀j.

The input to the algorithm is a stream, in text format, of
information. The context recognition algorithm output is a
set of contexts that attempts to describe the current scenario
most accurately. The set of contexts is a list of words or
phrases, each describing an aspect of the scenario. The al-
gorithm attempts to reach results similar to those achieved
by the human process of determining the set of contexts that
describe the current scenario.

The context recognition algorithm consists of four ma-
jor phases: collecting data, selecting contexts for each text,
ranking the contexts, and declaring the current contexts. The
phase of data collection includes parsing the text and check-
ing it against a stop-list. To improve this process, the text can
be checked against a domain-specific dictionary. The result
is a list of keywords obtained from the text. The selection of
the current context is based on searching the Internet for rel-
evant documents according to these keywords and on clus-
tering the results into possible contexts. The output of the
ranking stage is the current context or a set of highest rank-
ing contexts. The set of preliminary contexts that has the top
number of references, both in number of Internet pages and
in number of appearances in all the texts, is declared to be
the current context. The success of the algorithm depends,
to a great extent, on the number of documents retrieved from
the Internet. With more relevant documents, less preprocess-
ing (using methods such as Natural Language Processing) is
needed in the data collection phase.

From an Automatically Extracted Context to
Ontology Concepts
Given the uncertainty involved in automatically extracting
contexts, sticking with a strict approach according to which
a context belongs to an ontology concept only if it is an el-
ement in its associated point of accumulation, may be too
restrictive. To illustrate this argument, LetC be a context in
a point of accumulationx and letC′ be an automatically ex-
tracted context. The following three scenarios are possible:

C ⊂ C′: In this case the context extraction algorithm has
identified irrelevant descriptors to be part of the context
(false positives). Unless the set of descriptors inC′ that
are not inC is a context inx as well, C′ will not be
matched correctly.

C′ ⊂ C: In this case the context extraction algorithm has
failed to identify some descriptors as relevant (false neg-
atives). Therefore,C′ will only be matched correctly ifC
is a context in the same filter base.

C * C′ ∧ C′ * C: This is the case in which both false posi-
tives and false negatives exist inC′.
A good algorithm for context extraction generates con-

texts in which false negatives and false positives are con-
sidered to be the exception, rather than the rule. Therefore,
we would like to measure some “distance” between an ex-
tracted context and various points of accumulation, assum-
ing a “closer” ontology concept to be better matched. To that
end, we define a metric function for measuring the distance
between a context and ontology concepts, as follows.

We first define distance between two descriptors〈ci, wi〉
and〈cj , wj〉 to be:

d(ci, cj) =
{ |wi − wj | i = j

max (wi, wj) i 6= j

This distance function assigns greater importance to de-
scriptors with larger weights, assuming that weights reflect
the importance of a descriptor within a context. To define
the best ranking concept in comparison with a given context
we use Hausdorff metric. LetA andB be two contexts and
a andb be descriptors inA andB, respectively. Then,

d(a, B) = inf{d(a, b)|b ∈ B}
d(A,B) = max{sup{d(a,B)|a ∈ A}, sup{d(b, A)|b ∈ B}}

The first equation provides the value of minimal distance
of an element from all elements in a set. The second equa-
tion identifies the furthest elements when comparing both
sets.

Example 2. Going back to our case study example, the
context{{〈Musik,8〉} , {〈Open Air,1〉}}may be relevant to
both Perspective du Theatre and Long Day School, since
in both, a descriptor Musik is found, albeit with different
weights. The distance between〈Musik,8〉 and〈Musik,6〉 in
Perspective du Theatre is2, and to〈Musik,2〉 in Long Day
School is6. Assume that{〈Open Air,1〉} is a false positive,
which does not appear in neither Perspective du Theatre
nor in Long Day School. Therefore, its distance from each
of the two points accumulation is1 (sinceinf{d(a, b)|b ∈
B} = 1, e.g., when comparing{〈Open Air,1〉} with
{〈Kulturpolitik, 1〉}). We can therefore conclude that the
distance between the context and Perspective du Theatre is
2, which is smaller than its distance from Long Day School
(computed to be6). Therefore, Perspective du Theatre will
be ranked higher than Long Day School.

We defer to an extended version of this paper the design of
efficient data structures to ensure efficient ranking computa-
tion. We now discuss the application of the ranking scheme
to the three tasks of email routing, opinion analysis, and pub-
lic agenda.

Email routing: The user provides QUALEG with a dis-
tance thresholdt1. Any ontology concept that matches
with a context, automatically generated from an email,

14

and its distance is lower than the threshold (d(A, B) < t1)
will be considered relevant, and the email will be routed
accordingly.

Opinion analysis: relevant set of ontology concepts are
identified, similarly to email routing. Then for each ontol-
ogy concept, the relative distance of the different opinions
of that concept are evaluated. If the difference in distance
is too close to call (given an additional thresholdt2), the
system refrains from providing an opinion (and the email
is routed accordingly). Otherwise, the email is marked
with the opinion with minimal distance.

Public agenda: If all ontology concepts (of then relevant
concepts) satisfy thatd(A,B) ≥ t1, the email is consid-
ered to be part of a new topic on the public agenda, and
is added to other emails under this concept. Periodically,
such emails are clustered and provided to decision makers
to determine the addition of new ontology concepts.

Discussion and Conclusion
The paper presents a topological framework for combining
contexts and ontologies in a model that maps contexts to on-
tologies. Contexts, individual views of a domain of interest,
are matched to ontology concepts, often considered to be the
“golden standard,” for various purposes such as routing and
opinion analysis. The model provides a conceptual struc-
ture, based on topological definitions, which delineates how
and when contexts can be mapped to ontologies. The un-
certainty, inherent to automatic context extraction, is man-
aged through the definition of distance among contexts and
a ranking of ontology concepts with respect to a given con-
text.

To analyze the context and the mapping of contexts to on-
tologies, data from a local government, in the form of email
messages from citizens, is used. The object of the local
government is to analyze the quantities of information flow-
ing in that could not be handled using its human resources.
The information is examined to see whether the correct con-
text could be identified and mapped to the right ontology.
Since the project involves different countries and different
languages, a multilingual ontology system is used. Accord-
ing to the model, different sets of words, representing the
same concept, can be mapped to the multilingual ontology.

Each ontology concept was divided into positive and neg-
ative citizen opinions about the topics discussed in the email
messages. This classification allows the local government
to make decisions according to the citizen opinions, which
are derived from the information received by email and ana-
lyzed only by the algorithm and not by a civil servant.

Initial experiments has yielded reasonable results. The
results show that it is possible to automatically perform op-
erations such as information routing and opinion analysis,
based on the mapping of contexts and ontologies. We shall
briefly provide here a few observations, gathered from the
experiments. We defer a complete report on our experiments
to an extended version of this paper.

During our experiments with the model we have identified
several factors that may contribute to uncertainty. The main
reason for errors in ontology concept identification pertains

to the preprocessing of the input. The preprocessing was
limited to a minimal and näıve dissection of the input. Most
of the emails consisted of few sentences only, resulting in a
one-shot attempt to determine the correct context. These re-
sults could be improved using different preprocessing meth-
ods, and the utilization of “soft” NLP tools. The ontology
definition, which is currently restricted to a small number of
words, also contributed to a low recall rate.

Some problems identified in the mapping of the context to
ontology concepts were based on word association. For ex-
ample, after an email ontology was identified as Perspectives
du Theater, an attempt was made to identify its opinion. The
number of positive words in the email were counted, and the
result was three positive words taken from a predefined list.
Therefore, the algorithm identified the opinion as positive.
However, a single negative word in the email, not located
on the list, transformed the opinion into a negative one. We
are currently seeking more advanced techniques to improve
opinion analysis. These methods include the analysis of the
position of negative and positive words in an email.

As a final comment, we note that the current model as-
sumes the availability of a predefined ontology. Therefore,
ontology concepts and their relationships are provided be-
forehand, and newly extracted contexts are mapped to ex-
isting concepts. A possible direction for further research
would be to utilize the partial overlapping among contexts
to identify ontological relationships, such as generalization-
specialization relationships.

Acknowledgments
The work of Gal was partially supported by two European
Commission 6th Framework IST projects, QUALEG and
TerreGov, and the Fund for the Promotion of Research at
the Technion. The authors thank Giora Dula for his useful
comments. We thank Amir Taller for his assistance in in-
tegrating the Knowledge Extraction component with QUA-
LEG infrastructure.

References
Assadi, H. 1998. Construction of a regional ontology from
text and its use within a documentary system.In Proceed-
ings of the International Conference on Formal Ontology
and Information Systems (FOIS-98).

Berge, C. 1997.Topological Spaces. Dover Publications.

Borgida, A., and Brachman, R. J. 1993. Loading data
into description reasoners. InProceedings of the 1993
ACM SIGMOD international conference on Management
of data, 217–226.

Bunge, M. 1977.Treatise on Basic Philosophy: Vol. 3:
Ontology I: The Furniture of the World. New York, NY: D.
Reidel Publishing Co., Inc.

Bunge, M. 1979.Treatise on Basic Philosophy: Vol. 4:
Ontology II: A World of Systems. New York, NY: D. Reidel
Publishing Co., Inc.

Choset, H., and Nagatani, K. 2001. Topological simultane-
ous localization and mapping (slam): Toward exact local-

15

ization without explicit localization.IEEE Trans. on Ro-
botics and Automation17(2):125–137.

Chung, C. Y.; Lieu, R.; Liu, J.; Luk, A.; Mao, J.; and
Raghavan, P. 2002. Thematic mapping from unstruc-
tured documents to taxonomies. InProceedings of the 11th
International Conference on Information and Knowledge
Management (CIKM).

Doan, A.; Madhavan, J.; Domingos, P.; and Halevy, A.
2002. Learning to map between ontologies on the semantic
web. InProceedings of the eleventh international confer-
ence on World Wide Web, 662–673. ACM Press.

Donini, F.; Lenzerini, M.; Nardi, D.; and Schaerf, A. 1996.
Reasoning in description logic. In Brewka, G., ed.,Princi-
ples on Knowledge Representation, Studies in Logic, Lan-
guages and Information. CSLI Publications. 193–238.

Gal, A.; Anaby-Tavor, A.; Trombetta, A.; and Montesi, D.
2005a. A framework for modeling and evaluating auto-
matic semantic reconciliation.VLDB Journal14(1):50–67.

Gal, A.; Modica, G.; Jamil, H.; and Eyal, A. 2005b. Auto-
matic ontology matching using application semantics.AI
Magazine26(1).

H. Davulcu, S. V., and Nagarajan, S. 2003. Ontominer:
Bootstrapping and populating ontologies from domain spe-
cific websites. InProceedings of the First International
Workshop on Semantic Web and Databases.

Kashyap, V., and Sheth, A. 1996. Semantic and schematic
similarities between database objects: a context-based ap-
proach.VLDB Journal5:276–304.

Kashyap, V.; Ramakrishnan, C.; Thomas, C.; and Sheth,
A. 2005. Taxaminer: An experimentation framework for
automated taxonomy bootstrapping.International Journal
of Web and Grid Services, Special Issue on Semantic Web
and Mining Reasoning. to appear.

Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical foundation
of object-oriented and frame-based languages.Journal of
the ACM42.

Koenig, S., and Simmons, R. 1996. Passive distance learn-
ing for robot navigation. InProceedings of the Thirteenth
International Conference on Machine Learning (ICML),
266–274.

Madhavan, J.; Bernstein, P.; and Rahm, E. 2001. Generic
schema matching with Cupid. InProceedings of the In-
ternational conference on very Large Data Bases (VLDB),
49–58.

Madhavan, J.; Bernstein, P.; Domingos, P.; and Halevy,
A. 2002. Representing and reasoning about mappings be-
tween domain models. InProceedings of the Eighteenth
National Conference on Artificial Intelligence and Four-
teenth Conference on Innovative Applications of Artificial
Intelligence (AAAI/IAAI), 80–86.

Maedche, A., and Staab, S. 2001. Ontology learning for
the semantic web.IEEE Intelligent Systems16.

McCarthy, J. 1993. Notes on formalizing context.In Pro-
ceedings of the Thirteenth International Joint Conference
on Artificial Intelligence.

McGuinness, D.; Fikes, R.; Rice, J.; and Wilder, S. 2000.
An environment for merging and testing large ontologies.
In Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Reasoning
(KR2000).
Melnik, S., ed. 2004.Generic Model Management: Con-
cepts and Algorithms. Springer-Verlag.
Mena, E.; Kashyap, V.; Illarramendi, A.; and Sheth, A. P.
2000. Imprecise answers in distributed environments: Esti-
mation of information loss for multi-ontology based query
processing.International Journal of Cooperative Informa-
tion Systems9(4):403–425.
Motro, A., and Rakov, I. 1998. Estimating the quality of
databases.Lecture Notes in Computer Science.
Noy, F. N., and Musen, M. 2000. PROMPT: Algorithm
and tool for automated ontology merging and alignment.
In Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-2000), 450–455.
Papatheodorou, C.; Vassiliou, A.; and Simon, B. 2002.
Discovery of ontologies for learning resources using word-
based clustering.Proceedings of the World Conference on
Educational Multimedia, Hypermedia and Telecommuni-
cations (ED-MEDIA 2002)1523–1528.
Remolina, E., and Kuipers, B. 2004. Towards a general
theory of topological maps.Artificial Intelligence152:47–
104.
Segev, A.; Leshno, M.; and Zviran, M. 2004. Context
recognition using internet as a knowledge base. Technical
Report TR-04-ISE-1, Technion.
Shatkay, H., and Kaelbling, L. 1997. Learning topologi-
cal maps with weak local odometry information. InProc.
IJCAI-97.
Siegel, M., and Madnick, S. E. 1991. A metadata approach
to resolving semantic conflicts. InProceedings of the 17th
International Conference on Very Large Data Bases, 133–
145.
Simhon, S., and Dudek, G. 1998. A global topological map
formed by local metric maps.In IEEE/RSJ International
Conference on Intelligent Robotic Systems3:1708–1714.
Spyns, P.; Meersman, R.; and Jarrar, M. 2002. Data mod-
elling versus ontology engineering.ACM SIGMOD Record
31(4).
Terziyan, V., and Puuronen, S. 2000. Reasoning with mul-
tilevel contexts in semantic metanetwork. In P. Bonzon,
M. Cavalcanti, R. N., ed.,Formal Aspects in Context, 107–
126. Kluwer Academic Publishers.
van Rijsbergen, C. J. 1979.Information Retrieval. London:
Butterworths, second edition edition.
Vickery, B. 1966. Faceted classification schemes. New
Brunswick, N.J.: Graduate School of Library Service, Rut-
gers, the State University.

16

Context-driven Disambiguation in Ontology Elicitation ∗

Pieter De Leenheerand Aldo de Moor
Semantics Technology and Applications Research Laboratory (STARLab)

Department of Computer Science
Vrije Universiteit Brussel

Pleinlaan 2, B-1050 BRUSSEL, Belgium
{pieter.de.leenheer,aldo.de.moor}@vub.ac.be

Abstract

Ontologies represent rich semantics in a lexical way.
Lexical labels are used to identify concepts and rela-
tionships, though there is no bijective mapping between
them. Phenomenons such as synonyms and homonyms
exemplify this, and can result in frustrating misunder-
standing and ambiguity. In the elicitation and appli-
cation of ontologies, the meaning of the ontological
knowledge is dependent on the context. We consider
the role of context in ontology elicitation by introduc-
ing context in a concept definition server for ontology
representation. We also adopt other features of context
found in literature, such as packaging of knowledge,
aligning elements of different contexts, and reasoning
about contexts. Finally, we illustrate context-driven on-
tology elicitation with a real world case study.

Introduction
Though a vast amount of research has been conducted on
formalising and applying knowledge representation (KR)
models (Gruber 1993; Guarino 1998; Meersman 1999; Ush-
old & Gruninger 1996; Farquhar, Fikes, & Rice 1997), there
is still a major problem with lexical disambiguation and sub-
jectivity during theelicitation andapplicationof an ontol-
ogy. The problem is principally caused by two facts: (i) no
matter how expressive ontologies might be, they are all in
fact lexical representations of concepts, relationships, and
semantic constraints; and (ii) linguistically, there is no bi-
jective mapping between a concept and its lexical represen-
tation.

During the elicitation of an ontology (cfr. Fig. 1), its
basic knowledge elements (such as concepts and relation-
ships) are extracted from various resources such as (struc-
tured) documents and human domain experts. Many on-
tology approaches focus on the conceptual modelling task,
hence the distinction between lexical level (term for a con-
cept) and conceptual level (the concept itself) is often weak

∗We would like to thank our colleagues in Brussels, especially
Robert Meersman and Luk Vervenne, for the valuable discussions
about theory and case. This research has been partially funded
by the EU Leonardo da Vinci Project CODRIVE (BE/04/B/F/PP-
144.339)
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

or ignored. In order to represent concepts and relationships
lexically, they usually are given a uniquely identifying term
(or label). However, the context of the resource the ontol-
ogy element was extracted from is not unimportant, as the
meaning of a concept behind a lexical term is influenced by
this context of elicitation. Phenomenons such as synonyms
and homonyms are typical examples of this, and can result in
frustrating misunderstanding and ambiguity when unifying
information from multiple sources. Similar for theappli-

Figure 1: Ontologies are elicited by extracting knowledge
from various sources and are also applied in different con-
texts.

cation of an ontology: the interpretation of the knowledge
elements (which are referred to by terms) of the ontology is
ambiguous if the context of application, such as the purpose
of the user, is not considered.

Context was already introduced before to tackle lexical
disambiguation (Buvǎc 1996b; Meersman 2001). In the lit-
erature, different, often unrelated interpretations of context
in KR can be found. E.g., researchers introduced context to
provide subjectivity: a context is a grouping of knowledge
that provides a subjective (i.e. “context-dependent”) view
of a particular (community of) agent(s) (Guha & D. 1990;
Lenat 1995; Theodorakis 1999). Our purpose in this paper,
however, is to examine in detail the role that multiple con-
texts can play in the disambiguation of terms in the ontology
elicitation process.

This paper is structured as follows: first, we give a syn-
thesis of our literature study on context, and identify the fea-

17

tures of contexts useful for our purpose. Then we present
the DOGMA ontology representation framework, where we
introduce the idea of context and a concept definition server
to (i) logically group parts of knowledge, (ii) disambiguate
the lexical representation of concepts and relationships, by
distinguishing between language level and conceptual level,
and (iii) build semantic bridges between different ontolog-
ical contexts. We illustrate our framework by consider-
ing context-driven ontology elicitation in a real-world case
study.

Contexts, Situations and Possible Worlds
Today in AI and linguistics, the wordcontexthas gained
a (confusing) variety of meanings, which have led to di-
verse interpretations and purposes of context (Sowa 1995;
1997). Moreover, context is found in various AI application
fields such as database integration (Farquharet al. 1995),
knowledge translation (Buvač & Fikes 1995), and reasoning
(Giunchiglia 1993; Nayak 1994; McCarthy & Buvač 1994).

Peirce (Buchler 1955), with his preliminary notion of
sheets of assertionwas one of the pioneers in the formali-
sation of context. Although well known, there is no com-
mon understanding of its semantics. The theories of seman-
tics based onpossible worlds(Kripke 1963) ormulti-modal
logicare also associated with the notion of context. A propo-
sition is assigned a true or false value depending on which
world (read: “context”) is considered among a set of possi-
ble worlds. Amongst this set of possible worlds there is the
actual world, assignedw0. Some worlds are accessible from
some other worlds. A proposition isnecessarilytrue inw0 if
it is true in every world accessible fromw0. A proposition is
possiblytrue if it is true in some (at least one) possible world
accessible fromw0. Instead of assuming possible worlds,
Hintikka (1963) developed independently an equivalent se-
mantics for multi-modal logic, which he called model sets.

McCarthy (1987; 1993) formalised context as first-class
objects by introducing his basic relationist(C, p). This ist
predicate might be read as: “propositionp is true in context
C”.

Situation semantics(Barwise & Perry 1983) is a reaction
to multi-modal logic. While each possible worlds’ model
represents an large, open-ended, unbounded region of space-
time, situationsare smaller chunks that are more “manage-
able” (Sowa 2000, pp. 184).

Guha et al. (1990), adopt a notion of context for scal-
ing the management of the very large knowledge base Cyc
(Lenat 1995). They implementmicrotheoriesthat allow
assumptions in a limited context, but leave open the abil-
ity to use the knowledge in a larger context. Microtheo-
ries are organised in an subsumption hierarchy, where ev-
erything asserted in the super-microtheory, is true in the
sub-microtheory, unless explicitly contradicted. Examples
are theories of bibliography keeping, theories of car sell-
ing company, etc. Similar to McCarthy’s conception, micro-
theories are inter-related via lifting rules stated in outer con-
text.

McCarthy’s intention to use context was predominantly
for reasoning about relationshipsbetweencontexts in an
outer context. A proposition that is true in one context,

might be asserted in another context under certain condi-
tions. He calls thislifting. For example the same predicatep
in contextC1 can have a different name or arity, or be equiva-
lent in another contextC2. Generally, a lifting formula spec-
ifies an alignment between proposition and terms in subcon-
texts to possibly more general propositions and terms in an
outer context. Subcontexts are often specialised with regard
to time, place, and vocabulary. According to McCarthy how-
ever, there is no “root” context in which all axioms hold and
everything is meaningful: for each axiom in a given con-
text, one can always find a more general context in which
the axiom fails.

McCarthy’s work was further developed by Buvač and
Guha (1991). Buvǎc (1996b) concluded that there is a need
for common sense knowledge to lexically disambiguate a
proposition like “Vanja is at a bank”. From this proposition,
the inference system cannot determine whether Vanja is at a
river bank or at a financial bank. Note that McCarthy (1993)
also concluded this as one of the reasons for introducing his
formal context. He argued similarly that a term might have
a particular meaning in a professional conversation different
from the one in daily language use. This trend is reinforced
by the field of linguistics (Langacker 1987).

Buvǎc (1996a) also extended the propositional logic of
context to the quantificational case, providing a way to ex-
press first-order properties of contexts, and the truth of arbi-
trary predicates within a context.

Theodorakis (1999) introduces a context formalism from
the perspective of data modeling. A context is an abstract
object containing other objects, viz. data models. He or-
ganises different data models constructed from different per-
spectives or levels of abstraction into different contexts.
These contexts are “integrated” by cross-referencing one to
another. This is very similar to Guha’s micro-theories.

In conceptual graph theory (Sowa 2000), context pro-
vides a means to describe what is true in a certain situ-
ation, without requiring the description of these situations
per se (Mineau, Missaoui, & Godinx 2000). Mineau et al.
(1997) propose to structure the world into a partial order of
subsumption between contexts. The most general context
(which does not exist in McCarthy’s opinion) is called, in
honour of Peirce, theuniversal sheet of assertion.

Giunchiglia (1993) was especially motivated by the prob-
lem of reasoning on a subset of the global knowledge base.
The notion of context is used for this “localisation”. His
perspective is similar to (McCarthy 1987; 1993).

Guha (1991) defined a mapping from McCarthy’s con-
texts tosituationsof Barwise and Perry (1983), i.e., for every
contextC, there exists a situations andfor every proposition
p: p is true in contextC if and only if situations is described
by p. A similar parallel exists between logic of context and
standard multi-modal logic. For more we refer to Halpern
and Moses (1992).

Synthesis Based on our literature study, we distinguish
four effective features of context (for reasoning), which we
aim to integrate in our framework: (i) contexts package re-
lated knowledge: in that case a context defines (part of)

18

the knowledge of a particular domain; (ii) context provides
pointer for lexical disambiguation; (iii) lifting rules provide
an alignment between assertions in disconnected knowledge
bases (or contexts); and (iv) “Statements about contexts are
themselves in contexts” (McCarthy 1996); in other words,
contexts can be embedded.

Summarising, to disambiguate terms, in general, an anal-
ysis of multiple contexts is needed. However, to implement
these theoretical notions in real world systems is not trivial.
Such implementation is the focus of the DOGMA ontology
framework.

DOGMA Ontology Framework
DOGMA1 is an ontology representation model and frame-
work that separates the specification of theconceptualisa-
tion (i.e. lexical representation of concepts and their inter-
relationships) from itsaxiomatisation(i.e. semantic con-
straints). This principle corresponds to an orthodoxmodel-
theoreticapproach to ontology representation and develop-
ment. Consequently, the DOGMA framework consists of
two layers: aLexon Baseand aCommitment Layer. A full
formalisation of DOGMA Ontology is found in (De Leen-
heer & Meersman 2005).

Lexon Base
The Lexon Base is an uninterpreted, extensive and reusable
pool of elementary building blocks for constructing an on-
tology. These building blocks (calledlexons2) represent
plausible binary fact-types(e.g., Person drives/isdriven by
Car). The Lexon Base is stored in an on-line DOGMA
server. For guiding the ontology engineer through this very
large database,contextsimpose a meaningful grouping of
theselexonswithin the Lexon Base. The context of a lexon
refers to the source it was extracted from. Sources could be
terminological3 or human domain experts. A lexon is de-
fined as:

Definition 1 A lexon is an ordered 5-tuple of the form
< γ, t1, r1, r2, t2 > whereγ ∈ Γ, t1 ∈ T , t2 ∈ T , r1 ∈ R
and r2 ∈ R. Γ is a set of identifiers,T and R are sets of
strings in some alphabetA; t1 is called the headword of the
lexon andt2 is called the tailword of the lexon;r1 is the role
of the lexon,r2 is the co-role;γ is the context in which the
lexon holds.

Role and co-role indicate that a lexon can be read in two
directions. A lexon< γ, t1, r1, r2, t2 > is a fact type that
might hold in a domain, expressing that within the context
γ, an object of typet1 might plausibly play the roler1 in
relation to an object of typet2. On the other hand, the same
lexon states that within the same contextγ, an object of type
t2 might play the co-roler2 in (the same) relation to an ob-
ject of typet1.

1acronym for Developing Ontology-Guided Mediation of
Agents; a research initiative of VUB STARLab

2Lexons are DOGMA knowledge elements.
3“A context refers to text, information in the text, to the thing

the information is about, or the possible uses of the text, the infor-
mation in it or the thing itself” (Sowa 2000, pp. 178).

Some role/co-role label pairs of lexons in the Lexon Base
might intuitively express a specialisation relationship, e.g.
< γ,manager, is a, subsumes, person >. However, as
already mentioned above: the lexon base is uninterpreted,
so the decision to interpret a role/co-role label pair as be-
ing a part-of or specialisation relation, is postponed to the
commitment layer, where the semantic axiomatisation takes
place.

Commitment Layer
Committing to the Lexon Base means selecting a mean-
ingful set Σ of lexons from the Lexon Base that approx-
imates well the intended4 conceptualisation, and subse-
quently putting semantic constraints on this subset. The re-
sult (i.e.,Σ plus a set of constraints), called anontological
commitment, is a logical theory that intends to model the
meaning of this application domain. An ontological com-
mitment constitutes an axiomatisation in terms of a network
of lexons logically connected and provides a partial view of
the Lexon Base. These networks are visualised in a NIAM5-
like schema (cfr. Fig. 2). An important difference with the
underlying Lexon Base is that commitments are internally
unambiguous and semantically consistent6. Once elicited,
ontological commitments (i.e. ontologies) are used by vari-
ous applications such as information integration and media-
tion of heterogeneous sources. Though ontologies can differ
in structure and semantics, they all are build on a shared
Lexon Base.

CARPERSON

DRIVES / DRIVEN BY

Figure 2: Illustration of a lexon that is described in a hypo-
thetical contextγ .

The commitments are specified in a designated language,
called Ω-RIDL (Verheyden, De Bo, & Meersman 2004).
It describes semantic constraints in terms of lexons, cov-
ering all classical database constraints (cfr. ORM). It also
specifies which role/co-role label pairs are interpreted as
which ontological relationship (such as subsumption, part-
of). Consequently, this impacts the semantics of the com-
mitment.

Commitments are also categorised and stored in acom-
mitment libraryin the DOGMA server.

Contexts and Term Disambiguation
A lexon is a lexical representation of a conceptual relation-
ship between two concepts, however, there is no bijective
mapping between a lexical representation and a concept.
Consider for example phenomenons such as synonyms and

4With respect to the application domain.
5NIAM (Verheijen & Van Bekkum 1982) is the predecessor of

ORM (Halpin 2001).
6Although it is outside the scope of this paper, we find it valu-

able to note that in the research community it is debated that consis-
tency is not necessarily a requirement for an ontology to be useful.

19

homonyms that can result in frustrating misunderstanding
and ambiguity (see Def. 5). As we have seen, the mean-
ing of a lexical term can vary depending on the context that
holds.

In DOGMA, a context is used to group lexons that are
related7 to each other in the conceptualisation of a domain.

A context in DOGMA has one fundamental property: it
is also a mapping function used to disambiguate terms by
making them language-neutral. Based on Meersman (2001),
we can give the following definition for a context:

Definition 2 A contextγ ∈ Γ is a mappingγ : T ∪R → C
from the set of terms and roles to the set of concept identi-
fiers in the Universe of Discourse (UoD)C. In a context,
every term or role is mapped to at most one concept identi-
fier. A contextγ is also a reference to one or more documents
and/or parts of a document8. This reference is defined by the
mappingcd : Γ → D.

In this case we can check which lexons are valid in that spe-
cific context, more specifically those lexons extracted from
(the parts of) the documents to which the contextγ refers. A
tuple< γ, t > identifies a unique concept. With a concept
we mean the thing itself to which we refer by means of a
term (or role) in the Lexon Base. If we want to describe the
set of concepts of our UoD formally, we can do this, accord-
ing to Meersman (2001), by introducing the partial function
ct : Γ × T ∪ R → C which associates a concept with a tu-
ple consisting of a context and a term (or role). This partial
function, which describes a form ofmeaning articulation, is
defined as follows:

Definition 3 (meaning articulation) Given the partial
functionct : Γ × T ∪R → C, then

ct(γ, t) = c ⇔ γ(t) = c.

An associationct(γ, t) = c is called the “meaning articula-
tion” or articulation9 of a termt (in a particular contextγ)
into a concept identifierc. ct is called a meaning articula-
tion mapping.

The set of concept identifiersC of the UoD can be formally
defined as:

Definition 4 The set of concepts identifiersC =
{ct(γ, t)|γ ∈ Γ, t ∈ T ∪R}.
Example 1 illustrates the two latter definitions:

Example 1 Consider a term “capital”. If this term was
elicited from a typewriter manual, it has a different mean-
ing than when elicited from a book on marketing. Hence,
we have resp. two contexts:γ1 = typewriter manual, and
γ2 = marketing book. To express that “capital” is associ-
ated with different meanings, we writect(γ1, capital) = c1,
andct(γ2, capital) = c2.

7Not necessarily in a logical way but more in an informal way.
E.g., lexons are related because they were elicited from the same
source, i.e. the elicitation context.

8At this stage, we only require a document should provide in-
formation what or whom the lexon was elicited from. See our case
study below for a concrete example.

9We adopt the term articulation from Mitra et al. (2000) (see
discussion).

Until now, the endpoint of the meaning articulation is a
meaningless concept identifierc1, c2 ∈ C. However, in
the next section we will introduce the Concept Definition
Server. Each concept identifier itself will point to a partic-
ular concept definition. The terms (on thelanguage level)
that are articulated (usingct) are then mapped to a particular
explicationof a meaning, i.e. a concept definition of a term
residing in the Concept Definition Server (on theconceptual
level), instead of to a meaningless concept identifier.

Before we continue, some useful terminology, as defined
by De Bo and Spyns (2004), is presented in Def. 5:

Definition 5

• Two termst1 ∈ T and t2 ∈ T are synonyms within a
contextγ if and only if(γ(t1) = c ⇔ γ(t2) = c).

• Two identical termst ∈ T are called homonyms if and
only if ∃γ1, γ2 ∈ Γ : γ1(t) 6= γ2(t).

These definitions also hold for rolesr ∈ R.

Completing the Articulation: Concept
Definition Server

The idea for a Concept Definition Server (CDS) was first
mentioned in (De Bo, Spyns, & Meersman 2004), and is
based on the structure of Wordnet (Fellbaum 1998). CDS is
a database in which you can query for a term, and get a set
of different meanings orconcept definitions(calledsensesin
Wordnet) for that term. A concept definition is unambigu-
ously explicated by a gloss (i.e. a natural language (NL)
description) and a set of synonymous terms. Consequently
we identify each concept definition in the CDS with a con-
cept identifierc ∈ C.
The following definition specifies the CDS:

Definition 6 We define a Concept Definition ServerΥ as a
triple < TΥ,DΥ, concept > where:

• TΥ is a non-empty finite set of strings (terms)10;
• DΥ is a non-empty finite document corpus;
• concept : C 7−→ DΥ × ℘(TΥ) is an injective mapping

between concept identifiersc ∈ C and concept defini-
tions.

Further, we defineconceptdef(t)

= {concept(c) | concept(c) =< g, sy > ∧t ∈ sy},

where glossg ∈ DΥ and synsetsy ⊆ TΥ.

Going from the language level to the conceptual level cor-
responds to articulating lexons into meta-lexons:

Definition 7 Given a lexonl :=< γ, t1, r1, r2, t2 >, and
an instance of an articulation mappingct : Γ × T ∪
R → C with ct(γ, t1) = ct1 , ct(γ, r1) = cr1 , ct(γ, r2) =
cr2 , ct(γ, t2) = ct2 (ct1 , cr1 , cr2 , ct2 ∈ C). A meta-lexon
ml,ct :=< ct1 , cr1 , cr2 , ct2 > (on the conceptual level) is
the result of “articulating” lexonl via ct.

10Additionally, we could requireT ∪R ⊆ TΥ (T andR from the
Lexon Base). Doing so, we require each term and role in the Lexon
Base to be a term in the synset of at least one concept definition.

20

In Fig. 3 the articulation is illustrated by ameaning lad-
der going from the (lower) language level to the (higher)
conceptual level and vice-versa. This ladder is inspired by
Stamper’ssemiotic ladder. Stamper (1973) argues that it
is naive to see information as a primitive or atomic con-
cept. From his operational point of view he means that in
defining something, it is important to specify precisely by
what procedure or operations to measure or perform. Hence,
the solution in attempting to define “information” is to see
information as signs and to define the different aspects or
levels of these signs based on the operations one can do
on these signs. His semiotic ladder consists of six views
on signs (levels) from the perspective of physics, empirics,
syntactics, semantics, pragmatics and the social world, that
together form a complex conceptual structure. We refer to
Fig. 1, where we introduced the levels and the ladder in the
application–elicitation setting.

Next, another interesting definition can be given:

Definition 8 (Meta-lexon Base)Given a Lexon BaseΩ and
a total articulation mappingct : Γ × T ∪ R → C, a Meta-
lexon BaseMΩ,ct = {ml,ct|l ∈ Ω} can be induced.

Figure 3: Illustration of the two levels in DOGMA ontol-
ogy: on the left – the lexical level, lexons are elicited from
various contexts. On the right, there is the conceptual level
consisting of a concept definition server. The meaning lad-
der in between illustrates the articulation of lexical terms
into concept definitions.

Example 2 As an illustration of the defined concepts, con-
sider Fig. 4. The term “capital” in two different con-
texts can be articulated to different concept definitions in
the CDS. The terms are part of some lexons residing in
the Lexon Base. The knowledge engineer first queries the
CDS Υ for the various concept definitions of the term:
conceptdef(capital) = Scapital ⊆ DΥ × ℘(TΥ). Next,
he articulates each term to the concept identifier of the ap-
propriate concept definition:

• Term “capital” was extracted from a typewriter manual,
and is articulated to concept identifierc1 that corresponds

Figure 4: Illustration of two terms (within their resp. con-
texts), being articulated (via the mappingct) to their appro-
priate concept definition.

to concept definition (or meaning)s1 ∈ Scapital (as illus-
trated on the right of Fig. 4). A gloss and set of synonyms
(synset) is specified fors1:

concept
(
ct(typewriter manual, capital)

)
= s1.

• Term “capital” was extracted from a marketing book, due
to the different context it was extracted from, it is articu-
lated to another concept identifierc2 that is associated
with a concept definitions2 ∈ S:

concept
(
ct(marketing book, capital)

)
= s2.

On the other hand, suppose we have elicited a term “ex-
ercise” from the typewriter manual, and a term “example”
from the marketing book. The engineers decide indepen-
dently to articulate the resp. terms to the same concept def-
inition with concept identifierc3 with gloss: “a task per-
formed or problem solved in order to develop skill or under-
standing”:

c3 = ct(typewriter manual, exercise)
= ct(marketing book, example).

This articulation defines a semantic bridge between two
terms in two different ontological contexts.

Shared Competency Ontology-Building
In this section we illustrate context-driven ontology elicita-
tion in a realistic case study of the European CODRIVE11

project.

Competencies and Employment
Competenciesdescribe the skills and knowledge individu-
als should have in order to be fit for particular jobs. Espe-
cially in the domain of vocational education, having a cen-
tral shared and commonly used competency model is be-
coming crucial in order to achieve the necessary level of

11CODRIVE is an EU Leonardo da Vinci Project
(BE/04/B/F/PP-144.339).

21

interoperability and exchange of information, and in order
to integrate and align the existing information systems of
competency stakeholders like schools or public employment
agencies. None of these organisations however, have suc-
cessfully implemented a company-wide “competency initia-
tive”, let alone a strategy for inter-organisational exchange
of competency related information.

The CODRIVE project aims at contributing to a
competency-driven vocational education by using state-of-
the-art ontology methodology and infrastructure in order to
develop a conceptual, shared and formal KR of competence
domains. Domain partners include educational institutes
and public employment organisations from various Euro-
pean countries. The resulting shared “Vocational Compe-
tency Ontology” will be used by all partners to build inter-
operable competency models.

In building the shared ontology, the individual ontologies
of the various partners need to be alignedinsofar necessary.
It is important to realise that costly alignment efforts only
should be made when necessary for the shared collaboration
purpose. In order to effectively and efficiently define shared
relevant ontological meanings, context is indispensable.

Example: Adding a Term
The example concerns two participating organisationsEI
andPE, instances of resp.educational instituteandpublic
employment agency. Core shared and individual ontologies
have already been defined for bothEI andPE. Fig. 5 illus-
trates the different contexts12 called resp.SHARED, EI
andPE. TheSHARED ontology has amongst its concepts
Task, with as subtypesEducational Task andJob Task
(is a represented by lexons). The concepts as referred in lex-
ons are in fact terms, but within the contextSHARED they
refer to at most one concept definition. The concepts under-
lined in the rules below are also modelled but not shown,
similarly for the specialisation hierarchies ofEI andPE.

EI is a national bakery institute, responsible for defining
curriculum standards for bakery courses. It now wants to
add a new term “panning” to the ontology. It defines this
informally as the act of “depositing moulded dough pieces
into baking pans with their seam facing down”. Fig. 5 shows
the steps in ontology alignment: step 1 is adding the new
term (which resides in some lexon which is not shown) to
ontologyEI. Step 2 is the meaning articulation, illustrated
by an arrow going from the language level of the ontology
to a concept definition in the CDS.

Step 3 is triggered by the following informal rule:
R1: The CODRIVE ontology server (COS) asks
EI to classify the shared concept to which
the term belongs.
The EI representative classifies panning as an
Educational Task (illustrated as an arrow labelled
with step 3). COS now looks in its ontological meta-model.
One of the rules there demands:
R2: IF a New Task is an Educational Task ,

12In this case study, each context corresponds to exactly one on-
tology and vice-versa. However, an ontology engineer might select
lexons from various contexts for modelling his ontology.

1

STUDENT

DOUGH

4

R1

PANNING

R5

3

R4

5

6

GLOSS = "any piece of work that is undertaken or
attempted"

SYNSET = {labor,undertaking}

GLOSS = "a required work that
students must master"

SYNSET = {educational work}

GLOSS = "a required skill for a job"

γ : SHARED γ : PEγ : EI

SKILL

ct

CONCEPT DEFINITION SERVER

2

R3

R2

PANNINGTASK

IS_A
 / SU

BSU
M

ES

ct

EDUCATIONAL
TASK

JOB TASK

IS
_A

 /
SU

BS
U

M
ES

GLOSS = "depositing moulded dough pieces into
baking pans with their seam facing down"

SYNSET = {}

LEXON BASE + COMMITMENT LAYER

ct ct ct

SYNSET = {}

GLOSS = "an essential skill
in baking"

SYNSET = {job labor}

Figure 5: Illustration of the case study: top level, from right
to left: ontologiesEI, SHARED, andPE. On the bottom:
CDS.

and the Individual Ontology Owner
is an Educational Institute THEN a
Full semantic analysis of the New Task needs
to be added to the Individual Ontology of the
Individual Ontology Owner ;
another meta-rule fires as an immediate consequence:
R3: IF a Full Semantic Analysis needs to be
made of a Concept in an Individual Ontology
or Shared Ontology THEN the Concept Template
needs to be filled out in that Ontology .
Furthermore, for each Term and Role of that
definition, a Meaning Articulation needs to
be defined.
This means that in this case the template states it is
necessary to know who is the performer of the task (e.g.
Student), what inputs are necessary for the task (e.g.Pan,
Dough), what is the result of the task (Pan with Dough),
and so on. RulesR2 and R3 trigger step 4: in theEI
context, the new taskPanning is semantically analysed,
which boils down to extending the description in terms of
lexons (illustrated by the lexons within the dashed box).
Similarly to step 1, each new term or role in this box must
be articulated (not shown in the figure).

Concurrently another rule triggers step 5:
R4: IF an Educational Task is added to an
Individual Ontology THEN a corresponding
Job Task needs to be defined in all
instances of Individual Ontology of all
Public Employment Agencies ;
The rationale for this rule is that public employment
agencies need to be aware of changes to the curricula of
educational institutes, so that they are better able to match
job seekers with industry demands. However, unlike the
definitions of educational tasks, the job task definitions in

22

public employment agency ontologies only require a short
informal description of the concept itself, not an extended
template definition (step 6):
R5: IF a Job Task is added to an
Individual Ontology THEN a Gloss needs to
be defined for that Concept .
Of course, public employment agencies also could have the
need for template definitions, but those would refer to the
job matching processes in which the tasks play a role (why
is panning needed), not tohow the tasks themselves are to
be performed.

Note the density of lexon elicitation in theEI ontology
(on the left of Fig. 5) compared to the sparsely populated
PE ontology (on the right of Fig. 5). The density reflects
the minimal level of modelling details needed. Our context-
driven ontology elicitation avoids wasting valuable mod-
elling time and enormous cost.

This real world example illustrates one simple problem,
viz. identical terms in different contexts can have different
meanings (homonyms). However, disambiguation can be-
come very complex when considering e.g., synonymy.

Discussion and Future Directions
Shamsfard et al. (2003) provide a comprehensive survey of
methods and tools for (semi-)automatic ontology elicitation.
However, in this paper our focus is not on automation. Work
which is strongly related with what we need is e.g., Mitra
et al. (2000), who indirectly adopt some of those features
we concluded with in our synthesis earlier. They illustrate a
semi-automatic tool for creating a mapping between two on-
tologies (in fact contexts). Their motivation is that two dif-
ferent terms can have the same meaning and the same term
can have different meanings, which exactly defines the lexi-
cal disambiguation problem. This mapping is manifested by
an articulation ontology, which is automatically generated
from a set ofarticulation rules(i.e. semantic relationships)
between concepts in each context resp.

In our framework, the CDS provides a basic means for rel-
evant alignment of heterogeneous ontologies. The concept
definitions (gloss, synset) in the CDS support the meaning
articulation of language level terms. As was illustrated in
Ex. 2, the articulation of terms from different contexts to a
shared CDS, results in cross-context equivalence relations,
i.e. synonyms.

The meta-rules we made in step 3 and 5, were not for-
malised explicitly in this paper. However, we could define a
syntax, e.g.:

ct(EI, panning) � ct(SHARED, educational task)
ct(PE, panning) � ct(SHARED, job task)

The semantics of the relation� is comparable to McCarthy’s
lifting rules: it allows us to specify an alignment between a
term in one context to a possibly more general term in an-
other context. In the future we will extend this feature and
provide a formal semantics of meta-rules. This can be very
powerful in context-driven ontology elicitation and applica-
tion such as meta-reasoning on context and ontology align-
ment processes, and meaning negotiation processes between

stakeholders. Currently we are exploring reasoning for com-
mitment analysis and conceptual graph tools for ontology
elicitation and analysis.

Initially, the lexon base and CDS are empty, but the CDS
can be easily populated by importing similar information
from publically available electronic lexical databases, such
as Wordnet (Fellbaum 1998) or Cyc (OpenCyc). The Lexon
Base is populated during the first step of an ontology elicita-
tion process by various (not necessarily human) agents. See
Reinberger & Spyns (2005) for unsupervised text mining of
lexons. The second step in the elicitation process is to artic-
ulate the terms in the “learned” lexons.

Finally, we note that in the case study we did not con-
sider the semantic constraints completely. The only visi-
ble constraint is the interpretation of the role/co-role pair
is a/subsumes as the ontological specialisation relation in
ontologySHARED. Adding other relations such as de-
fined in conceptual graph theory (Sowa 2000), will consid-
erably improve the power of our meaning articulation ap-
proach.

Conclusion
We have presented an extension to the DOGMA ontology
framework that enables context-driven ontology elicitation.
We introduced contexts and a concept definition server to
(i) logically group knowledge, (ii) to disambiguate the lex-
ical representation of concepts and relationships, by distin-
guishing between language level and conceptual level, and
(iii) to build semantic bridges between different ontological
contexts. Next, we illustrated context-driven ontology elic-
itation considering a real world case example. Finally, we
summarised related work and showed how our work can be
extended.

References
Barwise, J., and Perry, J. 1983.Situations and Attitudes.
MIT Press.

Buchler, J. 1955.Philosophical Writings of Peirce. New
York: Dover Publ.

Buvǎc, S., and Fikes, R. 1995. A declarative formaliza-
tion of knowledge translation. InProc. of 4th Int’l Conf.
on Information and Knowledge Management (ACM CIKM
95).

Buvǎc, S. 1996a. Quantificational logic of context.
AAAI/IAAI1:600–606.

Buvǎc, S. 1996b. Resolving lexical ambiguity using a for-
mal theory of context. In Van Deemter, K., and Peters, S.,
eds.,Semantic Ambiguity and Underspecification. CSLI
Publications.

De Bo, J.; Spyns, P.; and Meersman, R. 2004. Assisting
ontology integration with existing thesauri. InProc. of On
the Move to Meaningful Internet Systems (OTM2004) (Ayia
Napa, Cyprus), 801–818. Springer Verlag.

De Leenheer, P., and Meersman, R. 2005. Towards a for-
mal foundation of DOGMA ontology: part I. Technical
Report STAR-2005-06, VUB STARLab.

23

Farquhar, A.; Dappert, A.; Fikes, R.; and Pratt, W. 1995.
Integrating information sources using context logic. In
Knoblock, C., and Levy, A., eds.,Information Gathering
from Heterogeneous, Distributed Environments.

Farquhar, A.; Fikes, R.; and Rice, J. 1997. The ontolingua
server: a tool for collaborative ontology construction.Int’l
Journal of Human-computer Studies46(6):707–727.

Fellbaum, C., ed. 1998.Wordnet, an Electronic Lexical
Database. MIT Press.

Giunchiglia, F. 1993. Contextual reasoning.special issue
on I Linguaggi e le MacchineXVI:345–364.

Gruber, T. 1993. Cyc: a translation approach to portable
ontologies.Knowledge Acquisition5(2):199–220.

Guarino, N. 1998. Formal ontology and information sys-
tems. InProc. of the 1st Int’l Conf. on Formal Ontologies
in Information Systems (FOIS98) (Trento, Italy), 3–15. IOS
Press.

Guha, R., and D., L. 1990. Cyc: a midterm report.AI
Magazine11(3):32–59.

Guha, R. V. 1991. Contexts: a formalization and some ap-
plications. Technical Report STAN-CS-91-1399, Stanford
Computer Science Department, Stanford, California.

Halpern, J., and Moses, Y. 1992. A guide to completeness
and complexity for modal logics of knowledge and belief.
Artificial Intelligence54:319–379.

Halpin, T. 2001. Information Modeling and Relational
Databases (From Conceptual Analysis to Logical Design).
Morgan Kauffman.

Hintikka, J. 1963. The modes of modality. InActa Philo-
sophica Fennica, Modal and Many-valued Logics, 65–81.

Kripke, S. 1963. Semantic analysis of modal logic i.
Zeitschrift f̈ur Mathematische Logik und Grundlagen der
Mathematik9:67–96.

Langacker, R. 1987.Foundations of Conditional Gram-
mars. Stanford University Press.

Lenat, D. 1995. Cyc: a large-scale investment in knowl-
edge infrastructure.Communications of the Association for
Computing Machinery38(11).

McCarthy, J., and Buvǎc, S. 1994. Formalizing context
(expanded notes). Technical Report STAN-CS-TN-94-13,
Stanford University.

McCarthy, J. 1987. Generality in artificial intelligence.
Communication of the Association for Computing Machin-
ery30(12):1030–1035.

McCarthy, J. 1993. Notes on formalizing context. In
Proc. of the 15th Int-l Joint Conf. Artificial Intelligence (IJ-
CAI93) (Chambry, France), 555–560. Morgan Kaufmann.

McCarthy, J. 1996. A logical ai approach to context. Un-
published note.

Meersman, R. 1999. The use of lexicons and other
computer-linguistic tools in semantics, design and coop-
eration of database systems. InProc.of the Conf. on Co-
operative Database Systems (CODAS99), 1–14. Springer
Verlag.

Meersman, R. 2001. Reusing certain database design prin-
ciples, methods and techniques for ontology theory, con-
struction and methodology. Technical report, VUB STAR
Lab, Brussel.
Mineau, G., and Gerb́e, O. 1997. Contexts: A formal
definition of worlds of assertions. InProc.of the 5th Int’l
Conf. on Conceptual Structures (ICCS-97)(Seattle, USA),
80–94. Springer Verlag.
Mineau, G.; Missaoui, R.; and Godinx, R. 2000. Concep-
tual modeling for data and knowledge management.Data
and Knowledge Engineering33(2):137–168.
Mitra, P.; Wiederhold, G.; and Kersten, M. L. 2000. A
graph-oriented model for articulation of ontology interde-
pendencies. InEDBT ’00: Proceedings of the 7th Inter-
national Conference on Extending Database Technology,
86–100. London, UK: Springer-Verlag.
Nayak, P. 1994. Representing multiple theories. InProc.
of the 12th Nat’l Conf. on Artificial Intelligence (AAAI
94)(Seattle, Washington). AAAI Press.
OpenCyc. http://www.opencyc.org.
Reinberger, M.-L., and Spyns, P. 2005. Unsupervised text
mining for the learning of DOGMA-inspired ontologies. In
Buitelaar P., Handschuh S., and Magnini B.,(eds.), Ontol-
ogy Learning and Population, in press. IOS Press.
Shamsfard, M., and Barforoush, A. A. 2003. The state of
the art in ontology learning: a framework for comparison.
the Knowledge Engineering Review18(4):293–316.
Sowa, J. 1995. Syntax, semantics, and pragmatics of
contexts. InProc. of the 3rd Int’l Conf. on Conceptual
Structures: Applications, Implementation and Theory, 1–
15. Springer-Verlag.
Sowa, J. 1997. Peircean foundations for a theory of con-
text. In Conceptual Structures: Fulfilling Peirce’s Dream,
41–64. Springer-Verlag.
Sowa, J. 2000.Knowledge Representation - Logical, Philo-
sophical and Computational Foundations. Brooks/Cole
Publishing Co.
Stamper, R. 1973.Information in Business and Adminis-
trative Systems. John Wiley and Sons.
Theodorakis, M. 1999.Contextualization: an Abstraction
Mechanism for Information Modeling. Ph.D. Dissertation,
University of Crete, Greece.
Ushold, M., and Gruninger, M. 1996. Ontologies: Princi-
ples, methods and applications.The Knowledge Engineer-
ing Review11(2):93–136.
Verheijen, G., and Van Bekkum, J. 1982. Niam, an in-
formation analysis method. InProc. of the IFIP TC-8
Conference on Comparative Review of Information System
Methodologies (CRIS 82). North-Holland.
Verheyden, P.; De Bo, J.; and Meersman, R. 2004. Seman-
tically unlocking database content through ontology-based
mediation. InProc. of the 2nd Workshop on Semantic Web
and Databases, VLDB Workshops (SWDB 2004) (Toronto,
Canada), 109–126. Springer-Verlag.

24

Towards a Theory of Formal Classification

Fausto Giunchiglia and Maurizio Marchese and Ilya Zaihrayeu
{fausto, marchese, ilya}@dit.unitn.it

Department of Information and Communication Technology
University of Trento, Italy

Abstract

Classifications have been used for centuries with the goal of
cataloguing and searching large sets of objects. In the early
days it was mainly books; lately it has become Web pages,
pictures and any kind of electronic information items. Clas-
sifications describe their contents using natural language la-
bels, an approach which has proved very effective in manual
classification. However natural language labels show their
limitations when one tries to automate the process, as they
make it almost impossible to reason about classifications and
their contents. In this paper we introduce the novel notion of
Formal Classification, as a graph structure where labels are
written in a logical concept language. The main property of
Formal Classifications is that each node can be associated a
normal form formula which univocally describes its contents.
This in turn allows us to reduce document classification and
query answering to fully automatic propositional reasoning.

Introduction
In today’s information society, as the amount of information
grows larger, it becomes essential to develop efficient ways
to summarize and navigate information from large, multi-
variate data sets. The field of classification supports these
tasks, as it investigates how sets of “objects” can be sum-
marized into a small number of classes, and it also provides
methods to assist the search of such “objects” (Gordon Sec-
ond edition 1999). In the past centuries, classification has
been the domain of librarians and archivists. Lately a lot
of interest has focused also on the management of the in-
formation present in the web: see for instance the WWW
Virtual Library project1, or the directories of search engines
like Google, or Yahoo!.

Standard classification methodologies amount to manu-
ally organizing topics into hierarchies. Hierarchical library
classification systems (such as the Dewey Decimal Classi-
fication System (DDC)2 or the Library of Congress classi-
fication system (LCC)3) are attempts to develop static, hi-

Copyright© 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

1The WWW Virtual Library project, see http://vlib.org/.
2The Dewey Decimal Classification system, see

http://www.oclc.org/dewey/.
3The Library of Congress Classification system, see

http://www.loc.gov/catdir/cpso/lcco/lcco.html/.

erarchical classification structures into which all of human
knowledge can be classified. Although these are standard
and universal techniques; they have a number of limitations:

• both classification and search tasks do not scale to large
amounts of information. This is because, among other
things, at any given level in such a hierarchy, there may
be more than one choice of topic under which an object
might be classified or searched.

• the semantics of a given topic is implicitly codified in a
natural language label. These labels must therefore be
interpreted and disambiguated.

• the semantic interpretation of a given topic depends also
on the meanings associated to the labels at higher levels
in the hierarchy (Magnini, Serafini, & Speranza 2003).

In the present paper we propose a formal approach to
classification, capable of capturing the implicit knowledge
present in classification hierarchies, and of supporting auto-
mated reasoning to help humans in their classification and
search tasks. To this end, we propose a two step approach:

• first we convert a classification into a new structure, which
we call Formal Classification(FC), where all the labels
are expressed in a Propositional Description Logic lan-
guage4, that we call the Concept Language.

• then we further convert a FC into aNormalized Formal
Classification(NFC). In NFCs each node is associated a
Concept Language formula, that we call theconcept at a
node, which univocally codifies the node contents, taking
into account both the label of the node and its position
within the classification.

NFCs and concepts at nodes have many nice properties.
Among them:

• they can be expressed in Conjunctive and/or Disjunctive
Normal Forms (CNF / DNF). This allows humans and ma-
chines to easily inspect and reason on classifications (both
visually and computationally).

• document classification and query answering can be done
simply exploiting the univocally defined semantics codi-
fied in concepts at nodes. There is no need to inspect the
edge structure of the classification.

4A Propositional Description Logic language is a Description
Logic language (Baaderet al. 2003) without roles.

25

• concepts of nodes are organized in a taxonomic structure
where, from the root down to the leaves of the classifica-
tion, child nodes are subsumed by their parent nodes.

The remainder of the paper is organized as follows. In
the next section we introduce and present examples of stan-
dard classifications. We then introduce the definition of FC
and discuss its properties. Afterwards, we introduce the no-
tion of NFC and its properties. Next, we show how the two
main operations performed on classifications, namely clas-
sification and search, can be fully automated in NFCs as a
propositional satisfiability problem. The related and future
work conclude the paper.

Classifications
Classifications are hierarchical structures used to organize
large amounts of objects (Magnini, Serafini, & Speranza
2003). These objects can be of many different types, de-
pending on the characteristics and uses of the classification
itself. In a library, they are mainly books or journals; in
a file system, they can be any kind of file (e.g., text files,
images, applications); in the directories of Web portals, the
objects are pointers to Web pages; in market places, catalogs
organize either product data or service titles. Classifications
are useful for both objects classification and retrieval. Users
browse the hierarchies and quickly catalogue or access the
objects associated with different concepts and linked to nat-
ural languages labels. We define the notion of Classification
as follows:

Definition 1 (Classification) A Classification is a rooted
tree described by a tripleH = 〈C, E, l〉 whereC is a fi-
nite set of nodes,E is a set of edges onC, andl is a function
fromC to a setL of labels expressed in a natural language.

In the rest of this section we describe and briefly discuss two
different Classifications: a librarian classification hierarchy
Dewey Decimal Classification system (DDC), and an exam-
ple from a modern web catalogue, namely the Amazon book
categories catalogue.

Example 1 (DDC). Since the 19th century, librarians
have used DDC to organize vast amounts of books. DDC
divides knowledge into ten different broad subject areas,
called classes, numbered 000 - 999. Materials which are too
general to belong to a specific group (encyclopedias, news-
papers, magazines, etc.) are placed in the 000’s. The ten
main classes are divided up into smaller classes by several
sets of subclasses. Smaller divisions (to subdivide the topic
even further) are created by expanding each subclass and
adding decimals if necessary. A small part of the DDC sys-
tem is shown on Figure 1.

In DDC, the notation (i.e., the system of symbols used to
represent the classes in a classification system) provides a
universal language to identify the class and related classes.

Before a book is placed on the shelves it is:

• classified according to the discipline matter it covers
(given the Dewey number);

• some letters (usually three) are added to this number (usu-
ally they represent the author’s last name);

500 Natural Science and Mathematics
520 Astronomy and allied sciences

523 Specific celestial bodies and phenomena
523.1 The universe
523.2 Solar system
523.3 The Earth
523.4 The moon
523.5 Planets

523.51 Mercury
523.52 Venus
523.53 Mars → 523.53HAN
. . .

Figure 1: A part of the DDC system with an example of
book classification

• the number is used to identify the book and to indicate
where the book will be shelved in the library. Books can
be assigned a Dewey number corresponding to both leaf
and non-leaf nodes of the classification hierarchy.

Since parts of DDC are arranged by discipline, not sub-
ject, a subject may appear in more than one class. For exam-
ple, the subject “clothing” has aspects that fall under several
disciplines. The psychological influence of clothing belongs
in 155.95 as part of the discipline of psychology; customs
associated with clothing belong in 391 as part of the disci-
pline of customs; and clothing in the sense of fashion design
belongs in 746.92 as part of the discipline of the arts. How-
ever, the final Dewey number associated to a book is unique
and the classifier needs to impose a classification choice.

As an example, let’s see how to determine the Dewey
number for the following book: Michael Hanlon, “The Real
Mars”. A possible classification is Dewey number: 523.53
HAN and the classification choice for the book is shown in
Figure 1.

The main properties of DDC are:

• the classification algorithm relies on the “Get Specific”
criterion5: when you add a new object, get as specific as
possible: dig deep into the classification schema, looking
for the appropriate sub-category; it is bad practice to sub-
mit an object to a top level category, if one more specific
exists. At present, the enforcement of such criterion is left
to the experience of the classifier.

• each object is placed in exactly one place in the hierar-
chy. As a result of this restriction, a classifier often has to
choose arbitrarily among several reasonable categories to
assign the classification code for a new document (see the
above example for “clothing”). Despite the use of docu-
ments called “subject authorities”, which attempt to im-
pose some control on terminology and classification cri-
teria, there is no guarantee that two classifiers make the
same decision. Thus, a user, searching for information,
has to guess the classifier’s choice to decide where to look
for, and will typically have to look in a number of places.

5Look at http://docs.yahoo.com/info/suggest/appropriate.html
to see how Yahoo! implements this rule.

26

• each non-root node in the hierarchy has only one parent
node. This enforces a tree structure on the hierarchy.

Example 2 (Amazon book directory). Many search en-
gines like Google, Yahoo as well as many eCommerce ven-
dors, like Amazon, offer mechanisms to search for relevant
items. This is the case, for instance, of the web directory cat-
alogue for books (among other items) used in Amazon. At
present Amazon has 35 main subjects. Books are inserted
by the classifier in the web directory, and users browse such
classification hierarchy to access the books they are inter-
ested in.

In Amazon, as in DDC, books can be classified both in
leaf and non-leaf nodes6, following the “Get Specific” cri-
terion, but also the “Related Directory” criterion7, when the
classifier browses through the hierarchy looking for an ap-
propriate category that lists similar documents. In this clas-
sification hierarchy, a book can be often reached from dif-
ferent paths of the hierarchy, thus providing efficient tools
to arrive at items of interest using different perspectives.

In the following we present an example of classification
for a software programming book in the Amazon Book
Web Directory. The book title is “Enterprise Java Beans,
Fourth Edition”. In the current Amazon book directory8,
the example title can be found through two different search
paths (see Figure 2), namely:

Subjects → Business and Investing →
Small Business and Entrepreneurship →
New Business Enterprises
Subjects → Computers and Internet →
Programming → Java Language → Java Beans

Figure 2: Amazon Book Directory

From the brief presentation and from the two specific ex-
amples we can see that Web catalogues are more open than

6Amazon implements it by assigning to non-leaf nodes a leaf
node labeled “General”, where items related to the non-leaf nodes
are classified

7Look at http://www.google.com/dirhelp.html#related to see
how Google implements this rule

8See http://www.amazon.com, April 2005.

classifications like Dewey. In fact, their aim is not to try to
position a resource in a unique position, but rather to posi-
tion it in such a way, that a user, who navigates the catalogue,
will be facilitated to find appropriate or similar resources re-
lated to a given topic.

Formal Classifications
Let us use the two examples above to present and discuss a
number of characteristics that are relevant to classifications
and that need to be considered in a formal theory of classifi-
cation.

Let us start from the characteristics of edges. People con-
sider classifications top down. Namely, when classifying or
searching for a document first upper level nodes are consid-
ered, and then, if these nodes are too general for the given
criteria, lower level nodes may also be inspected. Child
nodes in a classification are always considered in the context
of their parent nodes, and thereforespecializethe meaning
of the parent nodes. In a classification there are two possi-
ble meaningful interrelationships between parent and child
nodes as shown on Figure 3:

Figure 3: Edge semantics for formal classifications

Figure 4: Example of general intersection

• Case (a) represents edges expressing the “general inter-
section” relation, and, intuitively, the meaning of node 2
is areaC, which is the intersection of areasA andB.

27

For instance, in our Amazon example, the edge
in Figure 2 Computers and Internet →
Programming codifies all the items that are in
common (see Figure 4) to the categoriesComputers
and Internet (i.e., hardware, software, networking,
etc) and Programming (i.e., scheduling, planning,
computer programming, web programming, etc). This
kind of edges are also present in library systems, such
as DDC, at lower levels of the hierarchy where different
facets of a particular parent category are considered.

• Case (b) represents a more specific case where the child
node is “subsumed by” the parent node. In this case the
meaning of node 2 is areaB. This kind of edges is also
called an “is-a” edge. Note that in this case, differently
from case (a), nodeA does not influence what is classified
in nodeB.
Many edges in DDC impose the “is-a” relation, in partic-
ular in the higher levels of the hierarchy. Also some edges
in the Amazon book directory impose the “is-a” links, the
most obvious ones are the edges from the root category.

Notice that, in the case of edges leading to the same re-
source the “general intersection” relation must hold forall
the categories in all the different paths. The latter fact can
be used to improve the classification representation: either
by trying to prohibit this situation (if the goal is to classify
unambiguously a resource, as it happens in a library classifi-
cation, such as DDC) or by enhancing this kind of situation
(if the goal is improving the recall of relevant resources, as
it happens in a web catalogue, such as Amazon).

Let us now move to consider the characteristics of labels.
As from Definition 1, the concept of a specific node is de-
scribed by a label expressed in words and, possibly, sepa-
rators between them. The node labels possess interesting
structure, relevant to formal classification hierarchies:

• Natural language labels are composed by atomic ele-
ments, namely words. These words can be analyzed in
order to find all their possible basic forms and eventual
multiple senses, i.e., the way in which the word can be
interpreted. In this paper, we use WordNet (Miller 1998)
to retrieve word senses9, however, in practice, a different
thesaurus can be used. For example the word “Java” in
the label “Java Language” in Figure 2 possesses differ-
ent equivalent forms (e.g., Java, java) and three different
senses:

1. an island in Indonesia;
2. a beverage consisting of an infusion of ground coffee

beans; and
3. an object oriented programming language.

• Words are combined to build complex concepts out of
the atomic elements. Consider for example the labels
Computers and Internet andJava Language
in Figure 2. The combination of natural language
atomic elements is used by classifier to aggregate (like
in Computers and Internet) or disambiguate

9We may change the actual senses of a word from WordNet for
the sake of presentation.

atomic concepts (like inJava Language , where the
sense of the wordJava that denotes “an island in In-
donesia” together with the sense “a type of coffee” can be
discarded while the correct sense of “an object oriented
programming language” is maintained).

• Natural language labels make use of the structure of the
classification hierarchy to improve the semantic interpre-
tation associated to a given node. We call this property
parental contextualityof a node. For instance the sense
of words composing labels of different nodes in an hier-
archy path can be incompatible; thus the correct mean-
ing of a particular word in a specific label can be disam-
biguated by considering the senses of the words in some
labels along the path. For example, in the pathJava
Languages → Java Bean , the possible correct (but
wrong) sense ofJava Bean as “a particular type of
coffee bean” can be pruned by the classifier taking into
account the meaning of the parent node’s label,Java
Languages .

Let us see how we can convert classifications into a new
structure, which we call aFormal Classification(FC), more
amenable to automated processing:

Definition 2 (Formal Classification) A Formal Classifica-
tion is a rooted tree described by a tripleHF = 〈C, E, lF 〉
whereC is a finite set of nodes,E is a set of edges onC,
and lF is a function fromC to a setLF of labels expressed
in a Propositional Description Logic languageLC .

As it can be noticed, the key step is that in FCs labels
are substituted by labels written in a formal logical lan-
guage. In the following we will callLC , theConcept Lan-
guage. We use a Propositional Description Logic language
for several reasons. First, we move from an ambiguous lan-
guage to a formal language with clear semantics. Second,
given its set-theoretic interpretation,LC “maps” naturally to
the real world semantics. For instance, the atomic propo-
sition p =computer denotes “the set of machines capa-
ble of performing calculations automatically”. Third, nat-
ural language labels are usually short expressions or phrases
having simple syntactical structure. Thus no sophisticated
natural language processing and knowledge representation
techniques are required – a phrase can be often converted
into a formula inLC with no or little loss in the meaning.
Forth, a formula inLC can be converted into an equivalent
formula in a propositional logic language with boolean se-
mantics. Thus a problem expressed inLC can therefore be
converted into apropositional satisfiability problem10.

Apart from the atomic propositions, the languageLC in-
cludes logical operators, such asconjunction(denoted by
u), disjunction(denoted byt), andnegation(¬); as well as
comparison operators:more general(w), more specific(v),
andequivalence(≡). In the following we will also say that
A subsumesB, if A w B; and we will also say thatA is sub-
sumedby B, if A v B. The interpretation of the operators
is the standard set-theoretic interpretation.

10For translation rules from a Propositional Description Logic
to a Propositional Logic, see (Bouquet, Serafini, & Zanobini 2003;
Giunchiglia, Shvaiko, & Yatskevich 2004).

28

We build FCs out of classifications by translating, using
natural language processing techniques, natural language la-
bels, li’s, into concept language labels,lFi ’s. For lack of
space we do not describe here how we perform this step. The
interested reader is referred to (Magnini, Serafini, & Sper-
anza 2003). As an example, recall the classification example
shown on Figure 2. For instance, the labelJava beans of
noden8 is translated into the following expression:

lF8 = (Java1 t Java2 t Java3) u (Bean1 t Bean2) (1)

whereJava 1 denotes the Java island,Java 2 is a brewed
coffee,Java 3 is the object oriented programming language
Java,Bean1 is a kind of seeds, andBean2 is a Java tech-
nology related term. The disjunctiont is used to codify the
fact thatJava andBean may mean different things. The
conjunctionu is used to codify that the meaning ofJava
beans must take into account whatJava meansandwhat
Beans mean.

As it is mentioned above, some senses of a word in a la-
bel may be incompatible with the senses of the other words
in the label, and, therefore, these senses can be discarded.
A way to check this inLC is to convert a label intoDis-
junctive Normal Form(DNF). A formula in DNF is a dis-
junction of conjunctions of atomic formulas or negation of
atomic formulas, where each block of conjunctions is called
a clause(Mendelson 4th ed London 1997). Below is the
result of conversion of Formula 1 into DNF:

lF8 = (Bean1 u Java1) t (Bean1 u Java2)t
(Bean1 u Java3) t (Bean2 u Java1)t
(Bean2 u Java2) t (Bean2 u Java3)

(2)

The first clause in Formula 2 (i.e.,(Bean1 u Java1)) can
be discarded, as there is nothing in common between seeds
and the island. The second clause, instead, is meaningful –
it denotes the coffee seeds. Analogously, clauses 3, 4 and 5
are discarded and clause 6 is preserved. The final formula
for the label of noden8 therefore becomes:

lF8 = (Bean1 u Java2) t (Bean2 u Java3) (3)

Note, that senseJava1 is pruned away in the final formula
as it has nothing to do with any sense of the word “bean”.
Analogously, all the other labels in the classification shown
on Figure 2 are translated into expressions inLC and fur-
ther simplified. At this point, the “converted” Classification
represents a FC.

Note, that each clause in DNF represents a distinct mean-
ing encoded into the label. This fact allows both agents
and classifiers to operate on meanings of labels, and not on
meanings of single words.

Normalized Formal Classifications
As discussed earlier, in classifications, child nodes are con-
sidered in the context of their parent nodes. We formalize
this notion of parental context in a FC following the defin-
ition of concept at a node from (Giunchiglia, Shvaiko, &
Yatskevich 2004):

Definition 3 (Concept at a node)Let HF be a FC andni

be a node ofHF . Then, the concept at nodeni, writtenCi,

is its labellFi if ni is the root ofHF , and, otherwise, it is the
conjunction of the label ofni and the concept at nodenj ,
which is the parent ofni. In formulas:

Ci =

lFi if ni is the root ofHF

lFi u Cj if ni is a non-root node ofHF ,
wherenj is the parent ofni

Applying Definition 3 recursively, we can compute the con-
cept at any non-root nodeni as the conjunction of the labels
of all the nodes on the path from the root ofHF to ni:

Ci = lF1 u lF2 u . . . u lFi (4)

The notion of concept at a node explicitly captures the
classification semantics. Namely, the interpretation of the
concept at a node is the set of objects that the node and all
its ascendants have in common (see Figure 3). From the
classification point of view, the concept at a node defines
what (class of) documents can be classified in this node.

The definition of concept at a node possesses a number
of important properties relevant to classification:

Property C.1: eachCi codifies both the label ofni and the
path from the root toni. There are two important conse-
quences of this: first, it allows it to prune away irrelevant
senses along the path; and, if converted to DNF,Ci rep-
resents the union of all the possible distinct meanings of a
node in the FC’s tree.

Recall the Amazon running example. According to For-
mula 4, the concept at noden8 is:

C8 = (Subject ∗) u (Computer ∗ t Internet ∗) u
(Programming ∗)u (Java ∗ u Language ∗)u (Java ∗ u
Bean∗) 11

The possible correct (but wrong) sense (Bean1 u Java2)
as “a particular type of coffee bean” (the first clause
in Formula 3) can be pruned by converting the con-
cept at noden8 into DNF, which contains the clause
(Language1 u Java2 u Bean1) and checking it as a
propositional satisfiability problem: since the meaning of
Language1 is “incompatible” with Java 2 the expression
results into an inconsistency.

Property C.2: each Ci has a normal form. In fact it
is always possible to transform eachCi in Conjunctive Nor-
mal Form (CNF) namely a conjunction of disjunctions of
atomic formulas or negation of atomic formulas (Mendelson
4th ed London 1997). ThereforeCi codifies in one logical
expressionall the possible ways of conveying the same
concept associated to a node.

We use the notion of the concept of a node to define a fur-
ther new structure which we callNormalized Formal Clas-
sification(NFC):

Definition 4 (Normalized Formal Classification) A Nor-
malized Formal Classification is a rooted tree described by
a triple HN = 〈C,E, lN 〉 whereC is a finite set of nodes,
E is a set of edges onC, and lN is a function fromC to a
setLN of concepts at nodes.

11We writeX∗ to denote the disjunction of all the senses ofX.

29

Also the proposed NFC possesses a number of important
properties relevant to classification:

Property NFC.1: when allCi are expressed in CNF (see
property C.2), all the nodes expressingsemantically equiv-
alent concepts will collapse to the same CNF expression.
Even when two computed concepts are not equivalent, the
comparison of the two CNF expressions will provide en-
hanced similarity analysis capability to support both clas-
sification and query-answering tasks.
Following our example, the normalized form of the concept
at noden8 with the path (in natural language):

Subjects → Computers and Internet →
Programming → Java Language → Java Beans

will be equivalent, for instance, to the concept associ-
ated to a path like:

Topic → Computer → Internet →
Programming → Languages → Java →
Java Beans

and similar (i.e., be more general, or more specific) to
(say):

Discipline → Computer Science →
Programming languages → Java → J2EE →
Java Beans

Property NFC.2: any NFC is a taxonomy, in the sense
that for any non-root nodeni and its conceptCi, the con-
ceptCi is always subsumed byCj , wherenj is the parent
node ofni. We claim that NFCs are the “correct” transla-
tions of classifications into ontological taxonomies as they
codify the intended semantics/use of classifications. Notice
that, under this assumption, in order to capture the classi-
fication semantics no expressive ontological languages are
needed, and a Propositional Description Logic is sufficient.
In this respect our work differs substantially from the work
described in (Magnini, Serafini, & Speranza 2003).
Consider in our running Amazon example the path in the
natural language classification:

Subject → Computers and Internet →
Programming

As described in section “Classifications”, this path
contains a link expressing the “general intersection” rela-
tion, namely the link isComputers and Internet →
Programming (see Figure 4). The same relation is
maintained when we move to FCs. In our notation:
lF1 = Subject∗, lF3 = (Computer∗ t Internet∗),
lF5 = Programming∗. But, when we move to the NFC
for the given example, our elements become:C1 = lF1 ;
C3 = lF1 u lF3 ; C5 = lF1 u lF3 u lF5 ; and the only relation
holding between successive element is the subsumption.

The above properties of bothCi and NFC have interest-
ing implications in classification and query answering, as

described in the next Section.

Document classification and query answering
We assume that each documentd is assigned an expression
in LC , which we call thedocument concept, writtenCd. The
assignment of concepts to documents is done in two steps:
first, a set of document’s keywords is retrieved using text
mining techniques (see, for example, (Sebastiani 2002)); the
keywords are then converted into a corresponding concept
using the same techniques used to translate natural language
labels into concept language labels.

There exists a number of approaches to how to classify
a document. In one such approach a document is classified
only in one node (as in DDC), in another approach it may be
classified under several nodes (as in Amazon). However, in
most cases, the general rule is to classify a document in the
node or in the nodes that most specifically describe the doc-
ument, i.e., to follow the “Get Specific” criterion discussed
in section “Classifications”. In our approach, we allow for
a document to be classified in more than one node, and we
also follow the “Get Specific” criterion. We express these
criteria, in a formal way, as follows:

Definition 5 (Classification Set) LetHN be a NFC,d be a
document, andCd be the concept ofd. Then, the classifi-
cation set ford in HN , writtenCld, is a set of nodes{ni},
such that for any nodeni ∈ Cld the following two condi-
tions hold:

1. the concept at nodeni is more general thanCd, i.e. Cd v
Ci; and

2. there is no such nodenj (j 6= i), whose concept at node
is more specific thanCi and more general thanCd.

Documentd is classified in all the nodes from the setCld

in Definition 5.
Suppose we are given two documents: a book on Java

programming (d1) and an article on high tech entrepreneur-
ship (d2). Suppose now that these documents are assigned
the following concepts:Cd

1 = Java 3 u Programming 2,
andCd

2 = High tech 1 uVenture 3, whereJava 3 is the
programming language,Programming 2 is computer pro-
gramming,High tech 1 is “highly advanced technological
development”, andVenture 3 is “a commercial undertak-
ing that risks a loss but promises a profit”. Intuitively,Cd

1
is more specific than the concept at the node labeledJava
language in the classification shown on Figure 2. In fact,
logical inference confirms the intuition, namely it is possi-
ble to show that the following relation holds:Cd

1 v C7. It
is also possible to show that the second condition of Defin-
ition 5 holds for noden7. Thus, documentd1 is classified
in noden7. Analogously, it can be shown that the classifica-
tion set ford2 is composed of the single noden6. For lack
of space we do not show the full formulas and the proofs of
these statements.

Moving to query answering, when a user searches for a
document, she defines a set of keywords or a phrase, which
is then converted into an expression inLC using the same
techniques discussed in section “Formal Classifications”.
We call this expression, aquery concept, written Cq. We

30

define the answerAq to a queryq as the set of documents,
whose concepts are more specific than the query conceptCq:

Aq = {d|Cd v Cq} (5)

Searching directly on all the documents may become pro-
hibitory expensive as classifications may contain thousands
and millions of documents. NFCs allow us to identify the
maximal set of nodes which containonlyanswers to a query,
which we call, thesound classification answerto a query
(writtenNq

s). We computeNq
s as follows:

Nq
s = {ni|Ci v Cq} (6)

In fact, asCd v Ci for any documentd classified in any
nodeni ∈ Nq

s , andCi v Cq, thenCd v Cq. Thus, all the
documents classified in the set of nodesNq

s belong to the
answerAq (see Formula 5).

We extendNq
s by adding nodes, which constitute the clas-

sification set of a documentd, whose concept isCd = Cq.
We call this set, thequery classification set, writtenClq; and
we compute it following Definition 5. In fact, nodes inClq

may contain documents satisfying Formula 5, for instance,
documents whose concepts are equivalent toCq.

Suppose, for instance, that a user defines the following
query to the Amazon NFC:Cq = Java 3 tCOBOL1, where
COBOL1 is “common business-oriented language”. It can be
shown, thatNq

s = {n7, n8} (see Figure 2 for the Amazon
classification). However, this set does not include noden5,
which contains the book “Java for COBOL Programmers
(2nd Edition)”. Noden5 can be identified by computing the
query classification set for queryq, which in fact consists of
the single noden5, i.e. Clq = {n5}. However,n5 may also
contain irrelevant documents.

Thus, for any queryq, a user can compute a sound query
answerAq

s by taking the union of two sets of documents: the
set of documents which are classified in the set of nodesNq

s
(computed as{d ∈ ni|ni ∈ Nq

s }); and the set of documents
which are classified in the nodes from the setClq and which
satisfy Formula 5 (computed as{d ∈ ni|ni ∈ Clq, Cd v
Cq}). We have therefore:

Aq
s = {d ∈ ni|ni ∈ Nq

s } ∪ {d ∈ ni|ni ∈ Clq, Cd v Cq}
(7)

Under the given definition, the answer to a query is not re-
stricted to the documents classified in the nodes, whose con-
cepts are the ”closest” match to the query. Documents from
nodes, whose concepts are more specific than the query are
also returned. For instance, a result for the above mentioned
query may also contain documents about Java beans.

Note, that the structure of a NFC (i.e., the edges) isnot
considered neither during document classification nor dur-
ing query answering. In fact, given the proposed classifica-
tion algorithm, the edges information becomes redundant, as
it is implicitly encoded in the concepts at the nodes. We say
implicitly because there may be more than one way to “re-
construct” a NFC resulting into the same set of concepts at
nodes. But, all the possible NFCs are equivalent, in the sense
that the same set of documents is classified into exactly the
same set of nodes.

The algorithms presented in this section are sound and
complete in the document classification part, as Proposi-
tional Logic allows for sound and complete reasoning on
documents according to Definition 5. The proposed solution
for query answering is sound but not complete asAq

s ⊆ Aq.
For lack of space we do not provide evidence of the incom-
pleteness property of the solution.

Related Work

In our work we adopt the notion of the concept at node as
first introduced in (Giunchiglia & Shvaiko 2003) and further
elaborated in (Giunchiglia, Shvaiko, & Yatskevich 2004).
Moreover, the notion of label of a node in a FC, seman-
tically corresponds to the notion of the concept of a label
introduced in (Giunchiglia, Shvaiko, & Yatskevich 2004).
In (Giunchiglia, Shvaiko, & Yatskevich 2004) these notions
play the key role in the identification of semantic mappings
between nodes of two schemas. In this paper, these are the
key notions needed to define NFCs.

This work as well as the work in (Giunchiglia & Shvaiko
2003; Giunchiglia, Shvaiko, & Yatskevich 2004) mentioned
above is crucially related and depends on the work de-
scribed in (Bouquet, Serafini, & Zanobini 2003; Magnini,
Serafini, & Speranza 2003). In particular, in (Bouquet,
Serafini, & Zanobini 2003), the authors, for the first time
ever, introduce the idea that in classifications, natural lan-
guage labels should be translated in logical formulas, while,
in (Magnini, Serafini, & Speranza 2003), the authors pro-
vide a detailed account of how to perform this transla-
tion process. The work in (Giunchiglia & Shvaiko 2003;
Giunchiglia, Shvaiko, & Yatskevich 2004) improves on the
work in (Bouquet, Serafini, & Zanobini 2003; Magnini, Ser-
afini, & Speranza 2003) by understanding the crucial role
that concepts at nodes have in matching heterogeneous clas-
sifications and how this leads to a completely new way to do
matching. As a matter of fact the work in (Giunchiglia &
Shvaiko 2003) classifies the work in (Bouquet, Serafini, &
Zanobini 2003; Giunchiglia & Shvaiko 2003; Giunchiglia,
Shvaiko, & Yatskevich 2004; Magnini, Serafini, & Sper-
anza 2003) assemantic matchingand distinguishes it from
all the previous work, classified under the headingsyn-
tactic matching. This paper, for the first time, recog-
nizes the crucial role that the ideas introduced in (Bouquet,
Serafini, & Zanobini 2003; Giunchiglia & Shvaiko 2003;
Giunchiglia, Shvaiko, & Yatskevich 2004; Magnini, Ser-
afini, & Speranza 2003) have in the construction of a new
theory of classification, and in introducing the key notion of
FC.

A lot of work in information theory, and more precisely
on formal concept analysis (see for instance (Wille 1992))
has concentrated on the study of concept hierarchies. NFCs
are what in formal concept analysis are called concept hi-
erarchies with no attributes. The work in this paper can
be considered as a first step towards providing a computa-
tional theory of how to transform the “usual” natural lan-
guage classifications into concept hierarchies. Remember
that concept hierarchies are ontologies which are trees where
parent nodes subsume their child nodes.

31

The classification and query answering algorithms, pro-
posed in this paper, are similar to what in the Description
Logic (DL) community is calledrealizationandretrieval re-
spectively. The fundamental difference between the two ap-
proaches is in that in DL the underlying structure for classi-
fication is not predefined by the user, but is build bottom-up
from atomic concepts by computing the subsumption partial
ordering. Interested readers are referenced to (Horrockset
al. 2004), where the authors propose sound and complete
algorithms for realization and retrieval.

In Computer Science, the termclassificationis primar-
ily seen as theprocessof arranging a set of objects (e.g.,
documents) intocategoriesor classes. There exist a num-
ber of different approaches which try to build classifica-
tions bottom-up, by analyzing the contents of documents.
These approaches can be grouped in two main categories:
supervised classification, and unsupervised classification.
In the former case, a small set of training examples needs
to be prepopulated into the categories in order to allow
the system to automatically classify a larger set of objects
(see, for example, (G.Adami, P.Avesani, & D.Sona 2003;
Nigamet al. 2000)). The latter approach uses various ma-
chine learning techniques to classify objects, for instance,
data clustering (Jain, Murty, & Flynn 1999). There ex-
ist some approaches that apply (mostly) supervised classi-
fication techniques to the problem of documents classifica-
tion into hierarchies (Koller & Sahami 1997; Sun & Lim
2001). The classifications built following our approach are
better and more natural than those built following these ap-
proaches. They are in fact constructedtop-down, as chosen
by the user and not constructed bottom-up, as they come
out of the document analysis. Notice how in this latter case
the user has no or little control over the language used in
classifications. Our approach has the potential, in principle,
to allow for the automatic classification of the (say) Yahoo!
documents into the Yahoo! directories. Some of our current
work is aimed at testing the feasibility of our approach with
very large sets of documents.

Conclusions
In this paper we have introduced the notion of Formal Clas-
sification, namely of a classification where labels are written
in a propositional concept language. Formal Classifications
have many advantages over standard classifications all de-
riving from the fact that formal language formulas can be
reasoned about far more easily than natural language sen-
tences. In this paper we have highlighted how this can be
done to perform query answering and document classifica-
tion. However much more can be done. Our future work
includes the development of a sound and complete query
answering algorithm; as well as the development and evalu-
ation of tools that implement the theoretical framework pre-
sented in this paper. There are two tools of particular impor-
tance, namely the document classifier and query answering
tools, which will provide the functionality described in this
paper. The performance of the tools will then be compared
to the performance of the most advanced heuristics based
approaches. Yet another line of research will be the devel-
opment of a theoretical framework and algorithms allowing

for the interoperability between NFCs. The latter particu-
larly includes distributed query answering and multiple doc-
ument classification under sound and complete semantics.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. 2003.The Description Logic Handbook
: Theory, Implementation and Applications. Cambridge
University Press.
Bouquet, P.; Serafini, L.; and Zanobini, S. 2003. Seman-
tic coordination: a new approach and an application.In
Proc. of the 2nd International Semantic Web Conference
(ISWO’03). Sanibel Islands, Florida, USA.
G.Adami; P.Avesani; and D.Sona. 2003. Clustering docu-
ments in a web directory.In Proceedings of Workshop on
Internet Data management (WIDM-03).
Giunchiglia, F., and Shvaiko, P. 2003. Semantic matching.
”Ontologies and Distributed Systems” workshop, IJCAI.
Giunchiglia, F.; Shvaiko, P.; and Yatskevich, M. 2004. S-
match: An algorithm and an implementation of semantic
matching.In Proceedings of ESWS’04.
Gordon, A. Second edition, 1999.Classification. Mono-
graphs on Statistics and Applied Probability. Chapman-
Hall/CRC.
Horrocks, I.; Li, L.; Turi, D.; and Bechhofer, S. 2004. The
instance store: DL reasoning with large numbers of indi-
viduals. InProc. of the 2004 Description Logic Workshop
(DL 2004), 31–40.
Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data
clustering: a review.ACM Computing Surveys31(3):264–
323.
Koller, D., and Sahami, M. 1997. Hierarchically classi-
fying documents using very few words. In Fisher, D. H.,
ed., Proceedings of ICML-97, 14th International Confer-
ence on Machine Learning, 170–178. Nashville, US: Mor-
gan Kaufmann Publishers, San Francisco, US.
Magnini, B.; Serafini, L.; and Speranza, M. 2003. Mak-
ing explicit the semantics hidden in schema models.In:
Proceedings of the Workshop on Human Language Tech-
nology for the Semantic Web and Web Services, held at
ISWC-2003, Sanibel Island, Florida.
Mendelson, A. 4th ed. London, 1997.Introduction to
Mathematical Logic. Chapman-Hall.
Miller, G. 1998.WordNet: An electronic Lexical Database.
MIT Press.
Nigam, K.; McCallum, A. K.; Thrun, S.; and Mitchell,
T. M. 2000. Text classification from labeled and unlabeled
documents using EM.Machine Learning39(2/3):103–134.
Sebastiani, F. 2002. Machine learning in automated text
categorization.ACM Computing Surveys34(1):1–47.
Sun, A., and Lim, E.-P. 2001. Hierarchical text classifica-
tion and evaluation. InICDM, 521–528.
Wille, R. 1992. Concept lattices and conceptual knowledge
systems. Computers and Mathematics with Applications
23:493–515.

32

First-Orderized ResearchCyc :
Expressivity and Efficiency in a Common-Sense Ontology

Deepak Ramachandran1 Pace Reagan2 and Keith Goolsbey2
1Computer Science Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801

dramacha@uiuc.edu
2Cycorp Inc., 3721 Executive Center Drive, Suite 100, Austin, TX 78731

{pace,goolsbey}@cyc.com

Abstract

Cyc is the largest existing common-sense knowledge base. Its
ontology makes heavy use of higher-order logic constructs
such as a context system, first class predicates, etc. Many
of these higher-order constructs are believed to be key to
Cyc’s ability to represent common-sense knowledge and rea-
son with it efficiently. In this paper, we present a translation
of a large part (around 90%) of the Cyc ontology into First-
Order Logic. We discuss our methodology, and the trade-
offs between expressivity and efficiency in representationand
reasoning. We also present the results of experiments using
VAMPIRE, SPASS, and the E Theorem Prover on the first-
orderized Cyc KB. Our results indicate that, while the use of
higher-order logic is not essential to the representability of
common-sense knowledge, it greatly improves the efficiency
of reasoning.

1 Introduction
ResearchCycTM is a version of Cycorp Inc.’s CycR©1 Knowl-
edge Base - the world’s largest general common-sense on-
tology and reasoning engine. ResearchCyc is available un-
der a free license, and consists of 1,074,484 assertions in a
language of 122,658 symbols (not including strings or num-
bers). By contrast, the IEEE Suggested Upper Merged On-
tology (Niles & Pease 2001) consists of 60,000 axioms over
20,000 terms.

A significant feature of ResearchCyc’s design is the incor-
poration of higher-order assertions in its KB. (For the rest
of this paper we will use the term ”higher-order” to mean
any feature beyond ordinary first-order logic, like a context
system or quantification over predicates.) The reasons for
this are both philosophical and pragmatic; it is widely be-
lieved that a complete specification of what is understood
to be “common-sense knowledge” requires some kind of
higher-order features. For example, Boolos (Boolos 1984)
discusses two sentences that cannot be represented in a logic
without predicate quantification (non-firstorderizable):

1. Some critics admire only one another.

2. Some of Fianchetto’s men went into the warehouse unac-
companied by anyone else.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Cyc is a registered trademark and ResearchCyc and OpenCyc
are trademarks of Cycorp, Inc.

The second sentence is non-firstorderizable if we consider
“anyone else” to mean anyone who was not in the group of
Fianchetto’s men who went into the warehouse.

Another reason for the use of these higher-order con-
structs is the ability to represent knowledge succinctly and
in a form that can be taken advantage of by specialized rea-
soning methods. The validation of this claim is one of the
contributions of this paper.

In this paper, we present a tool for translating a significant
percentage (around 90%) of the ResearchCyc KB into First-
Order Logic (a process we callFOLification). Our meth-
ods involve a number of non-trivial transformations of the
higher-order constructs appearing in ResearchCyc into FOL.
In some cases (e.g. axiom schemata), the assertions could be
translated precisely without any loss of semantics, but with
an increase in the size of the representation (both the num-
ber of symbols and axioms). In other cases (e.g. contexts)
only an approximate translation could be made. We describe
our techniques in detail and the tradeoffs involved in expres-
sivity and efficiency. Our final FOLified ResearchCyc KB
consisted of 1,253,117 axioms over 132,116 symbols (not
including strings or numbers).

We also present the preliminary results of some exper-
iments performed on the FOLified KB using VAMPIRE
(Riazanov 2003), SPASS (Weidenbach 1999), and the E
theorem prover (Schulz 2002) with a sample collection of
common-sense queries typical for ResearchCyc. The ATP
systems performed orders of magnitude more slowly than
the ResearchCyc inference engine that is custom built for
Cyc’s ontology and thus able to reason with its higher-order
representations directly. From these results, we conclude
that the types of problems Cyc is designed to handle differ
substantially from the types of problems that the ATP sys-
tems are designed to handle. To our knowledge, this is the
largest ever set of axioms upon which first-order theorem
proving has been attempted. Our results are open to inter-
pretation and we discuss them in the conclusion.

The rest of this paper is organized as follows: In Section
2 we provide some background. In Section 3 we discuss our
FOLification procedure. In Section 4 we discuss the design
of the CYC inference engine. Section 5 presents our prelim-
inary experimental results. Finally in Section 6 we discuss
conclusions and future work.

33

2 Background
We assume that the reader is familiar with all the standard
terminology from the fields of Knowledge Representation
and Automated Reasoning.

The Cyc common-sense knowledge base has been in
development since 1984, first as a project at MCC, and
since 1994 by Cycorp Inc. (www.cyc.com). A descrip-
tion of the motivation and goals of the Cyc project is given
in (Lenat & Guha 1990). The complete Cyc knowledge
base is under a proprietary license, but recently Cycorp
has released a significant proportion of the KB to the aca-
demic community through the ResearchCyc project (re-
search.cyc.com). ResearchCyc is available under a restricted
but free license to all research institutions and universities.
The eventual goal is to make almost all of the Cyc KB, ex-
cept for certain sensitive sections, available in ResearchCyc.
OpenCycTM(www.opencyc.org) is the open-source version
of a subset of the Cyc KB (mostly the upper ontology) freely
distributed under the Creative Commons license. In the rest
of this paper, for brevity we will refer to all three KBs simply
as Cyc, except where we wish to distinguish among them.

CycL is the declarative knowledge representation lan-
guage used to store Cyc’s KB. It has a Lisp-like syntax, with
each atom and each term appearing within a pair of paren-
theses. As mentioned before, it is higher-order and has all
the standard logical connectives and operators. The Cyc as-
sertions and queries we use in the rest of this paper are writ-
ten in simplified CycL.

TPTP (Thousands of Problems for Theorem Provers)
(Sutcliffe & Suttner 1998) is the most popular library of test
problems for automated theorem proving (ATP) systems and
is the basis for the CADE ATP System Competition (Pel-
letier, Sutcliffe, & Suttner 2002). Our FOLification tool
translates CycL into the TPTP format. We chose this for-
mat because many theorem provers accept it as input, and
there exist tools for converting TPTP files into virtually ev-
ery other first-order format.

3 First-Orderization of Higher-Order
Constructs

In this section, we describe some of the transformations used
to convert Cyc’s higher-order KB into FOL.

It should be noted that our use of the term “higher-order”
is rather loose; it signifies any conceivable extension to the
usual syntactic restrictions of FOL: variable-arity predicates,
sentences as arguments, etc.

3.1 Contexts
Contexts have been viewed both as a scheme for acheiving
generality (McCarthy 1986) and locality (Giunchiglia 1993).
ResearchCyc’s context system enables both.

Each assertion in the KB is associated with amicrotheory
(“mt”) that determines its context. The microtheories are ar-
ranged in a hierarchy, with each microtheory having access
to all the assertions in its parents.

Microtheories are implemented by extending the lan-
guage with the modal operatorist(k, ϕ)(“is true”) to
express that the assertionϕ is true in the contextk. For

example, consider the context of world mythology, in which
we assert the fact that vampires fear garlic:

ist(WorldMythologyMt, (Vampire(X) ∧
Garlic(Y)) ⇒ (feelsTowardsObject ?X ?Y
Fear positiveAmountOf))

CycL has a predicategenlMt to assert that a microthe-
ory is a child of another in the hierarchy (and thus inherits
all its assertions):

genlMt(WorldMythologyMt, HumanActivi-
tiesMt)

The closest analogue to Cyc’s microtheory system in the
literature is Buvac’s quantificational theory of context (Bu-
vac 1996).

There are two methods for handling microtheories in pure
first-order logic. One is to treat each context as a sepa-
rate module, choose at inference time which modules are
required, and compile them into a single flat KB. This is the
approach used by the Suggested Upper Merged Ontology
(Niles & Pease 2001).

A more sophisticated scheme is to approximate theist
modality with anmtVisible predicate. For example,

mtVisible(WorldMythologyMt) ⇒ ((Vam-
pire(X) ∧ Garlic(Y)) ⇒ (feelsTowardsOb-
ject ?X ?Y Fear positiveAmountOf))

Contexts can then inherit from each other:

mtVisible(WorldMythologyMt) ⇒ mtVisi-
ble(HumanActivitiesMt)

Criteria can be imposed for selecting certain contexts:

∀k[(mtVisible(k) ⇒ ∃XDragon(X))
⇒ FictionalContext(k)]

Both techniques mentioned above have one limitation:
the inability to represent inter-contextual reasoning. In
the module-based method there are no means of referring
to other contexts. In themtVisible method, while it
is possible for assertions to refer to other contexts, the
meaning is usually not what is intended. For example,
suppose contextk1 knows that axiomφ is true in context
k2. If we try to translate this as:

mtVisible(k1) ⇒ (mtVisible(k2) ⇒ φ)

This is equivalent to the statement:

mtVisible(k2) ⇒ (mtVisible(k1) ⇒ φ)

which was not intended at all.
Our translation tool uses a combination of both methods.

In general, each assertion is prefixed with themtVisible
condition for the microtheory it belongs to. But in the case of

34

some microtheories being universally or almost universally
visible, we use the modular approach. For example, when
the assertion is from eitherUniversalVocabularyMt
orBaseKB, then it is FOLified without adding themtVis-
ible predicate at all, since assertions from these microthe-
ories are visible to practically every query.

3.2 Ontology

The backbone of Cyc’s ontology of types and objects is
the genlshierarchy. It is analogous to thegenlMt hier-
archy of microtheories. EveryThing in Cyc is either an
Individual or a Collection. Both Individuals
and Collections can be instances ofCollections.
Instancehood is declared using theisa predicate:

(isa Fido Dog)
(isa Dog Collection)

Collections can be declared to be subcollections, or
“specs” of other collections using thegenls predicate as a
subclassing relation as follows:

(genls Fruit PlantPart)

which means that every instance ofFruit is also an in-
stance ofPlantPart.

The FOLifier creates a unique unary predicate for each
collection, e.g.Fruit(x), PlantPart(x). This has
the potential to make resolution-style inference easier be-
cause there is less choice of literals to resolve on due to
greater variety in the predicate position. Furthermore, itis
assumed that the heuristics of theorem provers are gener-
ally optimized for type hierarchies being expressed as unary
predicates.

Given this, thegenls assertion shown earlier can simply
be translated as:

∀x[Fruit(x) ⇒PlantPart(x)]

Exceptions to the above technique are thereified
collection-denoting terms, e.g. (JuvenileFn Human)
which represents the collection of all young humans.
(Note that a collection-denoting function need not neces-
sarily denote a subcollection of its argument, for example
(FruitFn AppleTree) does not denote a subcollection
of AppleTree.) In our FOLification, we ignore the func-
tional nature of the term and simply create a new predicate
by concatenating the names of the function and its argu-
ment(s).

3.3 Predicate and Function Quantification

Allowing predicates to be arguments to other predicates and
functions often enables more compact representations in the
Cyc KB.

For example the meta-predicateTransitivePred(x)
can be defined as follows:

TransitivePred(P) ⇒
∀x∀y∀zP(x, y) ∧ P(y, z) ⇒P(x, z)

A more complicated example is

relationAllExists(pred, type1, type2)

which states that for every instance oftype1, x, there
must be some instance oftype2, y s.t. pred(x,y).
For examplerelationAllExists(has,Dog,Nose)
states that every dog has a nose.

In ResearchCyc terminology, pseudo-higher-order con-
structs such as the above are calledrule macro predicates
and it is usually straightforward to convert these into FOL
by replacing the literal with a first-order axiom schema, as
in theTransitivePred example.

Another case in which predicate/function quantification
can be translated into FOL is withargIsa assertions that
are used to constrain the value of arguments to a predicate.
For example,

argIsa(performedBy, 1, Action)

states that the first argument of aperformedBy asser-
tion must be an instance ofAction. This can be translated
into FOL as follows:

∀x∀y[performedBy(x, y) ⇒Action(x)]

3.4 Variable Arity Predicates and Functions
It is natural to regard many predicates and functions as hav-
ing variable arities, e.g.TheSet which extensionally enu-
merates a set. In some cases, the arities can be bounded by a
small number, e.g. the Cyc functionMeter can take either
1 or 2 arguments.(Meter 1) denotes “one meter”, and
(Meter 1 2) denotes “between one and two meters”. In
those cases, we can translate into FOL by suffixing the name
of the predicate or function with the arity with which it ap-
pears in the assertion i.e.

In many cases, for exampleTheSet, the arity is fun-
damentally unbounded. In these cases, no straightforward
translation seems to exist. An exception is thediffer-
ent predicate which, when applied ton arguments, can be
translated intoO(n2) inequality relations.

3.5 Exceptions
Exceptions to assertions in Cyc can be declared using the
exceptFor andexceptWhen predicates, e.g.

(exceptFor Taiwan-RepublicOfChina
(implies (isa ?X ChineseProvince)
(geopoliticalSubdivision China-
PeoplesRepublic ?X)))

Exception assertions like the above are used to give Cyc
non-monotonic behavior.

When translating an exception assertion into FOL, the
FOLifier could take the exception conditions and add them

35

FOL untranslatability reason # of Assertions
UNBOUNDED ARITY FUNCTION 77756
META-SENTENCE 54209
META-VARIABLE 18923
VARIABLE ARITY FUNCTION 14187
FUNCTION ARG CONSTRAINT 7481
HOOK 6407
COLLECTION QUANTIFICATION 2263
UNBOUNDED ARITY PREDICATE 1554
FUNCTION QUANTIFICATION 1072
PREDICATE QUANTIFICATION 766
ILL-FORMED 458
INTER-MT 295
UNEXPECTED 247
SEQUENCE-VAR 206
NON-COLLECTION 132
NON-FUNCTION 114
NON-PREDICATE 62
VARIABLE ARITY PREDICATE 0

Table 1: ResearchCyc Translation Statistics

as negated literals in the antecedent of the excepted rule. In
the general case this is more difficult to handle. Also, there
can be problems when the assertion and the exception ap-
pear in different microtheories.

Currently, our FOLifier does not handle exceptions.

3.6 Translation Statistics

Table 1 gives a breakdown of how each assertion in the
ResearchCyc KB was handled by our FOLifier. Overall
960,327 (out of 1,074,484) assertions were translated suc-
cessfully. For the others, we list the reasons why a transla-
tion was not possible and the number of assertions for which
that reason applies.

UNBOUNDED ARITY PREDICATE and UN-
BOUNDED ARITY FUNCTION indicate that the assertion
has a predicate or function with variable arity, and that there
is no upper bound on the maximum arity, as described in
Section 3.4.

VARIABLE ARITY PREDICATE and VARIABLE AR-
ITY FUNCTION indicate that the assertion has a predicate
or function with variable arity, but there is an upper bound
on the maximum arity. Many of these arise from Cyc’s rep-
resentation of scalar intervals. These are in principle trans-
latable as described in Section 3.4, but our initial FOLifier
implementation only handled fixed-arity relations.

META-SENTENCE indicates that a sentence occurs as a
term (e.g. within a modal, or an exception).

META-VARIABLE indicates that the assertion references
a meta-variable, which is an intrinsically higher-order lan-
guage feature.

FUNCTION ARG CONSTRAINT indicates a constraint
on the argument of a function. Our FOLifier implementation
does not currently handle these.

HOOK indicates that the assertion contains a “hook” into
some procedural code.

FUNCTION QUANTIFICATION, COLLECTION
QUANTIFICATION and PREDICATE QUANTIFICA-
TION indicate that the assertion quantified over a function,a
collection (which translates into a predicate), or a predicate
that was not a rule macro predicate.

INTER-MT indicates that the assertion involved some
kind of inter-contextual reasoning between microtheories
using theist predicate that could not be translated into
FOL.

SEQUENCE-VAR indicates that the assertion used a vari-
able that stands for a sequence of terms rather than a single
term. These are used in Cyc to write higher-order rules that
quantify over predicates that could have varying arities.

NON-COLLECTION, NON-FUNCTION, NON-
PREDICATE, and UNEXPECTED were cases which
our FOLifier was unable to handle. Some of these were
due to Lambda and Kappa, since function-denoting
functions and predicate-denoting functions are inherently
non-firstorderizable.

ILL-FORMED illustrates some kind of syntactic or se-
mantic problem with the Cyc assertion itself.

4 The Cyc Inference Engine
The Cyc Inference Engine is a higher-order theorem prover
optimized for the Cyc Knowledge Base. It differs from most
automated theorem provers in several fundamental ways.
Cyc’s inference engine is designed to reason over a very
large common-sense KB. It is incomplete, non-monotonic,
and handles context reasoning natively. It is highly modu-
lar; in addition to modules implementing inference rules, it
has modules implementing meta-reasoning and meta-meta-
reasoning. It can dynamically handle theory revisions re-
quiring only limited, local knowledge recompilation, and
truth maintenance is always on.

4.1 Large Common-Sense KB

ResearchCyc contains over a million axioms, so the infer-
ence engine’s datastructures and heuristics are designed to
handle hundreds of thousands of constants and tens of thou-
sands of predicates efficiently. Furthermore, the knowledge
in Cyc’s KB is common-senseknowledge. Common-sense
knowledge is more often used in relatively shallow, “needle
in a haystack” types of proofs than in deep mathematics-
style proofs. Common-sense knowledge is more often used
for constructive proofs than proofs by contradiction.

These factors have significantly influenced the design of
Cyc’s inference engine in ways quite different from most
other automated theorem provers, which are often optimized
for very different types of knowledge, such as formal verifi-
cation, mathematics, or a single specific domain.

4.2 Incompleteness

Common-sense knowledge is tightly interconnected, and
that fact combined with a very large KB make for intractably
large branching factors in inference. Cyc’s inference engine
is heuristically guided and resource-bounded; it trades com-
pleteness for efficiency. At some point, the size and density

36

of a KB become so large that any complete inference algo-
rithm would be so slow as to be pragmatically useless. At
that point, it becomes wise to give up completeness in favor
of efficiency.

4.3 Highly Modular
Cyc, like most state of the art theorem provers, has a so-
phisticated set of heuristics used to rank potential inferences
in a preference order. Also like most theorem provers, Cyc
considers applying a set of inference rules at each inference
step.

However, most theorem provers have a small handful
of inference rules, usually including hyperresolution and
paramodulation. In contrast, Cyc employs a “pandemo-
nium” model in which hundreds to thousands of “Heuristic-
Level (HL) modules”, each of which implements an infer-
ence rule, check whether they are applicable to the given
subproblem and make a bid to solve it. HL modules can
be dynamically added or removed from the system without
requiring any sort of retuning or recompilation.

4.4 Higher-Order
Some higher-order features are efficiently implemented via
HL modules. For example, Cyc has an HL module that ap-
plies only to transitive predicates. When invoked, it per-
forms a graph walk over the indexing structures of the KB,
which is considerably more efficient than performing unre-
stricted resolution.

By representing the knowledge that a given predicate P is
transitive asTransitivePred(P) rather than as a rule,
Cyc gains parsimony in knowledge representation as well as
efficiency in inference. If there areN transitive predicates in
the universe of discourse, Cyc can represent this knowledge
in N + 1 clauses: 1 clause per predicate plus 1 very general
higher-order rule. In a straightforward FOL representation,
3N clauses would be required: 1 three-clause rule to express
the transitivity of each predicate.

Many other higher-order features are handled analo-
gously, with corresponding gains in both inference effiency
and KR parsimony.

4.5 Contexts
Reasoning within a hierarchy of contexts is built into the in-
nermost loop of Cyc’s inference engine. Cyc maintains a
dynamic contextual scope which can differ for each literal
of each subproblem of an inference. Each axiom considered
for use in a proof is first checked for relevance to the con-
textual scope. In the general case, this is done via efficient
graph walking of the context hierarchy (a directed graph, not
necessarily acyclic), and for the common cases, the com-
putation is cached. Hence, Cyc can handle contextual and
inter-contextual reasoning very efficiently.

5 Experimental Results (Preliminary)
Here we present the results of our preliminary experiments
on performing inference with the first-orderized Research-
Cyc KB.

In the last 20 years a number of efficient first-order theo-
rem provers have been developed for doing sound and com-
plete reasoning in first-order logic. The most common and
successful design for these theorem provers is a resolution-
style saturation strategy with sophisticated heuristics to de-
termine clause and literal weights.

The gold standard for these theorem provers has been the
TPTP (Thousands of Problems for Theorem Provers) library,
which contains first-order encodings of problems from var-
ious domains as diverse as lattice theory to circuit verifica-
tion. The challenge in most of these problems has been to
find “deep inferences”: starting from a relatively small set
of axioms (small as compared to, say, Cyc’s common-sense
ontology) and returning a proof that requires a large number
of inference steps.

Common-sense queries, on the other hand, typically re-
quire “shallow inferences”, i.e. proofs that use a very small
percentage of the entire KB and do not have many steps.
The problem is to choose at each stage the correct line of
inference to pursue out of all the possibilities. It has been
observed (Reif & Schellhorn 1997) that goal-directed strate-
gies are the only practical methods to use when the numbers
of axioms are more than a few hundred.

Our ResearchCyc FOLification was motivated in part by
the opportunity to experiment with first-order theorem prov-
ing strategies on the ResearchCyc KB and compare those
results with the performance of Cyc’s own inference engine.

Unfortunately we ran into a number of practical difficul-
ties in using first-order theorem provers for our common-
sense KB, a task for which they were not optimized. At
the time of publication, we were unable to obtain the kind
of extensive results that would enable us to draw confident
conclusions. We instead present some initial work and our
speculations.

With the exception of E, none of the theorem provers we
tried were able to load more than 20% of the ResearchCyc
KB without failing due to memory errors. In most cases, this
was due to internal data structure limitations in the theorem-
proving programs, which we are trying to fix with the help
of the maintainers of these programs. Meanwhile, we have
performed a few experiments with a subset of the Research-
Cyc KB, as a feasibility study.

These experiments were performed as follows: We se-
lected a set of 8 common-sense queries from an existing test
corpus of queries for the ResearchCyc KB. This fixed set of
queries was chosen before running any experiments. We se-
lected these 8 in particular because they represent a diverse
collection of different types of common-sense queries repre-
sentable in ResearchCyc. None of these 8 queries turned out
to be inherently dependent on higher-order reasoning; all of
them were answerable by pure first-order reasoning on the
translated KB.

We then randomly generated a subset of the FOLified Re-
searchCyc KB2 containing less than 10% of the total num-
ber of axioms (about 100,000 out of 1,250,000) and manu-
ally ensured that the all the axioms needed to prove all the

2In the case of SPASS however, because of licensing issues, this
was done on the OpenCyc KB, with virtually identical results.

37

Query VAMPIRE SPASS E Cyc
(sec.) (sec.) (sec.) (sec.)

(isa isa Individual) 18.1 16.4 26 0.006

(implies (and (subOrganizations ?Z ?X) (hasMembers
?X ?Y)) (hasMembers ?Z ?Y))

3.4 5.2 12 2.5

(typePrimaryFunction Bathtub TakingABath deviceUsed) 1.6 2.8 9 0.02
(typeBehaviorIncapable Doughnut Talking doneBy) 43.4 29.1 132 0.03

(implies (and (parts ?X ?Y) (parts ?Y ?Z)) (parts ?X
?Z))

8.7 12.2 23 0.6

(disjointWith Baseball-Ball Cube) 176.5 343.0 1491 0.02

(disjointWith HumanInfant Doctor-Medical) 847.6 1239.1 2934 0.04

(implies (and (isa ?CUP CoffeeCup) (isa ?COFFEE
Coffee-Hot) (in-ContOpen ?COFFEE ?CUP)) (orienta-
tion ?CUP RightSideUp))

218.4 462.5 574 0.7

Table 2: Inference Experiments

queries were present. (This manual step explains why we
could only experiment with 8 queries.)

Finally we ran the theorem provers VAMPIRE, SPASS
and E (which collectively represent the state of the art among
ATP systems) on the KB + negated query. For SPASS, we
had to first convert our KB into its native DFG format (Wei-
denbach 1999). The results are shown in Table 2. We have
also shown the performance of the Cyc inference engine
on these queries. The experiments were performed on an
Athlon 2800 with 512 MB of RAM.

As an example of the completely different approaches to
inference taken by the ATP systems and the Cyc inference
engine, consider their behavior on the sixth query,(dis-
jointWith Baseball-Ball Cube).

Cyc solves the query in the following way: The inference
engine delegates the problem to an HL module that can effi-
ciently solvedisjointWith queries. First it walks up the
genls graph forCube, marking each node as a goal. Then
it walks up thegenls graph forBaseball-Ball, and
for each more general collection, it walks across all explicit
disjointWith assertions to check whether it hits a goal
node. In this particular example, the inference path is:

1. Mark Cube, RectangularParallelepiped,
Parallelepiped, Polyhedron, etc. as goals

2. Iterate through each genl G ofBaseball-Ball, e.g.
Ball.

3. Iterate through each of G’s asserted disjoins D, e.g.
Polyhedron.

4. Check to see if D is a goal node.

This simplified walkthrough glosses over many details,
not the least of which is the fact that microtheory reasoning
is built into the innermost loop of this algorithm; on each
traversal of each link in thegenls anddisjointWith
graphs, Cyc does another graph walk of thegenlMt graph,

the graph in which Cyc’s hierarchy of contexts is stored, to
ensure that the link is relevant to the current context.

In comparison, the first-order approach is simple and
uniform: Eachgenls anddisjointWith assertion is
translated into a rule such as∀x∀yBaseball-Ball(x) ⇒
Ball(x) or ¬(Ball(x) ∧ Polyhedron(x)). Negating the
query, ∃y(Baseball-Ball(y) ∧ Cube(y)) and running a
resolution-style proof search will then yield a contradiction
and hence a positive answer.

5.1 Interpretation
A few caveats have to be made before conclusions can be
drawn from these experiments. In order to obtain these re-
sults, a number of simplifications were required in our ex-
perimental procedure. First, we had to scale down the size
of the KB as described above in order to load it into all the
theorem provers, whereas Cyc’s inference engine was run
on an unmodified KB (over 10 times the size of that used by
the theorem provers). Furthermore, for all the queries except
the last one, we ’flattened’ the query context for the theorem
provers, i.e. the query was asked in the BaseKB and all its
supporting axioms were placed in the BaseKB. This in effect
meant that first-order inference required one less unit prop-
agation step on themtVisible literal. The last query was
not flattened, but was asked in the context ofTerrestri-
alFrameOfReferenceMt. This may be a factor in its
relative slowness. Cyc’s inference engine did not flatten any
of its queries or any of its KB. In all the deviations we made
in the testing conditions for the FOL theorem provers versus
the ResearchCyc inference engine, we ensured that we erred
on the side of the theorem provers, i.e. the changes sped up
their running times.

The immediate observation is that Cyc’s performance is
orders of magnitude better on almost all the queries. We be-
lieve that this validates our hypothesis that a specializedin-
ference engine working natively with compact higher-order

38

representations and special-purpose reasoning modules will
perform better on common-sense queries than general first-
order theorem proving strategies. However, much work re-
mains to be done before this claim can be asserted with con-
fidence.

The only query for which Cyc’s result is within an or-
der of magnitude of any of the other results is the second
one, thehasMembers query. This is because Cyc solves
the query by hypothesizing terms for?X, ?Y , and?Z and
performing forward inference on them before moving on to
query-focused backward inference. 2.3 of the 2.5 seconds
are spent in forward inference, which proves to be unnec-
essary for this particular query. This suggests further opti-
mizations to Cyc; e.g. if the forward inference were done
lazily rather than eagerly, Cyc could answer the question in
0.2 seconds rather than 2.5 seconds.

An alternative explanation for the difference in results is
that our tests with most theorem provers were not performed
under ideal settings. We did not have a chance to exper-
iment extensively with the various parameter settings and
heuristics that the programs offered; we used a uniform Set-
Of-Support resolution setting for all of them. It could be
that with, for example, an improved clause/literal weighting
strategy, these theorem provers would become competitive
with Cyc.

Another possible explanation for the difference in results
is the inherent incompleteness of the FOLification proce-
dure, as discussed in section 3. Perhaps it omits some ax-
ioms that are key to proving the queries efficiently in FOL,
or perhaps it could translate to a form more amenable to
other theorem provers. We hypothesize that this is not the
case, and we plan to test our hypothesis by gathering in-
put from the authors of other theorem provers, refining our
FOLification procedure, and rerunning the experiment.

It should be noted, however, that most state of the art theo-
rem provers have been optimized for mathematical problems
requiring deep inference, such as those in the TPTP library.
Cyc would almost certainly perform very poorly on those
problems. Conversely, the FOLified ResearchCyc KB can
be viewed as a new challenge problem for Automated Theo-
rem Proving. With our results as a baseline, can theorem-
proving strategies be found that improve performance on
common-sense queries to match those of a specialized in-
ference engine like Cyc?

The apparent poor performance of E relative to the other
two theorem provers is surprising, especially given the fact
that E performed very well in recent ATP competitions (Pel-
letier, Sutcliffe, & Suttner 2002) and that E was the only
program that could load the entire ResearchCyc KB. This
might be explained by the fact that E does not directly do
Set-Of-Support resolution, but instead uses a clause weight-
ing strategy that simulates it.

6 Conclusions and Future Work
The ResearchCyc FOLification tool was motivated by a
number of goals. First, we aimed to measure the inher-
ent higher-orderness of the ResearchCyc KB, which is a
good indication of how much higher-orderness common-
sense KBs in general can be expected to require. Going by

sheer number, we were able to translate around 90% of the
axioms. However, the other 10% of axioms that remained
untranslated may form the core of Cyc’s ontology. To ver-
ify this, experiments need to be set up with a large corpus
of queries from ResearchCyc’s test suite. The percentage of
queries that can be answered by both ResearchCyc and any
ATP system gives a measure of how much of the informa-
tion content of the KB is actually translated, and how much
of the inferential power actually carries over to FOL.

The second goal was to measure the performance of
the Cyc inference engine against state of the art theorem
provers. Our tentative conclusions are given in Section 5.1.
The benefits of such a comparison could be mutual. First,
if it is found that on certain classes of queries, there are
theorem-proving strategies that work better than Cyc’s in-
ference engine, then we would like to explore the possibility
of incorporating these methods into ResearchCyc, perhaps
as HL modules. We are encouraged in this direction by the
success of SUMO (Niles & Pease 2001) in using VAMPIRE.

Conversely, common-sense queries over large KBs of
this scale represent an entirely new class of problems that
have not been studied extensively in the automated reason-
ing community, mainly due to a lack of problem sets. The
FOLified ResearchCyc KB could help kickstart research into
this area. We have discussed with the maintainers of the
TPTP problem library the possibility of generating a suite of
common-sense benchmark problems from the ResearchCyc
KB.

As for our experiments, a lot of work remains to be done
before a completely fair comparison can be made between
ResearchCyc and the ATP systems. Once we are able to per-
form experiments on the entire FOLified KB, then we can
automatically run them on hundreds of queries in the Re-
searchCyc Test Corpus. The statistics gathered can then be
used to draw definite conclusions about both representability
and efficiency in reasoning.

It is quite likely that on many of the problems that mod-
ern theorem provers excel at (for example a theorem from
group theory), Cyc’s inference engine would perform poorly
or not return an answer at all. Given the radically differ-
ent design decisions of Cyc’s inference engine versus those
of most other theorem provers, it is not surprising that they
have very different performance characteristics on different
types of problems. Now that ResearchCyc is available to the
academic community, these design decisions can finally be
put to the proving ground. Is it possible to design a first-
order theorem prover that can efficiently answer realistic
common-sense queries over a large KB? Could such a the-
orem prover already exist, modulo a (perhaps more sophis-
ticated) HOL to FOL translation mechanism? The experi-
mental results presented in this paper are a first step toward
answering these questions, and we challenge and encourage
others to continue this work.

7 Acknowledgements
We would like to thank a number of people for their past and
ongoing help. The first author would like to thank Eyal Amir
for his encouragement and advice. We would like to thank
the designers and maintainers of the theorem provers we

39

used in our experiments, for helping us use their software on
our KB: Stephen Schulz (E), Andrei Voronkov (VAMPIRE)
and Thomas Hillenbrand (SPASS). We would especially like
to thank Geoff Sutcliffe for his help with the TPTP transla-
tion and for running the model checking software Paradox
on OpenCyc. This work was funded in part by ARDA’s
NIMD program.

References
Boolos, G. 1984. To be is to be the value of a variable (or to
be some values of some variables).Journal of Philosophy
81:430–449.
Buvac, S. 1996. Quantificational logic of context. InPro-
ceedings of the Thirteenth National Conference on Artifi-
cial Intelligence.
Giunchiglia, F. 1993. Contextual reasoning.Epistemologia
XVI:345–364.
Lenat, D., and Guha, R. 1990.Building Large Knowledge
Based Systems. Reading, Mass.: Addison Wesley.
McCarthy, J. 1986. Notes on formalizing contexts. In
Kehler, T., and Rosenschein, S., eds.,Proceedings of the
Fifth National Conference on Artificial Intelligence, 555–
560. Los Altos, California: Morgan Kaufmann.
Niles, I., and Pease, A. 2001. Towards a standard upper
ontology. In Welty, C., and Smith, B., eds.,Proceedings of
the 2nd International Conference on Formal Ontology in
Information Systems(FOIS-2001).
Pelletier, F.; Sutcliffe, G.; and Suttner, C. 2002. The De-
velopment of CASC.AI Communications15(2-3):79–90.
Reif, W., and Schellhorn, G. 1997. Theorem proving in
large theories. In Bonacina, M. P., and Furbach, U., eds.,
Int. Workshop on First-Order Theorem Proving, FTP’97,
119–124. Johannes Kepler Universität, Linz (Austria).
Riazanov, A. 2003.Implementing an Efficient Theorem
Prover. Ph.D. Dissertation, University of Manchester.
Schulz, S. 2002. E - a brainiac theorem prover.Journal of
AI Communications15(2):111–126.
Sutcliffe, G., and Suttner, C. 1998. The TPTP Problem
Library: CNF Release v1.2.1.Journal of Automated Rea-
soning21(2):177–203.
Weidenbach, C. 1999.Handbook of Automated Reasoning.
Elsevier. chapter SPASS: Combining superposition, Sorts
and Splitting.

40

An Application-Oriented Context Pre-fetch Method for Improving
Inference Performance in Ontology-based Context Management

Jaeho Lee, Insuk Park, Dongman Lee, and Soon J. Hyun

School of Engineering
 Information and Communications University

103-6 Munji, Yuseong, Daejeon, Korea
{leejaeho, ispark, dlee, shyun}@icu.ac.kr

Abstract
Ontology-based context models are widely used in a
ubiquitous computing environment. Among many benefits
such as acquisition of conceptual context through inference,
context sharing, and context reusing, the ontology-based
context model enables context-aware applications to use
conceptual contexts which cannot be acquired by sensors.
However, inferencing causes processing delay and it
becomes a major obstacle to context-aware applications. The
delay becomes longer as the size of the contexts managed by
the context management system increases. In this paper, we
propose a method for reducing the size of context database
to speed up the inferencing. We extend the query-tree
method to determine relevant contexts required to answer
specific queries from applications in static time. By
introducing context types into a query-tree, the proposed
scheme filters more relevant contexts out of a query-tree and
inference is performed faster without loss of the benefits of
ontology.

1. Introduction
An application is considered context-aware if it adapts to a
user’s or its own context such as location, state, and so on.
There are several examples of context-aware applications.
Among them is Teleport System (Dey et al. 2001) in which
a user's desktop environment follows the user as he or she
moves from one workstation to another. Another example is
the Navigation system (Baus et al. 2002) which
dynamically displays the navigation information according
to the speed of traveling in order to help a user’s attention.
To facilitate the development of context-aware applications,
a context model is required to manage such functions as
storing, searching, and sharing contexts that change
dynamically.

There have been many research efforts on context
modeling such as application-oriented model (Dey et al.
2001; Kindberg et al. 2000), graphical model (Henricksen
et al. 2002), and ontology-based model (Gu et al. 2004;
Chen et al. 2004). The ontology-based context model is

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

widely used because of its advantages of sharing and
reusing knowledge, and especially, of inferring a
conceptual context which cannot be acquired by the data
gathered from sensors.

Several context management systems have proposed
ontology-based context models for the rapid and reliable
development of context-aware applications (Wang et al.
2004; Lee et al. 2004; Ranganathan and Campbell 2003;
Khedr and Karmouch 2004). The main roles of a context
management system are to collect contexts from sensors, to
infer conceptual contexts, and to deliver an appropriate
context to applications. Inference, however, is time- and
resource- consuming. The processing time for inference
increases proportionally to the size of contexts as well as
the number of applied rules. As a ubiquitous computing
environment becomes more intelligent, the size of contexts
grows accordingly. This makes it difficult to achieve the
inference result in a timely manner. Although most context
management systems with the ontology-based context
model recognize the problem, none of them provides
solutions to it.

In this paper, we propose a context pre-fetch method to
reduce the size of context database to be loaded in a
working memory１ to speed up inference. Our experiences
in developing context-aware applications show that only a
subset of the whole contexts is used in inferencing, e.g.,
less than 40 contexts out of 2,000 contexts. Therefore, we
argue that irrelevant contexts can be filtered out from the
whole contexts in a working memory. We extend the query-
tree method (Levy et al. 1997) to identify the contexts
required to answer specific queries of applications in static
time. We adopt constraint predicates of the query-tree
method to restrict the contexts and pre-fetch the contexts
relevant to applications’ queries. We classify contexts into
three type categories; sensed, deduced, and defined context.
With constraint predicates, the context types are also used
as irrelevance claims to determine whether a certain context
is required for them or not. Experimental results show that
the proposed scheme allows the size of contexts in a
working memory and the processing time for inference to
be maintained smaller without loss of the benefits of

１ Working memory is a memory space used for inference.

41

reasoning than the query-tree method. It certainly helps
ontology-based context management to be scalable in a
resource-limited ubiquitous computing environment.

The rest of this paper is organized as follows. In chapter
2, we show related work. In chapter 3, our approach is
explained in detail. In chapter 4, we describe an
implementation, followed by the evaluation in chapter 5.
Finally in chapter 6, conclusion is provided and future work
is discussed.

2. Related Work

2.1. Ontology-Based Context Model
The Context Broker Architecture (CoBrA) has developed
an ontology-oriented context model to make easy
knowledge-sharing across distributed systems (Chen et al.
2004). They have used the F-OWL inference engine to get
a conceptual context from raw contexts (Zou et al. 2004).
The F-OWL inference engine has features to enhance
reasoning performance. The engine introduces the Tabling
method to reduce the processing delay required for rule-
based inference. The Tabling is used in various inference
engines such as the Jena2 (A Semantic Web Framework for
Java) (Carroll et al. 2004). According to it, once it is proved
that a subject-property-object triple is in the target ontology
model, the triple is added to an appropriate table. Even
though a few queries at first may take time to get results,
the next queries get quick responses. However, when
update of the model such as data assertion or retraction
takes place, the table gets invalidated. Therefore, it is
impossible for the context models to take advantage of
Tabling as context changes frequently at runtime.

The Semantic Space has also developed an ontology-
based formal context model to address critical issues
including formal context representation, knowledge sharing,
and logic-based context reasoning (Wang et al. 2004). The
system uses Jena2 (Carroll et al. 2004) to inference the
ontology-based contexts. However, similar to CoBrA,
performance degrading is a problem when the size of the
context increases. They suggest three solutions. First, the
time-critical context-aware applications execute without
reasoning process. Second, context reasoning is
independently performed by resource-rich devices such as
the residential gateway. Among them, most active solution
is two-level structure, i.e., high-level and domain-specific.
By dividing the context into two levels, the size of context
used in inference can be reduced because each domain-
specific context is managed separately and loaded
dynamically when context-aware applications move into the
domain. However, in this case, not the entire context is
used by context-aware applications in a domain, and the
aforementioned performance degrading problem of the
logic-based reasoning still remains when the size of a
domain becomes large. We also take the two-level structure
to design our context ontology. Furthermore, the proposed
method in this paper focuses on reducing the domain-

specific contexts since all domain-specific contexts are not
relevant to a specific query, or a context-aware application.
In this way, our method makes the system scales well even
though the size of a domain becomes large.

2.2. Methods to Speed up Inference
We have examined efforts to speed up reasoning inside
inference engines. Some of the ontology inference engines
nowadays are Jena2 (Carroll et al. 2004), Racer (Racer),
FaCT (FaCT), Hoolet (Hoolet), and Triple (Triple). Jena2 is
a Java framework for writing Semantic Web applications.
Jena2 provides inference for both the RDF and OWL
semantics. However, the response time of reasoning
increases along with the number of triples because Jena2's
memory-based Graph model simply has been implemented
as the triple pattern (S, P, O) matches by iterating over the
Graph. Although the reasoning engines such as Racer,
FaCT, Hoolet, and Triple are well-developed, none of them
scales well when dealing with the OWL test case wine
ontology (http://www.w3.org/TR/owl-guide/wine.owl)
(Zou et al. 2004).

Alon Y. Levy, et al. proposed a method for search space
pruning to speed up inference using the query-tree is shown
(Levy et al. 1997). The query-tree is a powerful static-
analyzing tool for determining knowledge base containing
rules and finite structure that encodes all derivations of a
given set of queries. Using the method, we can select rules
and ground facts used in deriving answers to the queries.
We adopt and extend the query-tree method to determine
relevant contexts required to answer specific queries given
from applications at the time of initializing the application.

3. Context Pre-fetch Method

3.1. Design Considerations
In the ontology-based context model, the speed of inference
can be improved by reducing two factors; (a) the number of
rules and (b) the size of context database (Gu et al. 2004).
Rules are divided into two types. One is rules for ontology
reasoning such as subClassOf, Symmetric, and
Transitive semantics as shown in Figure 1. Ontology
reasoning is responsible for checking logical requirements
which include class consistency, class subsumption, and
instance checking (Gu et al. 2004). Since it does not make
sense losing any semantics of ontology for speeding up the
inference, the rules for ontology reasoning are kept in a
working memory at runtime. The other is user-defined rules
for generating conceptual contexts. These rules are needed
only when context-aware applications ask for those
conceptual contexts. We assume that user-defined rules
required for an application’s operation are given by the
application. Thus, we cannot reduce the number of both
ontology and user-defined rules in order for an application
to work correctly even though the small number of rules
makes the inference time shorter. Therefore, we focus on

42

reducing the size of context database for speeding up
inference.

Reducing the size of context database is a process in
which the system reasons only relevant contexts to an
application’s query and fetches and places them in a
separate context database in a working memory. This
process is the same as Irrelevance reasoning in AI. The
relevant contexts are what the context-aware application’s
queries need to access to get their results at runtime. We
can guess relevant contexts from the context-aware
application’s queries by decomposing them into primitive
contexts, or ground facts. One of techniques to guess
relevant contexts is the query-tree method (Levy et al.
1997).

In the query-tree method, a query-tree built from a given
query is traversed and irrelevant facts are pruned using
constraint predicates. Constraint predicates are used to
specify restrictions on ground facts. For example, suppose
that a query, AgeOf(x, y), is restricted by a constraint
predicate, y<=150. It means that the ground facts larger
than 150 are irrelevant to the query. They are found
statically using constraint predicates before the query is
requested and excluded when evaluating the query at
runtime. In other words, only the ground facts satisfied with
y<=150 are placed in a working memory for the query at
runtime. However, in the case of a context-aware
application’s queries, there are many queries about contexts
acquired from sensors. The contexts acquired from sensors
do not need to be placed in a working memory until the
value of context comes in from sensor since they are
meaningless before real values are sensed. It motivates us
to devise a method for filtering further contexts which are
relevant but useless to applications out of the query-tree. It
helps to scale up the ontology-based context management
in such a resource-limited ubiquitous computing
environment. We introduce context types, which indicate
when and how context can get a meaningful value, for
further filtering besides constraints predicates. They are
described in the next section.

Transitive-
Property

(?P rdf:type owl:TransitiveProperty)
(?A ?P ?B) (?B ?P ?C) -> (?A ?P ?C)

Symmetric
Property

(?P rdf:type owl:SymmetricProperty)
(?X ?P ?Y) -> (?Y ?P ?X)

inverseOf
Property

(?P owl:inverseOf ?Q) (?X ?P ?Y)
-> (?Y ?Q ?X)

Equivalent
Property

(?P owl:equivalentClass ?Q) ->
(?P rdfs:subClassOf ?Q),
(?Q rdfs:subClassOf ?P)

subClassOf (?A rdfs:subClassOf ?B)
(?B rdfs:subClassOf ?C)
-> (?A rdfs:subClassOf ?C)

Figure 1. Part of OWL Property Rules

3.2. Context Representation and Categorization
We design context ontology for a home environment using
Web Ontology Language (OWL). Context ontology is
divided into upper-level and lower-level context ontology

similar to the CONON (Gu et al. 2004). An upper-level
context defines each class and property, and expresses the
relationships and constraints between properties using
ontology semantic rules. A lower-level context defines
instantiations of domain-specific facts using general
concepts and properties of an upper-level one. For example,
lower-level contexts both 'Bedroom' for a home domain
and 'Office' for a business domain are described by
an upper-level context, 'Room' as shown in Figure 2.

A context is encoded as a triple which has a form of
(subject, predicate, object) in OWL. While the subject and
object are merely physical and logical entities or sensed
values, the predicate makes a semantic relation between
two entities. For example, the ‘hasDevice’ property of
‘Bedroom’ in Figure 2 is represented as a form of
‘<Bedroom, hasDevice, Bed>’. In addition, the
context of a triple form can be extended to represent a
complex context by combining the predicate.

We classify a context into a sensed context, a deduced
context, and a defined context like (Gu et al. 2004;
Henricksen et al. 2002). Every predicate of a context has a
property, ’owl:classifiedAs’ to specify its type.
(referred to as the‘Room’ ontology in Figure 2). We use
the types of contexts to determine whether a query should
be used to build a query-tree for selecting relevant contexts.
Other researchers also proposed context categorization but
they used it for other purposes, i.e., expressing the quality
of a given context, compensating for context imperfection
(Gu et al. 2004; Henricksen et al. 2002).

First, a sensed context such as ‘person;locatedAt’ is
acquired from a sensor at runtime. A sensed context is
dependent on a sensor running in an environment.
Therefore, a sensed context is meaningless until a sensor
corresponding to a given context actually works at runtime.
Accordingly, a context query for a sensed context such as
‘<?p person;locatedAt Bedroom>’ cannot get an answer
before runtime. Second, a deduced context such as
‘person;hasStatus’ is acquired only by inference after
the sensed context, ‘person;locatedAt’ is sensed. To get a
deduced context, we define user-defined rules which
consist of context queries relevant to other types of contexts.
For example, a deduced context such as ‘a user’s current
status is sleeping’ is obtained only when the current
contexts satisfy the sleep-rule２. It contains context queries
for the current state of a bed, and a person’s current
location. Among these queries, ‘<?p person;locatedAt
Bedroom>’ and ‘<?d device;hasState ON>’ are the queries
for a sensed context obtained at runtime. Accordingly, the
sleep-rule cannot generate in static time the deduced
context such that a person’s current status is ‘sleeping’.
Finally, a defined context such as ‘<TV
device;locatedIn Bedroom>’ is defined by a user and

2 sleep-rule : (?p rdf:type person:Person) (?d rdf:type device:Device)
(?p person:locatedAt room:Bedroom) (?d device:locatedIn room:Bedroom)
(?d device:hasState ON) -> (?p person:hasStatus status:sleeping).
The rule consists of five queries. Each query has a literal as variable.
Among them, (?d device;hasState ON) means what is devices whose
hasState value is ON>.

43

is rarely updated over its lifetime once after it is determined.
Therefore, the result of a context query for defined context
is always the same whenever the query is evaluated.
Consequently, a defined context is only a context that can
be acquired before runtime. Thus, we consider context
queries for a defined context in a pre-fetch process.

<owl:Class rdf:ID="Room">
<rdfs:subClassOf>

<owl:Restriction>
 <owl:onProperty rdf:resource="#doorState"/>…
<owl:ObjectProperty rdf:about="&room;Brightness">
 <rdfs:domain rdf:resource="#Room"/>
 <rdfs:range rdf:resource="&state;Brightness"/>
 <owl:classifiedAs rdf:resource="&icu;Sensed"/>

</owl:ObjectProperty> ……
(a) Upper-level Context Ontology
<Room rdf:ID="Bedroom">

<hasDevice rdf:resource="&device;Bed"/> ……
<Brightness rdf:resource="&state;BedroomBrightness"/>
 </Room>
(b) Home Domain Context Ontology
<Room rdf:ID="Office">

 <hasDevice rdf:resource="&device;Desk"/> ……
 <hasDevice rdf:resource="&device;Fax"/>
</Room>
(c) Business Domain Context Ontology

Figure 2. ‘Room’ Upper-level Context Ontology and
‘Bedroom’ and ‘Office’ Lower-level Context Ontology

3.3. Context Pre-fetch
The proposed method uses a pair of memory spaces; (a) a
working memory and (b) a pre-processing memory. The
working memory is used to perform inference over the
contexts that support a context-aware application’s
operation at runtime. The pre-processing memory is used
for the selection of relevant contexts in static time before
use. We define ‘pre-fetch’ as a series of processes for
building a query-tree, selecting relevant context in the pre-
processing memory, and delivering the selected context into
the working memory.
 Before the pre-fetch process, we load the upper-level
context ontology into the working memory at the
initialization time to use for ontology reasoning.
Relationships and constraints defined in the upper-level
ontology are used to check the consistency of asserted
contexts or infer contexts at runtime. For examples, the
'locatedAt' property of the'Person' upper-level context
ontology and the 'hasPerson' property of the 'Room'
upper-level context ontology are in the 'owl:inverseOf'
relationship to each other. In such a case, an assertion of a
sensed context in a working memory such as '<Mr. Lee
locatedAt Bedroom>' makes the value of the 'hasPerson'
property of the 'Bedroom' context ontology 'Mr. Lee'.
Thus, the upper-level context ontology has to remain in the
working memory during runtime. All context ontology is
loaded into the pre-processing memory to examine a query
over the whole contexts set.

 We prune the contexts irrelevant to an application’s
operation from the whole contexts in the pre-fetch process.
Pruning is done in two steps; (a) pruning by a constraint
predicates adopted from the query-tree method (Levy et al.
1997), (b) pruning by predicate types implied by the
context category.

<?p person;hasStatus Sleeping -> turnOffLight>

<?d rdf;type Device>

<?d device;locatedIn Bedroom>

<?p person;locatedAt Bedroom>

Devices of which location is bedroom
{LampInBedroom, Bed, TVInBedroom,
AudioInBedroom, AirCleaner,…}

Person
{ Mr.Lee, Miss Lee, Mr.Park,…}

Person who locates in bedroom
{ Mr.Lee, Mr.Kim,…}

Devices
{ LampInBedroom, Bed,
TVInLivingRoom, …}

<?p rdf;type Person>

<?d device;hasState ON>

sleepRule

Devices of which state is true.
{ LampInBedroom, TVInBedroom,… }

<?p person;hasStatus Sleeping -> turnOffLight>

<?d rdf;type Device>

<?d device;locatedIn Bedroom>

<?p person;locatedAt Bedroom>

Devices of which location is bedroom
{LampInBedroom, Bed, TVInBedroom,
AudioInBedroom, AirCleaner,…}

Person
{ Mr.Lee, Miss Lee, Mr.Park,…}

Person who locates in bedroom
{ Mr.Lee, Mr.Kim,…}

Devices
{ LampInBedroom, Bed,
TVInLivingRoom, …}

<?p rdf;type Person>

<?d device;hasState ON>

sleepRule

Devices of which state is true.
{ LampInBedroom, TVInBedroom,… }

(a) Query-tree based on Lighting application’s query before
filter out queries for sensed context

<?p person;hasStatus Sleeping -> turnOffLight>

<?d rdf;type Device>

<?d device;locatedIn Bedroom>
Devices of which location is bedroom
{LampInBedroom, Bed, TVInBedroom,
AudioInBedroom, AirCleaner,…}

Person
{ Mr.Lee, Miss Lee, Mr.Park,…}

Devices
{ LampInBedroom, Bed,
TVInLivingRoom, …}

<?p rdf;type Person>

sleepRule

<?p person;hasStatus Sleeping -> turnOffLight>

<?d rdf;type Device>

<?d device;locatedIn Bedroom>
Devices of which location is bedroom
{LampInBedroom, Bed, TVInBedroom,
AudioInBedroom, AirCleaner,…}

Person
{ Mr.Lee, Miss Lee, Mr.Park,…}

Devices
{ LampInBedroom, Bed,
TVInLivingRoom, …}

<?p rdf;type Person>

sleepRule

 (b) Final state of query-tree based on Lighting application’s
query

Figure 3. An Example of Query-Tree

 First, we use a constraint predicate to prune the contexts
irrelevant to an application’s operation. Context queries in a
context-aware application are described by the notation of
triple match which is one of ontology query languages. It
returns all statements that match with a template in a form
of (subject, predicate, object), where each term is either a
constant or a don't-care (Wilkinson et al. 2003). Our
context ontology described by using OWL is also encoded
in a triple form and allows a property to specify the
restrictions of its domain and range. Thus, for a given
context query, we can limit the search space of the query
from the restrictions described in the context ontology. For
example, in a context query, ‘<?p, locatedAt, ?r>’, only a
‘Person’ type of a context is allowed to be ‘?p’ and
only a ‘Room’ type of a context is ‘?r’ by the
‘Person’ ontology. We define constraints specified by
the restrictions of a predicate described in the upper-level
ontology as constraint predicates. We build a query-tree
based on the context queries of context-aware applications.
Figure 3 (a) shows a query-tree based on a lighting
application’s query. In Figure 3 (a), ‘<?p person;hasStatus
Sleeping>’ query is for deduced context. A query for
deduced context can be derived into sub-queries for other

44

types of a context. Therefore, a given query is divided into
sub-queries which are ‘<?p rdf;type Person>’,‘<?d
rdf;type Device>’,‘<?p person;locatedAt Bedroom>’,‘<?d
device;locatedIn Bedroom>’, and ‘<?d device;hasState
ON>’. The label of each node in Figure 3 (a) represents the
constraints specified by the predicate of each triple. Context
queries for a context-aware application’s operation are
derived from building a query-tree. And then, the query-
tree helps generate the relevant contexts satisfying the
constraint predicates of each node on it. In the query of a
lighting application, the number of relevant contexts pruned
by the constraint predicates is about 3,000 out of almost
6,000 contexts.
 After the first step, we use predicate types to filter out
context queries for sensed contexts in a query-tree. As
explained in the previous section 3.2, the queries for a
sensed context cannot be any answered at the query-tree
build time, so they can be filtered out from the query-tree.
By filtering out the queries in advance, the number of
queries needed to be pre-fetched is further decreased.
Accordingly, the pre-fetch processing time is reduced and
irrelevant contexts are pruned. Figure 3 (b) shows a query-
tree after the first and second steps.
 Finally, remaining context queries in a query-tree are
evaluated at the pre-processing memory and then, the result
of evaluating contexts are delivered into the working
memory for further inference.
 Figure 4 shows whole procedures of context pre-fetch.

1. Initialize the pre-processing memory and the working
memory.

1.1. Load upper-level and lower-level context ontology into
the pre-processing memory.

1.2. Load upper-level context ontology into the working
memory.

2. Build query-trees based on queries of a context-aware
application at the time of initializing it.

3. Resolve queries for deduced context into queries for other
types of context.

4. Filter out queries for sensed context in the query-tree.
5. Evaluate the remaining queries in the query-tree on the pre-

processing memory loaded upper-level and lower-level
context ontology.

6. Assert the results into the working memory for the inference
engine.

Figure 4. Procedures of Context pre-fetch

4. Implementation
We have implemented the proposed method as part of our
ubiquitous computing middleware, Active Surroundings
(Lee et al. 2004). We designed a context ontology for a
home environment in OWL and used the Jena2 Semantic
Web Toolkit for evaluating rules and queries over the
context ontology. First, we show a running process of a
lighting application in the Active Surroundings without pre-
fetch. Describing how a context-aware application runs
using the middleware is to provide better understanding on

how the pre-fetch method works for the middleware using
the ontology-based context model.

A lighting application is depicted conceptually in Figure
5. The operation of the lighting application is very simple
such that a light turns off when the user's status is 'sleeping'.
In Figure 5, for the lighting application to be performed, it
needs to be subscribed to the context management system
in advance. The Context Wrapper, of which a concept is
introduced in (Dey et al. 2001), transforms a signal from
sensors into a form of a context and updates it to the
working memory. The Context Aggregator possesses a rule
to produce a conceptual context and generates it when the
present values of a context satisfy the conditions of the rule.
Sleep Aggregator checks whether a user is 'sleeping' or not.
Therefore, the aggregator is automatically registered also.
Likewise, required by the Sleep Aggregator, the Location
Wrapper and the Bed Wrapper are registered automatically
as well. Each of the registered aggregators and wrappers
keeps a list of the applications and aggregators that use its
context. When context changes occur to an aggregator or a
wrapper, it notifies to the applications or aggregators in the
list. At runtime, the Location Wrapper and the Bed
Wrapper obtain contexts about current user location and
bed status from the sensors and reflect them to the working
memory. Then, the Sleep Aggregator examines the value of
location and bed context. It concludes the current status of
the user to be 'sleeping' and reflects it to the working
memory. Finally, the lighting application examines whether
the user's current status is 'sleeping', and turns off the light
if conditions are satisfied.

: Register application to Context Manager
and request Context Aggregators/ wrappers

: Register Context Aggregator to Context Manager and
request Context Wrappers

: Register Context Wrappers to Context Manager
: Notify context change from wrapper to aggregator /
 reflect the change into a working memory
: Notify context change from aggregator to application /
 reflect the change into a working memory
: Query to check the condition context to run application
Figure 5. Operation of Context-aware Application without

pre-fetch method

 As shown in Figure 6, the context management system
delivers queries in the registered Context Aggregators and

Context Manager

Inference
engine

working memory

Bed
Wrapper

Sleep
Aggregator

Context
Consumer

Context
Interpreter

Light Application

Location
Wrapper

Context Manager

Inference
engine

working memory

Bed
Wrapper

Sleep
Aggregator

Context
Consumer

Context
Interpreter

Light Application

Context
Consumer

Context
Interpreter

Light Application

Context
Consumer

Context
Interpreter

Light Application

Location
Wrapper

45

Context Wrappers to the pre-fetch component at that time.
We use two hash-tables to keep the consistency of a context
ontology in the working memory. One of the hash-table
stores context facts and a Context Aggregator as the hash
keys to check whether the Context Aggregator is pre-
fetched already. Context facts mean the results after pre-
fetching about the Context Aggregator. The other hash-
table stores pairs of a set of Context Aggregators and a
context fact as the keys to check whether the context fact
can be retracted from the working memory at runtime or
not. The set of Context Aggregators means a set which
consists of Context Aggregators of which pre-fetch result is
the context fact. Through the hash-tables, the result set of
pre-fetch for a Context Aggregator is stored and managed
to support dynamic assertion to and retraction from the
working memory. For instance, when a new application is
registered at runtime, Context Aggregators needed by the
application are checked in the first hash-table if they were
pre-fetched already. If they exist in the hash-table, the pre-
fetch process is skipped. On the other hand, when a Context
Aggregator is unregistered to the context management
component, the context facts corresponding to the Context
Aggregator are checked using the first hash-table. Then,
whether the context facts are still used by other Context
Aggregators is checked using the second hash-table. If none
of Context Aggregators uses context facts, then they can be
retracted safely from the working memory. Figure 6 shows
operation process of the lighting application on top of
Active Surroundings with the proposed method.

: Register application to Context Manager and request Context
Aggregators/ Wrappers.

: Register Context Aggregator to Context Manager and request
Context Wrappers.

: Register Context Wrappers to Context Manager
: Check whether the requested Context Aggregator is pre-

fetched already.
: If the Aggregator is not in the hashtable [aggregator-facts],

build a query-tree of the query in the ContextAggregator.
: Pre-fetch relevant context using the query-tree.
: Add the result facts to [aggregator-facts] and to [fact-set of

aggregator] hashtable, and insert the facts into working
memory.

Figure 6. Operation of Context-aware Application with pre-
fetch method

5. Evaluation

5.1. Proof of Completeness
We show Theorem 1 that the results of a context-aware
application’s query both on contexts pruned by the pre-
fetch method and on the whole contexts are the same
through a proof by contradiction.
 Theorem 1: The result of a context-aware application’s
query on contexts pruned by the pre-fetch method is the
same as the one on the whole contexts.
 Proof : Let q be a context-aware application’s query,
and Spre-fetch be contexts pruned by pre-fetching about q,
and Snonpre-fetch be the whole contexts set, and Csensed, Cdeduced,
Cdefined be the set of sensed contexts, the set of deduced
context, and the set of defined context in Snonpre-fetch
respectively, and Csensed´, Cdeduced´, Cdefined´ be the set of
sensed context, the set of deduced context, and the set of
defined context in Spre-fetch respectively.
 Suppose that the result of an application’s query on
pruned contexts by the pre-fetch method is different from
the one on the whole contexts set. Since the types of
context are only three, i.e., sensed context, defined context,
and deduced context (referred to as Context categorization
in section 3.2.), the types of a context query are also three.
Thus, the proof is shown in each case separately.
Case 1: Assume that q is a query for the sensed context,

 Results of q on Spre-fetch ∈ Csensed´ and
Results of q on Snonpre-fetch ∈ Csensed

 Csensed´ = Csensed , because both Csensed´ and Csensed
are given from sensors at runtime.

Thus, the results of q both on Spre-fetch and on Snonpre-fetch
are the same, when q is a query for the sensed context.

Case 2: Assume that q is a query for the defined context,
 Results of q on Spre-fetch = Cdefined´ and

Results of q on Snonpre-fetch= Cdefined´⊂Cdefined, because
the results of q are Cdefined´ that is the result
evaluated about q in the pre-fetch time.

 Thus, the results of q both on Spre-fetch and on Snonpre-fetch
 are the same, when q is a query for the defined context.
Case 3: Assume that q is a query for the deduced context,

 q is divided into sub-queries for the sensed context
and defined context in the pre-fetch time,

 Results of q on Spre-fetch ∈ Csensed´ ∪ Cdefined´
 Csensed´ and Cdefined´ are proved by Case 1, Case 2.

Thus, the results of q both on Spre-fetch and on Snonpre-fetch are
the same, when q is a query for the deduced context. In
case that q is a query for the deduced context which
consists of another deduced context, we can prove it in the
same way of the case 3 by decomposing deduced sub-
queries recursively until all sub-queries are decomposed
into sensed and defined context queries. From the cases 1, 2,
and 3, we have a contradiction, which means that the
assumption is false. Therefore, it must be true that the result
of a context-aware application’s query on contexts pruned

Context
ontology Storage

preprocessing memory

Ontology
semantic

rules

Inference engine

Inference engine

Context Manager

Inference
engine

working memory

Aggregator Facts

Fact Set of
Aggregator

[HashTable]

·
·
·

·
·
·

·
·

·
·

④④
⑤⑥

⑦

⑦

Bed
Wrapper

Sleep
Aggregator

Location
Wrapper

Context
Consumer

Context
Interpreter

Light Application

Context
ontology Storage

preprocessing memory

Ontology
semantic

rules

Inference engine

Inference engine

Context Manager

Inference
engine

working memory

Aggregator Facts

Fact Set of
Aggregator

[HashTable]

·
·
·

·
·
·

·
·

·
·

Aggregator Facts

Fact Set of
Aggregator

[HashTable]

·
·
·

·
·
·

·
·

·
·

④④④
⑤⑤⑥

⑦

⑦

Bed
Wrapper

Sleep
Aggregator

Location
Wrapper

Context
Consumer

Context
Interpreter

Light Application

46

by the pre-fetch method is the same as the one on the whole
contexts.

5.2. Experimental Result
Experiments were run on a 3.0GHz PC with 1GB of RAM
running Windows XP. Our context model in use consists of
about 2000 RDF Triples. It can be seen as a small size of
context. To show the improvement of the time taken for
inference on a large scale context, we extend our context
model by defining several domain areas. We also prepare
the different type of queries from a simple query to a
complex one and practical queries in use on a running
system as shown in Figure 7.

Query Description

Q1
(Simple query)

<?p rdf:type Person> ∧
<?p locatedAt Bedroom>

Q2
(Complex query)

<?p rdf:type Person>∧<?p gender ?pg>∧
<?p birthDate ?pbr>∧<?p name ?pn>∧
<?p locatedAt ?pr>∧<?p hasStatus ?ps>∧
<?u rdf:type UserPreference>∧
<?u onPerson ?p>∧<?u hasWeight ?uw>∧
<?u hasService ?us>∧<?d rdf:type Device>∧
<?d used ?du>∧<?d hasService ?ds>∧
<?d hasState ?dst>∧<?d hasDimLevel ?ddl>∧
<?d locatedIn ?r>∧<?r rdf:type Room>∧
<?r hasPerson ?p>∧<?r hasDevice ?d>∧
<?r SoundLevel ?rs>∧<?r DoorState ?rd>∧
<?r Brightness ?rb>

Q3
(WatchTV rule)

<?p rdf:type Person>∧<?d rdf:type Device>∧
<?p locatedAt ?d>∧<?d hasState xsd:true>

Q4
(Sleep rule)

<?p rdf:type Person>∧<?d rdf:type Device>
<?p locatedAt Bedroom>∧
<?d locatedIn Bedroom>∧
<?d hasState xsd:true>∧
<?l hasDimLevel xsd:0>

Q5 (EnterBedroom
rule)

<?p rdf:type Person>∧
<?p locatedAt BedroomDoor>

Figure 7. Sample query for evaluation

640

1094

2031

3453

562
578 563 582

55510
0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000 7000

Number of facts

Q
ue

ry
 re

sp
on

se
 ti

m
e(

m
s)

Without pre-fetch

With pre-fetch

pre-fetch time

Figure 8. Query response time in simple query

 Figure 8 shows the result of the experiment for Q1
(simple query) on context database in the working memory.
As described in Figure 7, Q1 query is very plain. Thus, the
response time of query is affected strongly by number of
context facts in a working memory. Therefore, the query

response time also increase as a consequence when the
number of facts increases in the case without applying pre-
fetch method. While, the graph of the result using the pre-
fetch method shows the fixed response time for a query
regardless of the increase of the number of facts. The
processing time for pre-fetching the relevant context facts is
negligible.
 Figure 9 shows the result of the experiment for Q2
(complex query) on context database in the working
memory. Q2 is a complex query that needs most of context
facts stored in the working memory. For the complex query,
the response time of the case applying the pre-fetch method
increases according to the number of context facts. It is
because there are many relevant context facts pre-fetched
for the Q2 query. In the case of a very complicated query,
many context facts are pre-fetched. However, even the
worst case, the response time becomes no longer than the
case without pre-fetch because the size of pre-fetched
results is not bigger than that of the whole context set in
any case.

2275.4

3502

2502

1425

766
1459

1020.7
772.4

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000 7000

Number of facts

Q
ue

ry
 re

sp
on

se
 ti

m
e(

m
s) Without pre-fetch

With pre-fetch

Figure 9. Query response time in complex query

 Finally, we test an environment where several realistic
applications supporting people’s daily life run actually. As
shown in Figure 7, three queries, Q3, Q4, and Q5, are used
to activate our sample applications. In Figure 10, each
graph shows the increase of the response time according to
the number of context facts at runtime.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1000 2000 3000 4000 5000 6000 7000

Number of facts

Q
ue

ry
 re

sp
on

se
 ti

m
e(

m
s)

WatchTVAggregator

SleepAggregator

EnterBedroomAggregator

Figure 10. Query response time in Active Surroundings which

doesn’t apply the pre-fetch method

 The results of the experiment with applying the pre-fetch
method are shown in Figure 11. The value depicted in

47

graph is the time which adds the processing time for pre-
fetch and the response time of the three queries. As shown
in Figure 11, the response time remains constant.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1000 2000 3000 4000 5000 6000 7000

Number of facts

Q
ue

ry
 re

sp
on

se
 ti

m
e(

m
s)

WatchTVAggregator

SleepAggregator

EnterBedroomAggregator

Figure 11. Query response time in Active Surroundings which

apply the pre-fetch method

We conclude from the experiments described above that

when the number of context facts is less than about 2000,
both the result with pre-fetch method and one without pre-
fetch method show similar performance. However, if the
number of facts is over 2000, the method with the pre-fetch
method significantly outperforms the method without the
pre-fetch method.

6. Conclusion and Future works
Nowadays, there are number of infrastructures for

enabling context-awareness on the basis of ontology-based
context model. We consider it will be needed that the
module or method which makes an inference process faster
over ontology-based context model.

In this paper, we proposed a method to reduce the size of
the contexts in working memory by pre-fetching relevant
context based on context-aware application's queries. And
we apply the method to the existing context management
system which uses ontology-based context model, Active
Surroundings. By pre-fetching and maintaining relevant
context to support context-aware applications into working
memory, the inference time on ontology-based context
model can be faster than existing method which maintains
the whole contexts into working memory. As the result the
context-aware applications which use the context generated
through inference process can be run quickly comparing
with existing method. We currently investigate how to use
query optimization techniques together at the pre-fetch time
in order to reduce the processing time for pre-fetch.

References
Wang, X.; Dong, J.S.; Chin, C.Y.; Hettiarachchi, S.R.; and
Zhang, D. 2004. Semantic Space: an infrastructure for
smart spaces. Pervasive Computing, IEEE. 3(3): 32– 39.

Levy, A.Y. et al. 1997. Speeding up inferences using
relevance reasoning: a formalism and algorithms. Artificial
Intelligence. 97(1-2): 83-136.
Dey, A.K. et al. 2001. A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-
Aware Applications. Human-Computer Interaction Journal.
16(2-4):97-166.
Gu, T.; Wang, X.H.; Pung, H.K.; and Zhang,D.Q. 2004. An
Ontology-based Context Model in Intelligent Environments.
In Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference.
Henricksen, K. et al. 2002. Modeling Context Information
in Pervasive Computing System. Pervasive 2002, LNCS
2414, 167-180.
Kindberg, T. et al. 2000. People, places, things: Web
presence for the real world. In Proceedings of IEEE
Workshop on Mobile Computing Systems and Applications.
Chen, H.; Finin, T.; and Joshi, A. 2004. An Ontology for
Context-Aware Pervasive Computing Environments.
Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review.
Lee, D. et al. 2004. A Group-Aware Middleware for
Ubiquitous Computing Environments. In Proceedings of
the 14th International Conference on Artificial Reality and
Telexis-tence (ICAT).
Carroll, J.J. et al. 2004. Jena: Implementing the Semantic
Web Recommendations. WWW2004.
Racer. Available online at http://www.racer-systems.com/.
FaCT. Description Logic (DL) classifier. Available online
at http://www.cs.man.ac.uk/~horrocks/FaCT/.
Hoolet. OWL-DL Reasoner. http://owl.man.ac.uk/hoolet
Triple, http://triple.semanticweb.org/
Zou, Y. et al. 2004. F-OWL: an Inference Engine for the
Semantic Web. In Proceedings of the 3rd International
Workshop on Formal Approaches to Agent-Based Systems.
Baus, J. et al. 2002. A resource-adaptive mobile navigation
system. In Proceedings of Intl. Conf. on Intelligent User
Interfaces, San Francisco.
Fensel, D. et al. 2000. Lessons learned from applying AI to
the web. International Journal of Cooperative Information
Systems. 9(4):361-382.
Freeman-Hargis, J. 2003. Rule-based systems and
Identification Trees. Available online at http://ai-
depot.com/Tutorial/RuleBased.html.
Ranganathan, A. and Campbell, R.H. 2003. An
Infrastructure for Context-Awareness based on First Order
Logic. Journal of Personal and Ubiquitous Computing.
7(6) :353-364.
Khedr, M. and Karmouch, A. 2004. ACAI: Agent-Based
Context-aware Infrastructure for Spontaneous Applications.
Journal of Network & Computer Application.
Wilkinson, K.; Sayers, C.; Kuno, H.A.; Reynolds, D.; and
Ding ,L. 2003. Supporting Scalable, Persistent Semantic
Web Applications. IEEE Data Eng. Bull. 26(4): 33-39.

48

Contexts as Abstraction of Grouping

Christo Dichev and Darina Dicheva

Winston-Salem State University

601 M.L.K. Jr. Dr., Winston Salem, N.C. 27110, USA
{dichevc, dichevad}@wssu.edu

http://gorams.wssu.edu/faculty/dichevc/

http://www.wssu.edu/~dicheva/

Abstract

This paper presents a framework of context-centered digital
course libraries founded on the Topic Maps paradigm and
used for developing an authoring environment for building
such libraries. We explore the idea of using contexts to
support more efficient information search. The notion of
context is perceived as abstraction of grouping of domain
concepts and resources based on the existing semantic
relationships between them. The suggested framework
implies a layered information structure of the library content
consisting of three layers, each capturing a different aspect
of the information space - conceptual, resource-related, and
contextual. The proposed model of context is used for
context representation in the TM4L environment, which
enables the creation, maintenance, and use of ontology-
aware courseware based on Topic Maps.

1 Introduction

Information search is an old and hard problem in
computing. With the growth of the web it is becoming
harder. Finding relevant and valid information that meets
learners’ needs is yet harder. If for example a learner is
interested in information related to a Prolog
implementation of best-first search, a simple Google search
using “best-first”, “search”, and “Prolog” as keywords
results in over 5,190 hits. Moreover, a large part of the
references provided in the first few pages assume advanced
knowledge of Prolog. Searching information relevant to the

“Java threads” topic results in an even worse result – the

unmanageable amount of more than 2,240,000 references.
Finding good quality web resources poses a major problem
for users who have not developed efficient search

strategies. People often use the principle of least effort in

their information seeking. Following this pattern students
frequently use easy accessible, rather than higher quality
but less accessible information. In the case of learners

searching information to complete a learning task, there is

another difficulty - their uncertainty about what kind of
resources they need. Learners are also often unaware of the
complete context of the task in hand. In such cases they

Copyright © 2005, American Association for Artificial Intelligence

 (www.aaai.org). All rights reserved.

need support in getting oriented in the conceptual structure

of the domain of the problem, which will help them in

retrieving, evaluating, comprehending, and memorizing

information. An even more valuable support should include

means for locating online material customized to the

individual users by taking into account their interests, level

of competency in the considered domain, learning styles,
etc.

Why finding needed information on the Web is hard?
Regardless of the quality of stored information, it is useless
unless it can be indexed and efficiently searched.
Conventional search engines can help in identifying entities
of interest but they fail in determining the underlying
concepts or the relationships between these entities. The
main problem with the web and current technology is that it
is impossible to semantically relate and compare resources.
For example, current search engines are not able to
interpret and react adequately to requests such as: Find

another document with more technical details than the

current page. They are not capable to refer to the current
page and use its characteristics to guide the search based on
transitive dependencies. There is no general-purpose search
engine that can answer questions such as: Find the latest

article on the topic (of the current page), or Show me a

paper that is more detailed than this one, or Show me a

tutorial that is less formal than this one.
There is a large amount of high quality learning

resources on the web already and they should be made
more accessible to users. In this paper we explore the idea
of using contexts to support more efficient information

search. We propose to define contexts as abstraction of

clusters of domain concepts and resources based on the
existing relationships between them. This is related to our
previous work on contexts as well as on the development of

a framework of concept-based digital course libraries [3],

[2]. The framework is based on using the new Semantic
Web technology Topic Maps [10], [13]. The paper is
organized as follows. We first outline our general

framework, more details of which can be found in [3].

Then we discuss the use of Topic maps for its
implementation. Next we propose our approach for
incorporating contexts in this framework. Finally, we

discuss the proposed contexts’ implementation and use in

the TM4L environment.

49

2 Framework of Concept-based Digital

Course Libraries

We have developed a framework of concept-based digital
course libraries based on using conceptual structures
representing subject domain ontologies for classification of
the library content. The classification involves linking
learning objects (content) to relevant ontology terms
(concepts), i.e. using the ontological structure to index the
library content. The use of subject ontologies that provide
shared agreement on the concepts meaning also allows for
ontology-based merging of digital repositories. The main
components of the architecture are the information
repository, information authoring module, and information
retrieval module.

2.1 Library Repository

We propose a layered structure of the library repository
consisting of three layers capturing different aspects of the
information space (see Fig. 1):

• Semantic layer, containing a conceptual model of the
knowledge domain in terms of key concepts and
relationships among them.

• Resource layer, containing a collection of diverse
information resources associated with the specific
knowledge domain.

• Context layer, containing specifications of different
views (contexts) on the library resources depending
on a particular goal, type of users, etc., by
associating components from the other two layers.

Semantic Layer. The introduction of a separate semantic
layer that represents the domain ontological
conceptualization allows using it from one side as a subject
knowledge directory that enables natural and intuitive
concept-based content browsing, and from another as a
resource item relevant to learners’ goals. The latter allows

for exploration of the ontological structure of the subject
domain independently of the information resources, which
can help learners to improve their overall understanding of

the domain.

Resource layer. The resource layer contains internal and
external learning objects. Internal resources are pieces of
information about a concept, such as annotations,

definitions, characterizations or short descriptions, stored

locally in the library. External resources can be any
addressable objects referenced by their URI. By using
external learning objects from available collections of

standardized (LOM [9], Dublin Core) learning objects the

need and efforts to create them will be eliminated.

Context Layer. The separation of the semantic layer from

the information repository makes it possible to define

different semantic structures over the same collection of

learning resources or different collections of learning

Fig. 1. The layered structure of an information repository.

resources connected to the same semantic structure. A
context captures a particular view on the learning resources
by preserving the relevant semantic relations among them
and filtering out the irrelevant. By maintaining a collection
of appropriate contexts in the context layer, it is possible to
categorize thematically the learning resources, reflecting
multiple semantically customized views that correspond to
different situations, user goals, communities of learners,
etc. Contexts enable users to access the same resources
based on navigational strategies in conceptual spaces
appropriate to their current needs.

2.2 Library implementation

We have chosen to implement the proposed general
framework of digital course libraries by using the emerging
ISO standard Topic Maps [1]. Topic Maps (TM) are
appropriate for our goals since they enable users to

navigate and access the documents they need in an

organized manner, rather than browsing through hyperlinks
that are generally unstructured and often misleading.

The main topic maps components are topics,

associations, and occurrences [10]. The topics represent

the subjects, i.e. the things, which are in the application
domain. They can have zero or more topic types and names

(a base name and possibly variants for use in specific

contexts). An association represents a relationship between

topics. Associations have types and define roles of the
participating topics. Occurrences instantiate topics to one
or more relevant information resources. The scope feature

defines the extent of validity of an assertion: the context in

which a name or an occurrence is assigned to a given topic,
or in which topics are related through associations. An

50

important concept in TM is this of identity. Two topics are

the same if both have the same name in the same scope or

both refer to the same subject indicator. The topics and all

their characteristics could be merged if this condition

holds.

It is clear now that the semantic layer in our framework

can be implemented as a collection of associated topics. An

important aspect of the topic maps associations is that they

can exist despite the absence of occurrences linked to them.

Further on, the resource layer can be implemented

straightforwardly by defining topic occurrences. The

question is how to implement the context layer of the

framework in topic maps terms? A quick straightforward

answer would be to use the Topic maps scoping.

In the TM standard a scope is a set of themes (of

validity). Themes can be defined and applied to TM

objects. The standard allows scoping of topic names,

resources, and associations. This is useful for information

filtering in Topic Maps Viewers. Obviously a scope can be

used to present a context or a perspective however this is a
rather static view.

Independently of the standard we propose using topic
map associations to represent context as grouping. Topic
map associations can be interpreted as statements relating
topics. For instance, in the case of educational applications,
it is possible to express the statement that a given concept
is represented using a particular teaching method (e.g.
tutorial, definition, example, etc.) in the form: topic X is
represented by tutorial Y. Similarly, associations such as
SWI-Prolog is instance of Prolog, Prolog is based on
Resolution, Computation is part of Prolog, Prolog is

related to Horn-Clause Logic, Prolog uses Backtracking,
make the topic Prolog pertinent to the related topics.
Obviously, association types combined with role types
enable meaningful grouping of topics, which we call
context.

Formally context can be defined as a collection of
statements that are true in a model. In less formal
perspective, context can be interpreted as the things, which
surround, and give meaning to something else. The
statement “Snow is white” is meaningful if we talk about

New Year in Alaska, but has no meaning in terms of CPU

scheduling. We can view contexts as a means of grouping
facts relevant to a particular situation. Grouping and
classification of objects is a human invention to simplify

communication. For our purpose we take a restricted model

of this view of context, namely, as a grouping of topics
based on their relations to a given topic. Translated in topic
maps terminology a context is a collection of associations

related to a common topic selected to represent and name

the context. Technically, this is a nested topic map drawn
around a topic chosen to name the context.

We outline our view on context representation in topic

maps in more details in the following section.

3 Using Context in Topics Maps

The notion of context includes two aspects that are

addressed in the research on modeling contexts. Some

authors [8], [11] interpret context as a set of facts

describing a particular situation from a specific point of

view. Another approach taken for example by [7] is based

on the intuition that reasoning is always “local”, i.e. it

involves only a small subset of what an agent actually

knows; this subset is what determines the context of

reasoning. However there is no standard way to specify

contexts of assertions. Topic maps can be used to model

both aspects. The contextual support for organizing (and

locating) learning content described above can be

interpreted as modeling viewpoints.

Fig. 2. An excerpt from the Ontopia Topic Map.

The topic maps framework provides support for modeling
of context which matches our intuition, namely, that the
context is an abstraction of grouping related information.
Consider the topic XTM in the example in Fig. 2 borrowed

from Garshol [6]. The objects (facts) that we would

consider relevant to this topic are the statements “XTM is

based on XML”, “XTM is used with Topic Maps” and
“Steve Paper is editor of XTM”. This collection of facts

expresses a clustering of statements. The sticking point of

the clustering is the topic “XTM”. Intuitively these
statements make the topics XML, Topic Maps and Steve

Paper relevant to XTM. The statement that Steve Paper is

employed by Ontopia is less relevant in terms of the

current topic (XTM) and the fact that “Puccini is born in

Lucca” would typically be considered as irrelevant. Thus
in TM terms we can define context as a grouping of a set of

topics clustered around a given topic and therefore

considered relevant to that topic. To make the model more

51

coherent it should account for boundaries that separate one

context from another.

Most works related to formalizing context are centered

around the so called “box model”, where “Each box has its

own laws and draws a sort of boundary between what is in

and what is out” [7], [8], [11]. The problem with this

approach is that we have to predefine all potentially needed

“boxes” in order to use them. The world is too

unpredictable to foresee the complete set of contexts that

might be needed. Rather than preparing a set of static boxes

we suggest to use a TM model that allows shifting

boundaries of the context dynamically based on the current

topic. We propose to interpret context as a collection of

topics surrounding a given topic (denoting the context) and

intended to localize the search and the inference within an

area of relevant topics. The proposed interpretation allows

us to introduce a measure of relevancy.

3.1 Topic centered contexts

The starting point is our view of context as a collection of
topics that surround, and give meaning to some other
topics. The interpretation of what are the surrounding
topics is relative. At one point a topic can be a part of the
surrounding collection and in another point it might be
viewed as surrounded by some other topics giving meaning
to it. The relationships are at the heart of semantics, lending
meaning to concepts and to resources linked to them.

We begin with the basic assumptions underlying the
proposed contextual framework.

• Each context is a collection of topics related to a
certain topic of the TM that plays a role of a focus

or center of the context.

• The central topic is unique and can be used to
name the context.

• All semantically related topics identify regions
formed by the topics directly or indirectly related
to the center of the context.

• The relevance of a topic to the current context is
reverse proportional to its distance to the focus of

the context.
According to the last assumption the topics of the

collection forming a context have no equal status with

respect to that context. Their role in the context depends on

somewhat spatial properties – the distance to the central
topic. The following definitions try to capture the above
aspects of the context in more formal terms.

Immediate Propositional Context. An immediate

propositional context cR(t) of topic t is the collection of all
associations (statements) A:R1(t),R2(t2),..,Rn(tn) such that
the topic t is a role player in that relationship.

cR(t) = {A:R1(t),R2(t2),..,Rm(tm) | m ∈ I, t is a role in a
relationship of type A}.

Immediate Topical Context. An immediate topical context

(or simply immediate context) c(t) = {ti | A.Ri(ti), A ∊ cR(t) }

of the topic t is the collection of all topics ti playing a role in

the associations A ∊ cR(t), that is, the collection of all ti

coordinates of the m-tuples defining the immediate

propositional context of the topic t.

Thus the immediate context of topic t is determined by

the set of the associations A1, A2,…, An in which the topic t

plays a role (sticking point) and is characterized by the

collection of all topics playing a role in Ak, k = 1, 2, ..,n.

Context (recursive definition):

1. The immediate contexts of topic t belongs to the context

C(t) of topic t.

2. A topic t1 belongs to the context C(t) of the topic t if

there exists topic x∊ C(t) and t1 is an the intermediate

context of x, i.e. t1∊ c(x).

Informally,
Context of topic(t) = All topics directly or indirectly

related to t.

Definition. Topic t1 is related to t2 if there exists a
sequence of associations A1, A2,…,An such that each pair Ai,
Ai+1 has at least one common role player and t1 is a role
player in A1 and t2 is a role player in An. The sequence of
associations A1, A2, …,An is called relating sequence of t1
and t2 and n is its length.

Definition. The level of relevancy of topic t1 to the central
topic t (and thus to the context C(t)) is reverse proportional
to the length n of the minimal relating sequence A1, A2, …,

An of t1 and t.
Notice that according to the above definition the level

of relevance of a topic ti to a context C(t) is characterized
by the level of relevance to its central topic.

The context C(t) depends on the topic t and is called

current context when t is the current topic (e.g. the topic
being currently visited or observed). Changing the topic t
results in changing the context C(t) and thus changing the
region of interest.

We can use the following metaphor to illustrate our

perception of context: we can view the context like a
moving spotlight that throws a strong light on the central
topic and to its immediately related topics but only a dim

light on the topics that are indirectly related to the central

one (where the dimness is proportional to the levels of
indirection). Shifting the spotlight changes the set of topics
under strong light.

Among the valuable features of this context model is

that it provides a mechanism to refer to the current context,
and use it to identify an area of interest within the TM. This
implies that searching for relevant information can be

localized into a specified area of interest.

52

3.2 Relational contexts

Grouping of related objects is a natural way for humans to

simplify and comprehend reality. Grouping of related

objects can be found in such diverse fields as biology,

physics, learning, statistics, economics, psychology, pattern

recognition and engineering. We can group places, events,

actions, spatial events, social events, and many other types

of entities, both concrete and abstract, over an enormous

range. In e-learning context learning content can be

grouped based on taxonomic or partitive relationships. It

can be grouped based on students' knowledge levels, rates

of progress, interests, or instructional goals. A grouping

can be used to differentiate units that are functionally

related. (e.g. program - programming language,

programming language - compiler, compiler - parser,

parser - lexical analyzer etc.). From these observations we

can formulate a context as a relational grouping of topics.

Relational context. A relational context v(A) from the
viewpoint of the association A is the collection of m-tuples
(t1,t2,..,tm) playing a role in an association A:

v(A) = {(t1,t2,..,tm) | ti , (i =1,…m, m ∈ I), are roles in a
relationship A:R1(t),R2(t2),..,Rm(tm) of type A}.

The above definition of context was motivated by some
practical considerations such as Topic Map authoring in e –
learning settings. Typically the TM author is applying some
construction techniques to build a topic map (set of abstract
topics). The fundamental construction techniques are
partitioning of topics (top-down reasoning in a part-whole
context); aggregation of topics (bottom-up reasoning in a
part-whole context), specialization of topics (top-down
reasoning in a class-subclass and class-instance context),
correlation of topics (horizontal reasoning in a relevancy
context). As a result, the conceptual knowledge about the
domain to be learned is structured based on a taxonomical
and a compositional hierarchy (using class-subclass and
part-whole relationships) coupled with horizontal related-

to relationships. To assist TM authors we had to provide
functionality supporting different views such as the
taxonomical (class-subclass hierarchy), class-instance

hierarchy and the compositional hierarchy of concepts of

the learning content. These views are essentially relational
viewpoints/contexts of the topic map displaying related
topics based on the particular properties of the relations,

e.g. transitivity.

3.3 Contexts, viewpoints, ontologies

When learning material does not appear in isolation,

structure is needed to encompass a set of learning objects
in an instructional unit. For example, a particular unit could
belong to one of the general granularity levels Component,

Lesson, Module, Course and Program. These levels are

interconnected with part-of relations in order to build a
complete instructional unit comprising these levels.

Thereby, a Component is a part of a Lesson; a Lesson is a

part of a Module; a Module is a part of a Course and a

Course is a part of a Program. The part-of (part-whole)

relation is included in the Dublin Core standard named as

IsPartOf. The intended use is to relate smaller resources to

larger resources or collections that already exist in the

collection (e.g. in the library).

The XTM standard does not include part-whole

relations (as it does for the class-instance and class-

subclass relations), but it does support sufficient expressive

power to capture most of what one may want to represent

about part-whole relations. The standard considers such

relations application-specific and therefore does not

recommend hard-coding them. Instead the Topic Map

standard provides a general construct for defining relations.

Therefore for relations such as part-whole the user needs to

introduce a dedicated association type. Properties such as

transitivity are also defined on application level.

Besides the traditional structuring every unit of the

learning content can be related with another unit by
multiple kinds of relations, such as a class-subclass

relationship capturing learning domains taxonomic trees, a
prerequisite relation capturing learning dependency graphs
or a related-to relation representing correlation.

The ontologies currently used for structuring e-learning
content are typically light-weight. Light-weight ontologies
are typified by the fact that they are predominantly
taxonomies, with very few cross-taxonomical links. Light-
weight ontologies are valid choice in many cases as they
are easier to understand, easier to build and easier to get
consensus upon. Topic maps are seen as lightweight
ontologies because they are able to model knowledge in
terms of topics, their classes, instances, occurrences, and
associations.

The instruction involves two types of knowledge, the
subject (discipline) to be learned coupled with instructional
knowledge. From the viewpoint of the category of
individuals involved in the learning process there are
students and instructors. As a result we distinguish two
domains: the domain of the discipline to be learned and the

instructional domain, and also two categories of
individuals: learners and instructors. This might be viewed
as a high level grouping specifying high level contexts.

These four contexts identify in turn four types of

ontologies:
1. A domain ontology, with object classes from the

discipline to be learned.

2. An instructional ontology, with topics and relations

from the domain of pedagogy.
3. Author’s ontology capturing the viewpoint of the

instructor.

4. Learner’s ontology capturing the viewpoint of the

learner.
The distinction of the above viewpoints is essential

during the design of an e-learning environment. This

distinction was one of the guiding principals when we

decided to predefine some relations in TM4L. For example,

53

taxonomy is vital for the conceptualization of the discipline

in categories, on different levels of abstraction. In TM4L

class-subclass was included as predefined relation to

support generalization/specialization classification.

An organized collection of learning content embodies

topics related in different ways. Intuitive interface should

support abstract grouping of learning resources such as

grouping by unit-structure, goals, learning style, learning

paths etc. In such cases a representation in conventional

hierarchical structures only is typically insufficient. We

needed a model for expressing a grouping of topics based

on generic relations. The derived goal was a minimal set of

generic relations which covers the needs of the intended

applications. The advantage of such an approach is that

generic relations subsume particular instances that might be

impossible to articulate in specific terms.

In Topic Maps, associations define relations between

an arbitrary number of topics. As a primary relation for

classifying learning content we have selected the whole-

part relationship known also as partonomy (see Fig. 3)
Like a taxonomy, a partonomy is a hierarchy, but based on
the part-of relation rather than on a kind-of relation. The
reason for picking out partonomy is its important
explanatory role in e-learning context [17]. Explaining
what a learning unit is about, often involves describing its
parts and how are they composed. For example, we may
choose to structure learning material on Programming
Languages in terms of its components i.e. Syntax,
Semantics and Pragmatics. However, the learning units
describing the syntax, semantics and pragmatics are part of
the Programming Languages unit and not subclasses of it.
By emphasizing the compositional structure, the partonomy
is closer to the approach normally used for representing
learning content. Recent research in education also
indicates that the whole-part presentation method is a
technique shown to reduce cognitive load and improve
learning [17]. For example, Mayer and Chandler’s study
[16] suggests that studying initially a part (piece by piece)
rather than a whole presentation allows the learner to
progressively build a coherent mental model of the material
without experiencing cognitive overload.

In many application areas the natural model of the

domain requires the ability to express knowledge about the
class-subclass relation. The class-subclass known also as a
is-a relation allows us to organize objects with similar

properties in the domain into classes. The class-subclass

relation has received a lot of attention and is well-
understood. However the interaction between whole-part
and class-subclass relations has not been studied in any

detail. Despite their different purposes knowledge base,

database, object-oriented and e-learning communities
heavily rely on conceptual models which have a lot in
common. Inter-relationships such as is-a, part-of, similar-

to, etc. are used to define and constrain the interactions of

concepts within these models.
Applications that provide multiple views are able to

offer users different perspectives on a selected entity.

Therefore, in addition to the primary whole-part

relationship our TM tool contains four other predefined

relationship types, including the classic “class-subclass”

(see Fig. 4) and “class-instance” extended with “similar to”

and “related to” relations. By offering this minimal set of

five relation types we support TM authors that experience

difficulties in articulating and naming relationships.

Figure 3 A part-whole view on AI and Prolog.

The proposed set of relations provides also a strategy
for organizing the information. It supports a shared way of
grouping topics by standardizing the used set of relations.
The strategy is based on specifying the set of topics in the
domain and the relationships between them in terms of the
proposed minimal set. The process of creating the complete
contextual structure is incremental; the global TM is a
result of growing and interrelating the local structures of
immediate contexts.

4 Using Context in TM4L

In the last decade, a number of tools for ontology
construction have emerged [18]. Although some currently

available ontology editors such as Protégé-2000

(http://protege.stanford.edu/) have plug-ins allowing export
to Topic Maps, they do not support essential TM features,
which are of significant importance for e-learning

applications. The TM4L (Topic Maps For E-learning)

environment [6, 7, 8] presented in this paper is intended to
complement existing Topic Map editors and visualization
tools. It combines two main applications, TM4L Editor and

TM4L Viewer. The modeling language of TM4L is based

on Topic Maps standard [9]. Two groups of users are
targeted by the TM4L design: (i) authors with limited
background of ontologies; (ii) learners seeking information

support to complete their course tasks. TM4L is currently

available as a standalone application. It can be downloaded
from: http://www.wssu.edu/iis/nsdl/download.html. The

54

proposed model of context forms the contextual framework

of TM4L which enables the creation, maintenance, and use

of ontology-aware courseware.

Figure 4 A class-subclass view on AI and Prolog.

There are other software tools employing Topic Maps that
can be used to incorporate content into semantically rich
data models. One group of tools consists of general Topic
Map editors such as the Ontopia Knowledge Suite
(http://www.ontopia.net/) - a set of tools for building,
maintaining, and using TM-based applications [3] or Atop
(http://sourceforge.net/projects/atop) - a Topic Map editor
written in Java as a NetBeans module using TM4J. With
these editors Topic Maps can be interactively built and
stored as .XTM (Xml Topic Maps) documents, or in
databases. The general TM editors however do not support
specific ontological needs such as managing ‘whole-part’
hierarchy and other types of transitive relations. Besides,
they do not support domain specific vocabularies. Instead
they tend to use Topic Map-related concepts such as
associations, roles, occurrences etc. in their representation.
Applications in specific domains such as e-learning require
interfaces that supports the particular e-learning objectives

coupled with ontology support for classification, navigation
and exploration of classes, instances, relations and
resources.

As an alternative to conventional authoring systems,

TM4L is aimed at facilitating the integration of already
existing learning resources on the web. The driving factors
and design challenges regarding TM4L interface lie in the

following questions: What does the representation mean to

learners and authors? Does the representation enable easy
detection of the classes of concepts and their relationships?
Does it reveal the vocabulary of the domain? Is it

immediately apparent which items belong to one or

multiple classes, which classes overlap and which don’t?
Interfaces that provide multiple contexts are able to

offer users different perspectives on a selected entity or on

a group of entities. TM4L supports multiple perspectives as

the editor and viewer interfaces are context driven. The

TM4L Editor provides Topic centered, Relation centered

and Themes guided contexts. With TM4L Viewer a topic

map can be viewed from six different perspectives: Subject

Topics, Relationships, Topic Types, Relationship Types,

Resource Types and Themes. In addition, the relational

context enables exploration of the e-learning collection in

terms of a part-whole tree and a taxonomy tree (see Fig. 3

and Fig 4). Any transitive relation can be mapped to a tree

view visualizing particular relational context.

Aiming at reducing the information overload, we have

chosen at each navigation step in the TM4L Viewer to

display only the topics of immediate topical context along

with the topics immediately related to them (see Fig 5). In

addition, we have chosen not to show the resources

associated with the displayed topics in the Graph view,

since the visualization becomes too crowded and unclear.

Thus the Graph view represents only ‘ontology’ objects -

topics, relationships, roles but not resources. The resources
linked to topics can be examined using the Tree or Text
views (see the rightmost pane of Fig. 5).

Figure 5. Screenshot from TM4L Viewer with Prolog as a
current topic, shown as a Declarative Programming
Language, part-of AI languages, based on the Horn Clause

Logic and invented by Alain Colmerauer. The topics

Computation, Data, Programs and Meta Programming are
part of Prolog while Amzi-Prolog, IC-Prolog, Sicstus-
Prolog and SWI-Prolog are instances of Prolog.

In addition Context/theme filters can be applied to the

content shown in the viewer. Every topic characteristic may
have a scope, which is specified explicitly, as a set of

themes. A theme is a topic that is used to limit the validity

of a set of topics and relations. The objects that are not

valid in the specified theme are filtered out. One common
use of scopes is to provide localized names for topics.

55

Name scoping can be used among others for multi-

language support. For example, in order to represent the

term “Computer science” when browsing a Computer

science Topic Map either in English (“Computer science”)

or in Bulgarian (“Информатика”), the name of the

Computer Science topic should be scoped with the themes

“English” and “Bulgarian”.

5 Conclusion

Efficient information retrieval requires information filtering

and search adaptation to the user’s current needs, interests,

knowledge level, etc. The notion of context is relevant to

this issue. In this paper we propose an approach to context

modeling in Topic Maps-based educational applications. It

is based on the standard Topic Maps support for

associations and defines the context as an abstraction of

grouping related information. The degree of membership

of the topics to the context depends on their level of
relevancy to the specified topic. This context model
provides also a mechanism for referring to the current

context, and using it to identify a current area of interest
within the Topic Map. The second perspective on context
is as grouping of topics that are related to each other in

some way. The notion of context is useful for localizing
navigation and search for relevant information within the
intended area.

The proposed model of context is utilized in the design
of TM4L, an e-learning environment aimed at supporting
the development of efficiently searchable, reusable, and
interchangeable discipline-specific repositories of learning
objects on the web. Providing adequate support for learners
to efficiently search for useful web resources is crucial in
self-directed learning and presently a problem of high
priority in e-learning. We believe that the discussed here
approach to context modeling and its implementation in
TM4L will contribute to the advancement in that direction
by supporting efficient, context-based navigation of
educational Topic Maps.

Many different directions for enhancing the TM4L
interface are possible. As there are a number of ways to

build up the whole-part structure of specific learning
content, a particular learning unit may be represented by
more than one valid partonomic hierarchies. This raises the

issue of how to represent and integrate such multiple

hierarchies. In addition to the usual whole-part relation,
any transitive relation can be used to represent a tree view
of the Topic Map.

Acknowledgement

This material is based upon work supported by the National

Science Foundation under Grant No. DUE-0333069
“NSDL: Towards Reusable and Shareable Courseware:

Topic Maps-Based Digital Libraries” and under Grant No.
DUE-0442702 “CCLI-EMD: Topic Maps-based

courseware to Support Undergraduate Computer Science

Courses”.

References

1. Biezunski, M., Bryan, M., Newcomb, S.: ISO/IEC

13250:2000 Topic Maps: Information Technology,

www.y12.doe.gov/sgml/sc34/document/0129.pdf. [Last

viewed April 5, 2003].

2. Dichev Ch., Dicheva D.: Deriving Context Specific

Information on the Web. Proc. of the World Conf. on the

WWW and Internet, WebNet'2001, Orlando, Florida

(2001) 296-301

3. Dicheva, D., Dichev, C.: A Framework for Concept-

Based Digital Course Libraries, J. of Interactive

Learning Research, 15(4) (2004) 347-364

4. Dicheva D., Dichev C.: Educational Topic Maps, 3rd

International Semantic Web Conference (ISWC’2004)

Poster Abstracts, Hiroshima, Japan (2004) 19-20

5. Dicheva D., Dichev C., Sun, Y., Nao, S.: Authoring
Topic Maps-based Digital Course Libraries, Workshop

on Applications of Semantic Web Technologies for

Adaptive Educational Hypermedia, in conjunction with
AH 2004, Eindhoven, The Netherlands (2004) 331-337

6. Garshol L.M.: Topicmaps, RDF,DAML, OIL. A
comparison. ttp://www.ontopia.net/topicmaps/materials/
tmrdfoildaml.html (2002) [Last viewed April 5, 2003]

7. Giunchiglia F. Contextual reasoning, Epistemologia,

Special issue on I Linguaggi e le Macchine XVI (1993)
345–364

8. Guha, R.: Contexts: a Formalization and some
Applications, Technical Report ACT-CYC-423-91,
MCC, Austin, Texas (1991)

9. IEEE Standard 1484.12.1-2002, Learning Object
Metadata (LOM), http://ltsc.ieee.org/wg12/

10.Pepper S.: Ten Theses on Topic Maps and RDF
http://www.ontopia.net/ topicmaps/materials/rdf.html
(2000) [Last viewed April 5, 2003]

11.McCarthy, J.: Generality in Artificial Intelligence,
Communications of ACM 30(12) (1987) 1030–1035

12.McGuinness, D.: Ontologies Come of Age. In Fensel,
D. et al. (eds) Spinning the Semantic Web: Bringing the

World Wide Web to Its Full Potential. MIT Press (2002)
13.Park, J., Hunting, S.: XML Topic Maps: Creating and

Using Topic Maps for the Web, Addison-Wesley (2002)

14. Passin T. B.: Browser bookmark management with

Topic Maps, Proc. Extreme XML, Canada (2003)
15.Rath, H.H.: Semantic Resource Exploitation with Topic

Maps, Proceedings of the GLDV-Spring Meeting,

(2001) 3-15

16. Mayer, R. E. & Chandler, P. When learning is just a click

away: Does simple user interaction foster deeper

understanding of multimedia messages? Journal of

Educational Psychology, 93 (2), 2001, 390-397.
17. Price J.L., Catrambone R., Part-Whole Statistics Training:

Effects on Learning and Cognitive Load, CogSci, Chicago

2004.

56

Workspaces in the Semantic Web
Shawn R. Wolfe, Richard M. Keller

National Aeronautics and Space Administration
Ames Research Center, Moffett Field, CA 94035-1000

{Shawn.R.Wolfe, Richard.M.Keller}@nasa.gov

Abstract
Due to the recency and relatively limited adoption of
Semantic Web technologies, practical issues related to
technology scaling have received less attention than
foundational issues. Nonetheless, these issues must be
addressed if the Semantic Web is to realize its full potential.
In particular, we concentrate on the lack of scoping methods
that reduce the size of semantic information spaces so they
are more efficient to work with and more relevant to an
agent’s needs. We provide some intuition to motivate the
need for such reduced information spaces, called
workspaces, give a formal definition, and suggest possible
methods of deriving them.

Introduction
The technologies of the Semantic Web have yet to achieve
the widespread adoption of the World Wide Web. To date,
researchers have focused more on foundational issues (e.g.,
representational formats and capabilities) than on
pragmatic issues of scale or efficiency. Ultimately, these
practical issues will need to be addressed if the Semantic
Web is to gain widespread adoption. In this paper, we
focus on one such important issue involving mechanisms
for filtering and restricting the set of knowledge statements
(e.g., RDF triples) available within a semantic information
space, depending on the application context. There are
numerous pragmatic reasons why one needs to restrict a
semantic space, for example to decrease the search space,
limit the scope of reasoning, to improve reasoning
efficiency, to reduce information overload, and to
customize visual presentations for human users.

As an example, consider an agent searching for “in-plan”
providers of a specific medical treatment, as described in
Berners-Lee et al.’s influential Scientific American article
on the Semantic Web (Berners-Lee et al. 2001). Let us
presume that there is a semantically marked-up data source
that serves as a directory of medical providers. In this
case, what steps must be taken for the agent to find the
appropriate information? First, it is unlikely that the agent
and the directory use the same ontology, so some form of
ontology alignment will probably be necessary; this
problem has received considerable attention (Kalfoglou
and Schorlemmer 2003; Noy 2004). Second, the directory
is not likely to be structured in a way that is best suited for

the agent’s search. The directory may include providers
outside the local geographic area, or providers in the wrong
specialty area, or it may not make any mention of which
providers belong to which insurance plans. In essence, the
agent is faced with finding a needle in a haystack; the
information it seeks is in the repository, along with a great
amount of irrelevant information, and there is no easy way
to separate the relevant from the irrelevant. The result is
information overload.

One approach to identify the relevant information is to
access all potentially relevant information in the directory
and use reasoning to restrict the scope. The problem with
this approach is one of scale; the more information that is
accessed, the more time and computing resources required
to store and process the data. Alternatively, if the directory
supports searching, the agent may try to scope the space by
forming a query that more accurately describes the
information request. This approach, too, has its drawbacks.
The directory may not support sophisticated queries.
Differences in the agent and directory ontologies may
require that the query scope be broadened. Finally, the
precise query may be very complex, making it difficult to
derive and verify that the query will return exactly the
desired information.

Information Overload in SemanticOrganizer
We have repeatedly encountered the need to restrict the
information space in our work on SemanticOrganizer
(Keller et al. 2004), a semantic repository that allows users
to store knowledge about work-related items (such as
documents, datasets, persons, and other domain-specific
concepts) and the interrelationships among these items.
SemanticOrganizer has over 500 registered users ranging
from occasional users to those who use SemanticOrganizer
on a regular basis as the primary storage and retrieval
system for their work-related knowledge products. Its
single ontology covers a wide variety of domains, from
project management to scientific inquiry to accident
investigation. SemanticOrganizer has over 400 ontology
classes defined, with 45,000 instances of those classes and
150,000 semantic links between these instances.

The SemanticOrganizer system supports various methods
of searching and browsing of this information, but as the

57

size of the repository grows, it produces more dense
information displays and voluminous search results – even
though much of the information displayed to a user may be
irrelevant to their current needs and work context. This
problem has forced us to consider methods of restricting
the user’s information space.

Access permissions, defined on instances within
SemanticOrganizer, reduce the amount of information
available to a given user but do not fully solve the problem.
Because access permissions are intended to prevent
unauthorized access rather than access to irrelevant
information, they are not an appropriate mechanism for
restricting the information space based on relevancy: the
problem is not what is accessible, but what is relevant to
the user. SemanticOrganizer partially addresses this by
allowing users to restrict their semantic space to only
instances of certain concepts (i.e., filtering out instances of
irrelevant classes). Nonetheless, finer-grained techniques
are needed to further reduce information overload -- there
may be irrelevant instances of a relevant concept, and
irrelevant knowledge statements (i.e., RDF triples) that
refer to a relevant instance.

It is possible to view the process of restricting an agent’s
information space in terms of a series of filtering
operations. Consider the following example. Imagine that
an accident investigator is browsing information in the
SemanticOrganizer repository to orientate herself with a
near-miss accident involving equipment failure during an
experiment performed in a wind tunnel. Some information
would be protected through access permissions and would
not be available to the investigator, for instance, the
salaries of the employees stationed at the wind tunnel.
However, additional information could also be filtered out
as irrelevant to any investigation, for instance, the
investigator’s salary. Finally, information that is both
relevant to investigations in general and accessible to the
investigator, but not relevant to the investigation at hand
could be filtered out; for instance, water samples taken at
the wind tunnel during a previous investigation of a
Legionella pneumophila outbreak. The information that
remains after all the filtering operations are complete is
considered part of the investigator’s current workspace.

The information-scoping problem we have encountered in
SemanticOrganizer is a specialization of the more general
problem of establishing a common context for
communication between two agents, with our specific
agents being SemanticOrganizer, on one hand, and a
human user, on the other. Our human agents are resource
bound just as software agents are, with limits on time and
processing power. By establishing a shared context
appropriate for the current situation, users can increase
their eff ic iency when “convers ing” with
SemanticOrganizer. In particular, users will spend less
time aligning their mental models to that of
SemanticOrganizer. In addition, since the amount of

information in a workspace is a subset of the overall
information space, users will spend less time sifting
through irrelevant information.

Related Work
The problem of restricting an information space to a
relevant subset has been the focus of information retrieval
(IR), where the problem is usually regarded as retrieving a
set of documents from a corpus (see (Salton 1983) for an
overview). Typically, the user selects some set of
keywords that capture the area of interest, and these
keywords are used to query the corpus. The bulk of
information retrieval techniques do not make explicit use
of semantics, and instead use statistical methods to retrieve
relevant documents.

Search queries can be viewed as another way of restricting
one’s view to a relevant subset. Unlike information
retrieval techniques, the search terms must explicitly
characterize the subset. Query languages are usually quite
expressive, but precise query results often require highly
complex queries. As a result, query languages alone are not
ideal for adequately scoping the relevant subset. Query
languages for the Semantic Web are still evolving, with a
variety of languages currently available (Haase et al. 2004).
In databases, views defined by queries have been used to
limit the scope of subsequent operations. Similarly,
variants of RQL have been designed to define a view on a
Semantic Web (Maganaraki et al. 2004; Volz et al. 2002).

We have previously suggested a method of restricting a
user’s view of a semantic repository by choosing a subset
of an ontology called an application module (Keller et al.
2004). Each application module contains only the classes
that are relevant to a particular domain. Knowledge
statements that refer to instances of classes not in the
application module are filtered out. In addition to filtering,
application modules provide some presentation
characteristics that allowed users to view instances using
their own terminology.

Noy and Musen devised a method for specifying a subset
of an ontology through traversal (Noy and Musen 2004).
Their focus was primarily on facilitating ontology re-use.
Rather than exporting an entire ontology, a user could
formulate the relevant portion of the ontology by
specifying key concepts and then traversing to related
concepts using a traversal directive. Since a procedure can
be specified to define the desired subset of the ontology,
rather than explicitly choosing the ontology, traversal
views offer a greater flexibility and dynamism than the
application modules of Keller et al.

58

Examples of Workspaces
What constitutes an effective workspace will change over
time, depending on the intent of the agent. To illustrate the
circumstantial nature of workspaces, we present illustrative
examples describing the types of workspaces required by
an investigator named John during various phases of his
work as part of an accident investigation team.

Workspaces Based on the Domain
As John joins the investigation team, his first objective is
to familiarize himself with the investigation conducted thus
far. John is primarily browsing through the information
related to the investigation at this point; he does not have
specific information to search for nor does he know what
kind of information is available. To support this initial
browsing activity, it makes sense to restrict the workspace
to only those knowledge statements that apply directly to
the investigation at hand. Other information, such as
similar investigations at other sites or other investigations
at the same site might prove useful to John at a later time,
but would currently only make his initial orientation more
difficult.

Workspaces Based on a Specific Goal
As John becomes more familiar with the investigation, he
naturally proceeds to develop hypotheses, for instance, that
poor maintenance procedures led to the failure of a
particular machine part. To test his hypothesis, John
wishes to restrict his view to only those knowledge
statements that relate to the machine of interest and/or
maintenance. However, John may choose to consider
historical information from other investigations relating to
these topics, to find other examples of failures, changes in
maintenance procedures, or previous uses of the failed part.

Workspaces Based on Time
Over time, the shape of the investigation changes; new
evidence has eliminated some hypotheses and led to new
areas of inquiry. To keep abreast of the growing areas of
the investigation, John restricts his workspace to include
only knowledge statements that have been recently added,
for instance statements added during the last week. By
doing so, John is directed towards new evidence that would
need to be evaluated as well as new hypotheses developed
by his co-investigators. Older knowledge statements are
no less true, but are no longer novel and therefore of less
interest.

Workspaces Based on Task
Finally, as the investigation wraps up, John is tasked with
developing a report of the investigation’s findings and
recommendations. John needs to consider information
from all phases of the investigation now, not just the most
recently added. However, he is less interested in the details

of supporting evidence than in the proven hypotheses, and
has no interest at all in the disproven hypotheses. Though
John is primarily interested in the current investigation, he
wants to bring information from other investigations into
his workspace, for example if they discussed findings
related to the investigation at hand.

These examples support our viewpoint that the notion of an
“appropriate” workspace within SemanticOrganizer is a
highly situated notion; the subset of knowledge statements
that are relevant to the user at any given point in time
depends on the user’s work context.

Workspace Definition
Having developed our intuition about workspaces, we now
present a more formal definition, illustrated in Figure 1. A
workspace is defined with respect to two agents, one a
source of information (an information-providing agent:
IPA), and the other a requestor of information (an
information-requesting agent: IRA).

Let KSIPA be the set of knowledge statements held true by
the IPA.

Let PIRA⊆KSIPA be the subset of statements that the
information-providing agent chooses to publish to the
information-requesting agent.

Let RIRA⊆KSIPA be the subset of statements that fit some
notion of relevancy held by IRA.

Let CIRA⊆KSIPA be the subset of statements that can be
mapped into the vocabulary used by the IRA. (We assume
that there is a partial mapping from statements in the IPA’s
vocabulary to statements in the IRA’s vocabulary – an
ontology alignment.) CIRA constitutes the subset of the
IPA’s statement that the IRA can understand.

With respect to a given IPA, a workspace, W, is defined for
a given IRA as follows:

 W = PIRA ∩ RIRA ∩ CIRA

The workspace for the information-requesting agent is thus
defined as the subset of the information-provider’s
knowledge that the agent is allowed to see, that it can
understand, and that is relevant.

59

Deriving Workspaces
To derive a workspace, all three of its component subsets
must be known. We will presume that the information
provider already knows what knowledge statements it is
willing to divulge to the information requester, i.e., that it
already knows what information it must keep private.
Deciding what statements can be translated to the
information requester’s ontology necessarily involves
ontology alignment, another hard problem unto itself that is
an area of active research. Within the SemanticOrganizer
system, the need to align these ontologies was obviated by
application bundles, in which ontology specialists
customize the master ontology based on the information
requester’s vocabulary. In what follows, we will
concentrate on how to define the third subset – the subset
of knowledge statements (RIRA) that fit some notion of
relevancy for the information requester. We present three
ways to define or derive this relevant subset, with each
method varying with respect to the amount of semantic
interpretation required.

Derivation Via Explicit Selection
The simplest, most obvious method is to manually select
the relevant subset of statements, for example by a human
knowledge engineer familiar with the agent’s context of
usage. Manual selection results in the highest quality
definition of the relevant subset, but requires the most
effort. This method is justified if the manual labor can be
amortized over many uses by one or more information
requester. For instance, once a workspace is defined for a
particular investigation, it could be shared by all the
investigators. On the other hand, this method represents no
overall reduction of effort if the workspace is used once or
infrequently. As with any subset selection method,
additions to the overall set of knowledge statements KSIPA
would require updating of the relevant subset; since this
method is manual, updating can be a significant concern,
depending on the frequency of updates.

Derivation Via Description
An alternative to manual selection of relevant knowledge
statements is to declaratively describe the relevant subset in

Figure 1: A graphical depiction of a workspace, W, defined for an Information-Requesting Agent (IRA) querying an
Information-Providing Agent (IPA). At left is the set of knowledge statements (KS) held true by the IPA; at right is
the set of knowledge statements expressible by the IRA. W is defined by the intersection of three subsets of statements
held by the IPA: P is the set of statements that the IPA has published to the IRA; R is the set of statements that are
relevant to the IRA; and CIS is the set of statements that have a mapping into the vocabulary understood by the IRA

60

terms of a formal language. The description represents an
abstraction of the relevant subset and should require less
manual effort to construct than the explicit selection. In
contrast to the explicit method above, as knowledge
statements are added to KSIPA, the existing description
would be used to make the selections, requiring no further
effort. This method requires less work than the manual
method, but produces a relevant subset that contains a
higher number of both irrelevant knowledge statement
(false positives) and missing relevant knowledge
statements (false negatives).

Derivation Via Ontology-Neutral Learning
Methods
Finally, learning methods that use ontology-neutral
approaches could be used to drastically reduce the amount
of effort required for an agent to define the relevant subset.
Such approaches are based on either structural properties of
the information space, such as graph connectivity, or meta-
concepts and relationships that are relevant across
ontologies (for instance, utilizing subsumption or identity
relationships, but not domain specific relations). These
learning techniques would require limited input if at all –
possibly a few training examples. The use of limited
amounts of input and lack of domain knowledge will
generally result in less accurate results than the previous
two more knowledge-intensive methods. Nonetheless, due
to the amount of labor involved in manually choosing the
relevant subset or describing the relevant subset, such
automated methods offer a useful alternative when lower
quality subsets are acceptable.

A Simple Experiment
In order to start exploring the space of domain-independent
learning approaches, we turned again to the investigation
domain of SemanticOrganizer. Four mishap investigations
have been supported in SemanticOrganizer (Carvalho et al.
2005): the Columbia shuttle, CONTOUR probe, HELIOS
autonomous aircraft, and Canard Rotor Wing (CRW)
investigations. Much of the information in these
investigations is disjoint, since they occurred at different
times, as part of different missions, and involved nearly
completely disjoint mission teams. Moreover, most of the
common information that could have been included within
several investigations was instead (re-)defined separately
as part of each new investigation. Therefore, there were
very few common instances among the investigations.
There were a few links crossing between instances
included in different investigations, though not many.

Experiment Setup
We considered the case of a single user who has access to
information in several investigations, but needs to restrict
his view to the subset of information relevant to a single
investigation. To define a gold standard for evaluating the
formation of the relevant subset, we accessed the accounts

of other users who each had involvement in only a single
investigation. We used the access permissions of each
other user to define the relevant subset of instances for
their investigation. In order to simplify the experiment, we
focused only on identifying relevant instances rather than
considering the more numerous relevant knowledge
statements.

Our goal is to derive these relevant subsets of instances
automatically – in this case to derive each subset of
instances relevant to a specific investigation. Using the
information available to us in SemanticOrganizer, we
devised the following experiment. First, we took the union
of all the instances and links available to the
aforementioned user from all four accounts- this constitutes
the items accessible across investigations. Second, to
restrict the area to only the domain of investigations, we
filtered out all information that was not part of the domain
of discourse of investigations (for instance, some
information on the ontology itself was represented).
Finally, we created a simple algorithm to group the
instances into clusters around each investigation.

The Algorithm
Our algorithm takes as input a network of nodes and edges
(e.g., an RDF graph), already filtered by permissions and
an area of discourse, and focal instances that define
relevant subsets of instances. Each focal instance is the
starting point for a cluster; in our experiment we had four
such focal instances, namely each instance of the
Investigation class. The algorithm produces as output one
subset of instances for each focal instance. These subsets
may overlap, and the union of these subsets may not
include all instances from the original graph. We used the
shortest path through the network from an instance to each
focal instance as a simple heuristic for deriving the subsets.
Each instance was placed within the cluster of the focal
instance to which it was closest; if it was equally close to
more than one focal instance, it was put in the cluster of
each such focal instance. We present the pseudocode of
this algorithm below:

For every focal instance F
Define SF = {}

For every instance n in G
Let C be the set of focal instances closest to n
For every focal instance F in C

Add n to SF

Return : All sets SF corresponding to each focal
instance F

Our intuition was that this algorithm should perform well
on this particular task. However, the network was
connected, with a path existing from every node to every

61

other node, so it was possible that the algorithm would not
perform well at all.

Experimental Results
On this particular experiment, the algorithm outperformed
our expectations. We evaluated the quality of the derived
subsets of instances in terms of the information retrieval
measures of recall, precision and F-measure (Van
Rijsbergen 1979) (Table 1).

Size of
Correct
Subset

Size of
Derived
Subset

Recall Precision F-
Measure

CRW 349 336 0.82 0.85 0.83
Columbia 4299 4212 0.97 0.998 0.98
CONTOUR 1033 992 0.96 0.998 0.98
Helios 1461 1444 0.99 0.999 0.99

Table 1. Evaluation of derived subsets for each
investigation.
Despite these extremely high outcome measures, the
conclusions that we can draw from this experiment are
very limited. The domain was clearly well-suited to the
algorithm’s shortest-path heuristic since it had easily-
defined subsets that had very little overlap and linkages
between subsets. Furthermore, artificial changes to the
domain decreased the number of links between subsets:
instances that could have been in multiple subsets were
often redefined separately in each, and the access
permissions on the different areas made linking across
subsets difficult. Though we feel that though these
circumstances have probably inflated the results somewhat,
this algorithm would still perform reasonably without the
artificial changes. However, not all domains are likely to
have such neatly separated relevant subsets, and the
performance of this simple algorithm on such a domain is
unknown.

Discussion
While our experiment does not show that the simple
shortest-path algorithm presented would be adequate in
general, it does show that there is promise in exploring
relatively ontology-neutral methods for deriving relevant
subsets. Indeed, for the investigations modeled in
SemanticOrganizer, we could have used this method to
derive the subset of instances relevant to each investigation
with excellent results. Though we have not extended the
algorithm to consider individual knowledge statements
instead of instances, we could do so by including all
knowledge statements that refer only to instances in the
relevant subset and excluding all that refer to instances
outside the subset.

Ultimately, we do not believe that ontology-neutral
automated techniques alone will be adequate in most cases.
Rather, we suggest that they could be used to generate an

initial, rough cut of the relevant subset that could then be
refined. For instance, the relevant subset could be further
refined by using additional user defined descriptions to add
or subtract from the relevant subset. Presumably, such
“corrective” abstractions would be simpler to engineer than
those that start from scratch. One interesting possibility
would be to use the automatically derived subsets to
generate the initial abstraction as a starting point, i.e.,
generating a description that defines a subset that closely
matches the automatically derived subset. Finally, if
additional refinements were needed, the subsets could be
adjusted manually- again with considerably less overall
effort than if the entire effort had been manual.

Future work
We have explored the use of a general workspace
derivation technique that is independent of a given
ontology, but much work remains to develop widely
applicable techniques. One possibility for follow-on work
would be to continue to evaluate the simple shortest-path
algorithm in other domains, and to more fully evaluate its
performance in the given experiment. The shortest path
algorithm could readily be expanded to a weighted path
algorithm that gives different weights for different links,
perhaps based on the ontology or other characteristics.
Furthermore, the current algorithm should be extended to
apply to individual knowledge statements instead of
instances and then evaluated.

Other techniques for deriving the relevant subset should
also be explored. Heuristics that are not based on
properties of the graph but on information retrieval
methods, such as TF-IDF, are a possibility. In addition,
standard machine learning methods could be explored,
such as traditional clustering techniques adapted to a
Semantic Web framework or relational data mining
methods. We have restricted our experiments to deriving
relevant subsets defined by domain, but other kinds of
relevant subsets should be considered, for instance subsets
defined by a specific task, goal, or timeframe. Finally,
incorporating some amount of semantic interpretation into
these approaches, as well as having them interact with
manually derived abstractions, are directions that we feel
will ultimately be the most successful.

Conclusion
As the Semantic Web gains in popularity and acceptance, it
will also grow in size. To date, few semantic repositories
have grown to a size that their usability suffers, but
SemanticOrganizer is one such example. For the vision of
the Semantic Web to be realized, these issues of scale must
be addressed. We have presented one definition of a
restricted view on a semantic network, which we have
called a workspace . In essence, a workspace is the
intersection of three sets; what you have permission to see,

62

what you can understand, and what is relevant in the
current situation. Of these three concepts, we felt the
latter, what is relevant, was the one most in need of our
attention in the context of the developing Semantic Web.
We have described some of the techniques that can be used
to derive these relevant subsets, and have shown that even
a very simple approach with minimal semantic
interpretation can be successful in some domains.
Ultimately, though, we feel that effective methods will
require a combination of both domain independent and
domain specific approaches.

Acknowledgements
We would like to thank Ian Sturken, Dan Berrios, and the
SemanticOrganizer team for their contributions to this
paper. Our work on SemanticOrganizer was funded by the
NASA Intelligent Systems Project within the Computing,
Information and Communications Technology Program
and by the Investigative Methods and Tools Project within
the Engineering for Complex Systems Program.

References
Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
Semantic Web. Scientific American .
Carvalho, R. E., Williams, J., Sturken, I., Keller, R. M.,
and Panontin, T. Investigationorganizer: The Development
and Testing of a Web-Based Tool to Support Mishap
Investigations. In Proceedings of the IEEE Aerospace
Conference 2005, Big Sky, MT, USA.
Haase, P., Broekstra, J., Eberhart, A., and Volz, R. A
Comparison of Rdf Query Languages. In Proceedings of
the Third International Semantic Web Conference (ISWC-
2004), Hiroshima, Japan.
Kalfoglou, Y., and Schorlemmer, M. (2003). Ontology
Mapping: The State of the Art. The Knowledge
Engineering Review, 18(1), 1-31.
Keller, R. M., Berrios, D. C., Carvalho, R. E., Hall, D. R.,
Rich, S. J., I. B. Sturken, Swanson, K. J., and Wolfe, S. R.
Semanticorganizer: A Customizable Semantic Repository
for Distributed Nasa Project Teams. In Proceedings of the
Third International Semantic Web Conference (ISWC-
2004), Hiroshima, Japan.
Maganaraki, A., Tannen, V., Christophides, V., and
Plexousakis, D. (2004). Viewing the Semantic Web
through Rvl Lenses. Journal of Web Semantics.
Noy, N. F. (2004). Semantic Integration: a Survey of
Ontology-Based Approaches. ACM SIGMOD Record,
33(4).
Noy, N. F., and Musen, M. A. Specifying Ontology Views
by Traversal. In Proceedings of the Third International
Semantic Web Conference (ISWC-2004), Hiroshima, Japan.
Salton, G. (1983). Introduction to Modern Information
Retrieval, McGraw-Hill.

Van Rijsbergen, C. J. (1979). Information Retrieval (2nd
Edition), Butterworths, London.
Volz, R., Oberle, D., and Studer, R. On Views in the
Semantic Web. In Proceedings of the Proceedings of the
2nd International Workshop on Databases, Documents,
and Information Fusion (DBFUSION 02), Karlsruhe,
Germany.

63

An automatic ontology-based approach to enrich tables semantically

Hélène Gagliardi, Ollivier Haemmerlé, Nathalie Pernelle, Fatiha Säıs
LRI (UMR CNRS 8623 - University of Paris-Sud),

Bâtiment 490, F-91405 Orsay Cedex, France
{gag,pernelle,sais}@lri.fr, Ollivier.Haemmerle@inapg.inra.fr

Abstract

This work aims at building automatically a thematic
data warehouse composed of heterogeneous XML doc-
uments extracted from the Web. We focus on the data ta-
bles contained in these documents. This article presents
how we enrich semantically those tables by means of
tags and values coming from the ontology of the appli-
cation. First results are given for a set of real data of the
e.dot project.

Introduction
Our work deals with the automatic construction of domain
specific data warehouses. More precisely, our goal is to inte-
grate automatically information found on the Web with ex-
isting information stored in different databases. The first
originality of our work is that the unique external source
of knowledge used to extract information is an ontology of
the application domain. Then our approach is completely
generic. The second originality is that the extraction of in-
formation is done in a completely automatic manner. The
drawback of such a non-supervised approach is that it leads
to ambiguities or misunderstandings in the information we
discover. But we propose to keep the different interpreta-
tions in order to allow their use during the query processing.
That flexibility is the third originality of our technique. The
fourth originality is that we exclusively extract information
from data tables in the documents we found on the Web.
Such a choice can appear as restrictive, but in a large variety
of scientific fields, we saw that data tables contain synthetic
and reliable information. Finally, our approach is currently
under test in a real and ambitious project concerning the mi-
crobiological risk in food products.

Our application domain concerns the microbiological risk
in food products. In order to understand and to prevent
such risks, the Sym’Previus project has been launched by
French governmental institutions. During the Sym’Previus
project, the MIEL++ system has been built (Bucheet al.
2004). MIEL++ is a tool based on a database, contain-
ing experimental results and industrial results about the be-
haviour of pathogenic germs in food products depending on
several parameters, such as the temperature, the pH, etc.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The Sym’Previus database is incomplete by nature since the
number of possible experiments is potentially infinite. The
work presented in this article takes place within the e.dot
project, which is a cooperation between the INA P-G/INRA
MIA group, the Xyleme start-up, the IASI-Gemo team (LRI)
and the Verso-Gemo team (INRIA-Futurs). The goal of the
e.dot project is to palliate the incompleteness of the database
by complementing it with data automatically extracted from
the Web. The drawback of such a technique is that the way
the data are expressed on the Web is very heterogeneous. For
example, the terms used in the scientific articles in microbi-
ology can be different from an article to another. A way of
solving that heterogeneity issue can be to query the existing
database and the Web documents through a mediated archi-
tecture based on a domain ontology.

In MIEL++, the database is queried through a mediated
architecture (2 local bases previously developed during the
Sym’Previus project, and expressed in heterogeneous for-
malisms are actually queried on). The mediated schema is
composed of an ontology called the Sym’Previus ontology.
In order to make possible the query processing on the data
extracted from the Web, we need to translate these data in or-
der to make them compatible with the Sym’Previus ontology
used in the mediated schema. That mechanism is presented
in this article.

In e.dot project (e.dot 2004), data are acquired by going
through the following steps. First, a Web crawler is com-
bined with a filtering tool (Mezaour 2005) that selects the
Web pages that contain data useful for the warehouse. We
exclusively focus on documents in Html or Pdf format which
contain data tables; actually data tables are very common
presentation scheme for authors in order to describe experi-
mental results, statistical or other synthetic data in scientific
articles. In our system, these tables are extracted and trans-
formed in a generic XML representation called XTab. These
documents are then semantically enriched and stored in the
data warehouse.

In this paper, we present the semantic enrichment step.
In our approach, we want this transformation to be as auto-
matic and flexible as possible, only driven by the ontology
and the way the data have been structured in the original
table. Thus, we have defined a Document Type Definition
named SML (Semantic Markup Language) which can au-
tomatically be generated using the ontology and which can

64

deal with additional or incomplete information in a semantic
relation, ambiguities or possible interpretation errors.This
approach has been implemented and tested on real data from
the e.dot project.

The paper is structured as follows. In section 2, we first
introduce the XTab format, the Sym’Previus ontology, and a
simple example in order to explain the aims of the semantic
enrichment task. Section 3 introduces the way we identify
the ontology terms represented by the columns of a table.
Section 4 presents the identification of semantic relationsin
data table, while section 5 explains the instantiation of such
semantic relation. Section 6 gives an idea of the possible
use of the semantic enrichment during the query process-
ing. In section 7, some experimental results are shown. In
the conclusion, we present related works and we give future
directions.

Preliminary notions
We first present the generic XML representation of tables –
called XTab. Then we introduce the ontology of the appli-
cation domain. That section ends with a very preliminary
example of what the result of the semantic enrichment is.

The XTab format
The data tables are first represented in XML, using purely
syntactic tags that are domain-independent. The tables are
automatically represented using a list of lines, each line be-
ing composed of a list of cells. Besides, when it is possible,
titles are extracted. This format called XTab has been de-
fined in the e.dot project (e.dot 2004). More complex struc-
tures of tables need heuristics such as (Pivk, Cimiano, &
Sure 2004) in order to be translated into this simple XTab
structure. These heuristics are not presented here. The XTab
representation of Figure 1 is shown in Figure 2.

Products pH values
Cultivated mushroom 5.00

Crab 6.60

Figure 1:approximative pH of some food products

The Sym’Previus ontology
The Sym’Previus project (sym) has developed an ontology
dedicated to the risk assessment domain. In order to exploit
the data tables and query them through the MIEL++ system
– which is based on the Sym’Previus ontology – we have
to express data using the vocabulary stored in that ontology.
The Sym’Previus ontology is composed of:

1. a term taxonomy which contains 428 terms of the domain
(food, microorganism, experimental factors, ...) which are
organized by the specialization relation�;

2. a relational schema that contains 25 semantic relations be-
tween terms of the taxonomy. A semantic relationr is
characterized by its signatureattrs(r) composed of the
set of attributes of the relation. The elements ofattrs(r)
belong to the term taxonomy. For instance, the relation

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<table><title> <table-title>

approximative pH of some food products</table-title>

<column-title>Products</column-title>

<column-title>pH values</column-title></title>

<nb-col>2</nb-col>

<content>

<line>

<cell>cultivated mushroom</cell>

<cell>5.00</cell>

</line>

<line>

<cell>crab</cell>

<cell>6.60</cell>

</line>

</content></table>

Figure 2:XTab Representation of figure 1

foodFactorMicroorganismhas the signature(food, factor,
microorganism).

Very preliminary example
Thus, we enrich XTab documents with tags and values pro-
vided by the ontology. More precisely, we have defined a
representation formalism named SML –Semantic Markup
Language– where table lines are not represented by cells
anymore but by a set of semantic relations between columns.

<table> <title><table-title>

approximative pH of some food products</table-title>

<column-title> Products</column-title>

<column-title>pH values</column-title>...

</title> <content>

<rowRel>

<foodPH>

<food><ontoVal>mushroom</ontoVal>

<originalVal> cultivated mushroom</originalVal>

</food>

<ph><ontoVal/>

<originalVal>5.00</originalVal></ph> </foodPH>

</rowRel>

<rowRel>

<foodPH>

<food><ontoVal>crab</ontoVal>

<originalVal>crab</originalVal></food>

<ph> <ontoVal/><originalVal>6.60</originalVal> </ph>

</foodPH> </rowRel>

</content> </table>

Figure 3:Simplified SML Representation of Figure 1

Let us consider the semantic relation namedfoodPH
which links a food product with its pH value in the ontol-
ogy. The aim of the enrichment is to reformulate an XTab
document such as Figure 2 in an SML document such as Fig-
ure 3. In this SML document, the semantic relationfoodPH
which has been recognized in the table is represented and
instantiated using the table values.

In order to instantiate the relation, we try to associate one

65

or several terms of the taxonomy with each value of the ta-
ble. If the value does not appear directly in the taxonomy,
we use mapping techniques in order to find similar terms.
In the example, the first column valuecrab belongs to the
taxonomy. But the valuecultivated mushroomdoes not ap-
pear in the taxonomy; nevertheless, we propose to associate
mushroomwith it thanks to a mapping procedure. This value
is represented in the SML tag< ontoV al > while the orig-
inal value is kept using the tag< originalV al >. Thus, the
original value can be shown in the result of a query, even if
the query is asked on a value belonging to the ontology. This
SML representation conforms to the SML DTD (Document
Type Definition) we have defined in (e.dot 2004).

Identification of the columns of the data table
In order to extract the relations of the table, we perform two
steps. The first one, presented in this section, consists in
identifying a term of the taxonomy which represents each
column of the data table. The second step, presented in the
next section, will consist in discovering semantic relations
between data table organized in columns.

The identification of the columns of the data table is based
on two pieces of information: the content of the column
which is mainly used, and the title of the column, which is
used in case the content of the column is not helpful enough.

The content of the column is used as follows: we try to
associate a term of the ontology taxonomy with each value
belonging to the column. Then we search for common gen-
eralizers – ”subsumers“ of these terms. The use of a thresh-
old allows us to associate a generalizer with a given column
even if we have not recognized all the values of that column.

definition An A-term is a term of the taxonomy that ap-
pears at least one time as an attribute of a relation signature
in the relational schema of the ontology. The set of all A-
terms is notedAT.

We first try to find values of the columns that belong to
the taxonomy or that are included1 in one term of the taxon-
omy. We then look for an A-term which subsumes almost
all the values in the term taxonomy. First, an A-term can
be associated with a column Col if and only if the rate of
the subsumed values is greater than a given thresholdth.
The set of all A-terms that verify this constraint is noted
ATCandidate(Col, th):

ATCandidate(Col, th) = {t |t in AT and
|sub(t, Col)|

|Col|
≥ th}

where sub(t,Col) is the set of values of Col that are
subsumed by the A-termt.

Among these candidates, we select the most specific A-
terms that subsume the largest set of values. This set of rep-
resentative A-terms is notedATRep:

ATRep(Col, th) = {t | t ∈ ATCandidate(Col, th),

1in the sense of the inclusion of sets of words, after a lemmati-
zation step and without taking the “empty” words (determiners or
prepositions) into account

¬∃ t′ such that t′ ∈ ATCandidate(Col, th)

and |sub(t′, Col)| > |sub(t, Col)|,

¬∃ t′′ such that t′′ ∈ ATCandidate(Col, th)

and |sub(t′′, Col)| = |sub(t, Col)| and t′′ � t}

If there is more than one A-Term in ATRep, we keep the
first one. In fact, experiments have shown that if the thresh-
old is high enough there is zero or one representative A-term.

If no representative A-term has been found by using this
procedure, we exploit the title of the column if it is available.
We exploit the values of the column first because if we are
able to identify an important number of values, the A-term is
often relevant. Besides, the treatment of the title can leadus
to a misunderstanding association. If no A-Term has been
found, we keep the column in the SML document and we
associate the generic A-term namedattributewith it.

Products Qty Lipids Calories
whiting with lemon 100 g 7.8 g 92 kcal

ground crab 150 g 11.25 g 192 kcal
chicken 250 g 18.75 g 312 kcal

Figure 4:Nutritional Composition of some food products

In the table of Figure 4, the termscrab andchickenbe-
longing to the ontology have been associated with the values
ground crabandchicken. If the threshold is 0.5, the most
specific A-term that subsumes these two terms is the A-term
Food. The second column has not been identified because
it only contains numeric values and the title is an abbrevia-
tion; the generic A-Termattributeis associated with it.lipid
andcalorie have been associated with the last two columns
thanks to the exploitation of their titles.

Definition The schematabSchof a tabletab, notedtab-
Sch(tab), is the finite set of couples(col, ATRep(col, th))
that can be found for a given thresholdth.

tabSch(Tab) = {(col, t)|t ∈ ATRep(col, th)

or [(t = attribute) and ATRep(col, th) = ∅]}

The schema of the tableTab2shown in Figure 4 is:

tabSch(Tab2)={(1,food) (2,attribute) (3,lipid),(4,calorie)}

Identification of the semantic relations
appearing in the data table

We present now how we identify one or several semantic
relations in the schema of the table. That identification is
done by comparing the “natures” of the columns identified
during the previous step with the attributes appearing in
the signatures of the semantic relations of the ontology
of the domain. Of course, an exact mapping between
the schema of the table and the signature of a specific
semantic relation is the ideal case. In most of the cases, we
will obtain several possible mapping with subsets of the

66

attributes of the schema of the table. Or we will have only
partial mapping, with only a subset of the attributes of the
signature of a relation, etc. So we will see that we propose
an automatic identification of the semantic relations as
flexible as possible.

We say that a relation iscompletely representedif each
attribute of its signature subsumes or is equal to a distinct
A-term of the table schema.

Thus, suppose that the three relationsfoodLipid, food-
Calorie, foodPhbelong to the ontology and that the two rela-
tions foodLipid andfoodCaloriemean “the number of lipid
(or calories) contained in 100 g of the foodstuff”, because
the experts have considered that the weight is normalized.
In table of Figure 4, the relations are extracted in the follow-
ing way:

• foodLipid, is completely represented by the values found
in the first and the third columns.

• foodCalorie is completely represented by the values
found in the first and the fourth columns.

Since the second columnqty is not identified and does
not participate to any of these two relations, we add to each
relation a generic attribute which will contain values found
in this second column. If this attribute was not represented,
for example, the third line of the table would be interpreted
as“ 100gof chicken correspond to 312 calories”. When the
generic attribute is taken into account, the interpretation is
“250gof chicken correspond to 312 calories”. So, in such
cases, the representation of additional information leadsto
better interpretations of the data.

Figure 5 proposes the SML representation of the relations
foodLipidandfoodCalorie:

<table> <content>
<rowRel additionalAttr=”yes” >

<foodLipid relType =”completeRel”>
<food>...</food> <lipid> ... </lipid>

<attribute> ...</attribute>

</foodLipid >

<foodCalorie relType =”completeRel”>
<food>...</food> <calorie> ... </calorie>

<attribute> ...</attribute>

</foodCalorie>

</rowRel> ...

</content> </table>

Figure 5:SML representation of completely represented re-
lations

We say that a relation ispartially representedif it is not
completely represented and if at least two attributes of its
signature subsume or are equal to different A-terms of the
schema of the table. We have considered partially repre-
sented relations in order to take the following two cases into
account.

Partially represented relations with Null attributes:

This is the case when an attribute of the semantic rela-
tion has not been associated to column of the table schema.
For example in the table of Figure 4, the semantic relation
foodAmountLipid, defined in the ontology on its attributes
food, amountand lipid, is partially represented in the table
schematabSch, since the attributeamountis not represented
in the table schema. Figure 6 presents the SML representa-
tion of foodAmountLipidrelation :

<table> <content>
<rowRel additionalAttr=”yes” >

...

<foodAmountLipid relType =”partialNull” >

<food attrType=”Normal”>...</food>

<amountattrType=”Null” / >

<lipid attrType =”Normal”> ... </lipid>

<attribute attrType=”generic”> ...</attribute>

</foodLipid >

</rowRel> ... </content> </table>

Figure 6:SML representation of a partially represented re-
lation with Null attributes

Note that when a relation is partially represented, the at-
tributes that do not appear in the schema are represented in
the SML document by means of an empty tag like
<amountattrType=”Null” />. In this example, the generic
attribute represents precisely the missing attributeAmount.

Partially represented relations with constant values:
This is the case when one of the relation attributes corre-

spond to a constant value which appears in the title of the
table.

Products Doubling time (h)
Minced meat 301

Cured raw pork 3.61

Frankfurters 91

Figure 7:Doubling times of Listeria monocytogenes in food-
stuffs

Let tabSchthe table schema computed from the tabletab3

of Figure 7:tabSch(tab3)= {(1,food),(2,factor)}.

In this table schema, the relationfoodFactorMicroorganism
is partially represented: the attributesfood and factor are
represented in the table schema and the attributeMicroor-
ganismis represented by a constant valueListeria Monocy-
togeneswhich appears in the table title “Doubling time of
Listeria Monocytogenesin foodstuffs”.

This constant is used as a value for the corresponding
attribute of the semantic relation and it is propagated into
all the instances of the relation. Figure 8 presents the SML
representation of thefoodFactorMicroorganismrelation.

Because we want to keep unidentified data, we also add
to the semantic relations we have found the set of generic at-
tributes of the table schema. This is done even if the relation
is partial. Actually, one of these additional attributes may be

67

<table>

<content>
<rowRel additionalAttr=”no” >

...

<foodFactorMicroorganism relType =”partialConst” >

<food attrType=”Normal”>...</food>

<factor attrType=”Normal”> ... </factor>

<microorganism attrType =”Const” > listeria monocytogenes

</microorganism>

</foodFactorMicroorganism>

...

</rowRel> ...

</content> </table>

Figure 8:SML representation of partially represented rela-
tions with attributes in constants

a missing attribute of the relation. Besides, this attribute can
add a contextual information which may modify the user’s
interpretation of the relation.

When no relation has been found in the table schema,
a generic relation namedrelation is generated in the SML
document. In this way, we keep semantic links between
values even if this link has not been identified. Thus, it is
possible to query the SML documents by means of lists of
key-words.

Instantiation of the semantic relations
Once the relations are extracted, we instantiate them by the
values contained in the table. Besides, terms of the ontology
are associated with each value when it is possible. The SML
formalism allows us to associate several terms that can be
found by different mapping mechanisms. We have consid-
ered two kinds of mapping procedures.

The first one uses simple syntactic criteria. Each value is
considered as a set of lemmatized words Mv where empty
words such as determiners or prepositions are suppressed.
The same treatment is applied to the terms of the ontology.
Then, we consider that there may exist a semantic similarity
between a value v and a term t if :

1. equality: (Mv = M t)

2. inclusion: (Mv ⊂ Mt or Mt ⊂ Mv)

3. intersection: (Mt ⊂ Mv) or (Mv ∩ Mt 6= ∅).

These three criteria are applied using the previous order.

The second mapping procedure uses more semantic cri-
teria. Actually, we have chosen to use the unsupervised
approach PANKOW – Pattern-based Annotation trough
Knowledge On the Web (Cimiano, Handschuh, & Staab
2004) where patterns are used to categorize proper nouns
(instances) with regard to an ontology. PANKOW applies
a set of linguistic patterns including Hearst patterns (Hearst
1992) (i.e. the< concept > < instance >, < concept >
such as< instance >, ...) on the biggest corpus available:
the World Wide Web. In fact, they exploit the google API
and take the number of pages in which patterns appear as

an indicator for the strength of the pattern. We have used
the same approach on data table even if they are not nec-
essarily proper nouns. We have applied the general pattern
“< value > is a< term >” in order to discover special-
ization relations between values and terms of the ontology
using the Web corpus. For a given value, we instantiate the
pattern with each term of the domain ontology and keep the
best term with regard to the number of pages. Because of
the specificity of our domain, the number of pages can be
very low. For instance, when we try to associate the value
“ice cream” to a term of the ontology, the pattern “ice cream
is a dessert” is found in 35 pages. Happily, “ice cream is
a microorganism” is not found. Note that the termdessert
cannot be found by our syntactic criteria.

Figure 9 shows a part of the SML document which is au-
tomatically generated from the XTab document of Figure 4.
This document is structured in the following way:

<table> <table-title>Nutritional Composition of some food products</table-

title >

<column-title> Product</column-title> <column-title>Qty</column-title>

<column-title>lipids</column-title>

<column-title>calories</column-title> <column-nb> 4 </column-nb>

<content>
<rowRel additionalAttr=”yes” >

<foodLipid relType=”completeRel”>

<food indProc=”yes” attrType=”Normal”>

<ontoVal indMap=”intersection”> whiting Provencale

</ontoVal>

<ontoVal indMap=”intersection”> green lemon</ontoVal>

<ontoVal> whiting fillets </ontoVal>

<originalVal> whiting with lemon </originalVal>

</food>

<lipid indProc=”no” attrType=”Normal”>

<ontoVal indMap=”notFound”/>

<originalVal> 7.8 g</originalVal>

</lipid>

<attribute indMap=”notFound” indProc=”no”

attrType=”Generic”> <ontoVal/>

<originalVal> 100 g</originalVal></attribute>

</foodLipid>

<foodCalorie relType=”completeRel”> ... </foodCalorie>

<foodAmountLipid relType=”partialNull”> ...

</foodAmountLipid> </rowRel> ... </content> </table>

Figure 9:SML Representation of the nutritional composition
of food products

The main part of the document is inside thecontentele-
ment. It represents the table like a set of lines where each
line is now a set of semantic relations (like, for example,
foodLipide or foodCalories).
The SML representation of a relation is composed of the set
of attributes that appear in the signature of the relation de-
scribed in the relational Reference Schema of the ontology
(e.g. foodLipid(food, lipid)). Each attribute subsumes the
representative term of the column or subsumes a term which
has been found in its title. A set of terms represented inside
the XML tag ontoVal is associated with each value. Thus,
crab has been associated withground crabwhile three dif-
ferent terms are proposed forwhiting with lemon: whiting

68

Provencale, green lemonand whiting fillets. The original
value is kept inside the XML tagoriginalVal.

The generality of the SML representation is ensured by
the possibility of an automatic generation of the SML DTD
from an ontology which contains a taxonomy and a rela-
tional reference schema. In the following, we give an exam-
ple of relational schema and its corresponding SML DTD.

In the figure 10 we present an extract of the relational
schema of an ontology of the risk assessment. Figure 11
is the corresponding representation of the SML DTD gener-
ated from this relational schema. The DTD is simply repre-
sented here as a graph.

Ontology

Relational-Schema

foodFactorMicroorganismfoodMicroorganism

foodmicroorganism factor

Figure 10: Extract of a risk assessment ontology

content

rowRel +

foodFactorMicroorganism * foodMicroorganism * ...relation ?

foodfactor microorganism attribute *

ontoVal * originalVal

Figure 11: Extract of SML DTD (risk assessment)

Interrogation of SML documents
Some indicators that can be exploited in the queries
Our approach allows one to extract data from tables even if
we are not sure of their representation using the vocabulary
of the ontology. It is the reason why we have defined
a list of indicators that are represented in the SML doc-
ument and that will be exploited during the query evaluation.

We present now the two main treatment indicators rep-
resented in SML as XML attributes attached to lines or to
relation attributes. The first one is related to the structure of
the relations (presence or absence of additional attributes).

additionalAttr : it informs on the presence of one or
several additional attributes that represent the columns of
the table which could not be associated with an identified
relation. It is added to the tags< rowRel > of SML
document. For example in the table of Figure 4, this

indicator allows the query engine to use the generic attribute
associated with theQuantitycolumn.

The following indicator make it possible to specify the
kind of mapping procedure used to find a term of the ontol-
ogy; it can thus be used to evaluate the risk of a mapping
error. It is added to the< ontoV al > tags of the SML doc-
ument.

indMap : it indicates the name of the mapping procedure
(inclusion, intersection or PANKOW) used to find the term
of the ontology which corresponds to the original value of
the table. Several mapping operators can exist in the appli-
cation, this indicator allows us to modulate a trust degree,
relating to enrichment, according to mapping operators. Be-
sides, it can be used to visualize the original value if neces-
sary.

These treatment indicators can be used by the query engine
to adapt and find other answers for the user in cases of dis-
satisfaction.

An example of interrogation
To query SML documents, XQuery queries have been writ-
ten. They rely on the SML DTD. In the following, we de-
scribe a query example where the user looks for the quan-
tity of lipid in 100 g of crab. The evaluation of this query
consists in searching in the SML document for the subtrees
– SML fragments – such that the parent node isfoodLipid
and such that there is an elementontoVal that contains the
value “crab”. The indicatorsindMapandindProcare used to
check the validity of the semantic enrichment of the data. As
the indicatoradditionalAttr has the value “yes”, the query
engine displays the additional information150g. This ex-
ample shows how the unidentified attributes that are kept in
the SML representation can increase the accuracy of the user
interpretation. Besides, the original valueground crabis dis-
played sinceindProc indicates that a treatment was carried
out on the original value. The evaluation of this query per-
formed on the document of Figure 9 is presented in Figure
12.

<table>
<title> Nutritional composition of some food products
</title>

<food> ground crab</food> <lipid>11.25 g</lipid>

<validity>inclusion</validity>

<additionalattr>150 g</additionalattr>
<category> unknown</category> </table>

Figure 12:A possible structure of the query answer

First results
We present in this section the results of the first experimen-
tation of our method. The approach has only be tested on
the risk assessment domain represented in the Sym’Previus
ontology. In this evaluation, we show the capacity of our
system to recognize relations of the ontology in the XTab

69

tables . Our goal was to compare the results provided with
our automatic method with a manual one done by an expert.
We compared the results in terms of the well-known infor-
mation retrieval measures Precision, Recall and F-Measure.

Test set
Among two hundred real XTab tables collected from the
Web, we have selected 33 tables. One table is selected in
the test set if and only if we identify, among its columns at
least one semantic relation attribute represented in the ontol-
ogy.

Evaluation methodology
In order to evaluate our approach, we have distinguished the
results found for the three kinds of semantic relations: the
Completely represented Relations (CR), the Partially repre-
sented Relations where all the missing attributes are identi-
fied by Constants in the table title (PRC) and the Partially
represented Relations which contain at least one attribute
which is not identified – Null attributes – (PRN). Note that
PRC relation can only found in the tables which are associ-
ated with a table title.

In first step we run our prototype on the real test set of
XTab documents. In second step a domain expert checks the
relevance of each semantic relation provided by our system.

To identify the semantic relations represented in the ta-
ble represented in the XTab document, the expert has access
to the whole information of the original –HTML or Pdf –
document but he only considers information which are con-
tained in the XTab document (ie. the table title and the table
content). The expert considers that a semantic relation is
correct if the relation is represented in the table and if all
its attributes are correctly identified. If he recognizes inthe
XTab document one semantic relation which is not found by
our system, he considers that the relation isforgotten. By
this way, he can determine which semantic relations pro-
vided by our system are incorrect and which are forgotten.

In Figure 13, we show the result of this step for each kind
of relation (CR, PRC and PRN) : number of semantic re-
lations which have been found by the system, incorrect se-
mantic relations and forgotten semantic relations.

Found rels Incorrect rels Forgotten rels
CR 30 22 11

PRC 6 3 5
PRN 23 2 3

Figure 13:Expert results after semantic relations checking
step

On these results we have computed Recall, Precision and
F-Measure. LetT, T’ be two variables that represent the se-
mantic relation type considered in the three measures calcu-
lations. It gets values in :{CR, (CR and PRN), (CR, PRN
and PRC)}. Let Correct Rels(T) be the number of semantic
relations of typeT, correctly found by our system.

1The XTab tables are the result of an automatic transformation
applied on HTML and PDF documents found on the Web

Correct Rels(T) = Found Rels(T)− Incorrect Rels(T)

Recall is the percentage of relations (all types) actually rep-
resented in the data tables and correctly found by our sys-
tem. Here we suppose thatT’={CR, PRN and PRC}.

Recall =
Correct Rels(T)

(Correct Rels(T’)) + Forgotten Rels(T’))

Precision Is the percentage of relations found in the data
tables by our system and with a correctly assigned relation
signature.

Precision =
Correct Rels(T)

Found Rels(T)

F-Measure as usual we balance Recall and Precision
against each other.

F − Measure =
2 ∗ Recall ∗ Precision

Recall + Precision

Figure 14: Recall, Precision and F-Measure for a threshold
at 0.3

Results
The diagram presented in Figure 14 gives the results in term
of precision, recall and F-Measure of our semantic enrich-
ment system approach. The first interesting observation is
that the recall value increases significantly when our system
takes into account partially represented relations. This result
shows clearly the interest of the partially identified seman-
tic relations kept in the SML documents, even when missing
attributes are not identified by constants. If we restrict the re-
lation types on the complete relations, we would have only
0.15 for the recall value, whereas in the case where we keep
all the identified relations (ie. completely and partially rep-
resented relations) we have 0.62 for the recall value. Note
that our aim is precisely to obtain a satisfyingRecallvalue.
Because we have chosen to keep all the identified pieces of
information as well as information which are not completely
identified such as partial relations, generic attributes end par-
tial relations. We can also note that the precision is increas-
ing as well. This result is globally shown by the increasing
of the F-Measure value.

70

Conclusion

Our method allows one to enrich semantically documents
found on the Web which present the specificity of a tabular
structuring. The semantic enrichment is completely auto-
matic and it is guided by an ontology of the domain. Thus,
that processing cannot lead to a perfect and complete en-
richment. The XML representation we propose keeps all the
possible interpretation in order to let the possibility of using
them during the query step, for example by allowing a query
processing based on keywords or by exhibiting some rele-
vant information to the user in order to help him/her during
the interpretation of the results.

Then, in case of ambiguity, it is possible to associate sev-
eral terms of the ontology or several semantic relations with
a same set of columns. In order to allow the query processor
to adapt its answers or to evaluate their relevance, we log the
processes by means of a set of indicators. The generality of
our approach is ensured by the fact that the SML DTD can
be automatically generated from the ontology.

The approach we propose is currently under testing in the
domain of the food risk assessment, by means of a Java pro-
totype. In order to query SML documents, we wroteXQuery
queries which take advantage of the treatment indicators in-
serted in the SML documents. Those queries have been
tested by means of the MIEL++ query engine.

Some works like (Kushmerick 2000), (Muslea, Minton,
& Knoblock 2001) and (Hsu & Dung 1998) allow to extract
knowledge by learning rules from a sample of manually an-
notated documents. Our goal is quite different since our ap-
proach is completely automatic and exclusively guided by
the ontology.

Moreover, the documents we use to fill the data ware-
house are heterogeneous and, contrarily to previous ap-
proaches like (Crescenzi, Mecca, & Merialdo 2002) and
(Arasu & Garcia-Molina 2003), we cannot base the search
for information on a common structure discovered among a
set of homogeneous documents.

The techniques we use to identify the columns of the ta-
ble are based first on the values contained in those columns.
(Rahm & Bernstein 2001) and (Doanet al. 2003) showed
that those techniques give good results in the framework of
the search for schema mappings for relational databases or
XML. In our case, we do not have the schema of the tables
we work on: we have to discover it first before searching for
mappings with the semantic relations of the ontology.

We can now enhance our mapping operators, for exam-
ple by using external resources such as WordNet or by using
more sophisticated similarity measures (Robertson & Wil-
lett 1998). Moreover, we can think about using linguistic
tools allowing to process the table content (cells, titles)rep-
resented in a more complex way. We also want to check the
generality of our approach by applying it to another applica-
tion domain.

References

Arasu, A., and Garcia-Molina, H. 2003. Extracting struc-
tured data from web pages. InProceedings of the 2003

ACM SIGMOD international conference on Management
of data, 337–348. ACM Press.
Buche, P.; Dibie-Barth́elemy, J.; Haemmerlé, O.; and
Houhou, M. 2004. Towards flexible querying of xml im-
precise data in a dataware house opened on the web. In
Flexible Query Answering Systems (FQAS). Springer Ver-
lag.
Cimiano, P.; Handschuh, S.; and Staab, S. 2004. Towards
the self-annotating web. InWWW ’04: Proceedings of the
13th international conference on World Wide Web, 462–
471. ACM Press.
Crescenzi, V.; Mecca, G.; and Merialdo, P. 2002. Auto-
matic web information extraction in the roadrunner system.
In Revised Papers from the HUMACS, DASWIS, ECOMO,
and DAMA on ER 2001 Workshops, 264–277. Springer-
Verlag.
Doan, A.; Lu, Y.; Lee, Y.; and Han, J. 2003. Profile-
based object matching for information integration.Intelli-
gent Systems, IEEE18(5):54– 59.
e.dot. 2004. Progress report of the e.dot project.
http://www-rocq.inria.fr/gemo/edot.
Hearst, M. A. 1992. Automatic acquisition of hyponyms
from large text corpora. InProceedings of the 14th confer-
ence on Computational linguistics, 539–545. Association
for Computational Linguistics.
Hsu, C.-N., and Dung, M.-T. 1998. Generating finite-
state transducers for semi-structured data extraction from
the web.Inf. Syst.23(9):521–538.
Kushmerick, N. 2000. Wrapper induction: efficiency and
expressiveness.Artif. Intell. 118(1-2):15–68.
Mezaour, A. D. 2005. Filtering Web Documents for a
Thematic Warehouse, case study : eDot a Food Risk Data
Warehouse (extended). Into Appear in Proceedings of New
Trends in Intelligent Information Processing and Web Min-
ing Conference (IIPWM’05), Gdansk, Poland. Springer
Verlag series–Advances in Soft Computing–.
Muslea, I.; Minton, S.; and Knoblock, C. A. 2001. Hier-
archical wrapper induction for semistructured information
sources.Autonomous Agents and Multi-Agent Systems4(1-
2):93–114.
Pivk, A.; Cimiano, P.; and Sure, Y. 2004. From tables to
frames. InInternational Semantic Web Conference, 166–
181.
Rahm, E., and Bernstein, P. A. 2001. A survey of ap-
proaches to automatic schema matching.The VLDB Jour-
nal 10(4):334–350.
Robertson, A., and Willett, P. 1998. Applications of n-
grams in textual information systems. InJournal of Docu-
mentation, 48–69.
http://www.symprevius.net.

71

A Bayesian Methodology towards Automatic Ontology Mapping*

Zhongli Ding, Yun Peng, Rong Pan, Yang Yu

University of Maryland Baltimore County
Department of Computer Science and Electrical Engineering

1000 Hilltop Circle, Baltimore, MD 21250
{zding1, ypeng, panrong1, yangyu1}@cs.umbc.edu

Abstract
This paper presents our ongoing effort on developing a
principled methodology for automatic ontology mapping
based on BayesOWL, a probabilistic framework we devel-
oped for modeling uncertainty in semantic web. The pro-
posed method includes four components: 1) learning prob-
abilities (priors about concepts, conditionals between sub-
concepts and superconcepts, and raw semantic similarities
between concepts in two different ontologies) using Naïve
Bayes text classification technique, by explicitly associating
a concept with a group of sample documents retrieved and
selected automatically from World Wide Web (WWW); 2)
representing in OWL the learned probability information
concerning the entities and relations in given ontologies; 3)
using the BayesOWL framework to automatically translate
given ontologies into the Bayesian network (BN) structures
and to construct the conditional probability tables (CPTs) of
a BN from those learned priors or conditionals, with reason-
ing services within a single ontology supported by Bayesian
inference; and 4) taking a set of learned initial raw similari-
ties as input and finding new mappings between concepts
from two different ontologies as an application of our for-
malized BN mapping theory that is based on evidential rea-
soning across two BNs.

Overview
Semantic heterogeneity between two different applications
or agents comes from their use of conflicted or mismatched
terms about concepts. Same term or concept name might
have different meanings in different agents, different terms
from different agents might have the same meaning, one
term from an agent might matches to several or might not
matches to any terms of the other agent exactly, or two
terms with the same or similar meaning are structured dif-
ferently in different agents (e.g., different paths from their
respective root concepts). With the development of the
semantic web1, ontologies have become widely used to
represent the conceptualization of a domain, i.e., concepts,
properties about concepts, relations between concepts, and
instances about concepts. In ontology-based semantic inte-
gration, two agents in communication need to find a way to
share the semantics of the terms in their ontologies in order

* This work was supported in part by DARPA contract F30602-97-1-
0215 and NSF award IIS-0326460.
1 http://www.w3.org/2001/sw/

to fully understand each other. This can be done in several
possible directions depends on the needs of particular ap-
plications: 1) one may force both agents to use a single
centralized global ontology; 2) one may merge the source
ontologies into one unified ontology before agent interac-
tions; 3) one may search for a set of mappings (or matches)
between two ontologies; 4) for a multi-agent system one
may resolve semantic differences in runtime when they
arise during agent interaction; and 5) one may translate one
of the ontologies into a target ontology with the help of an
intermediate shared ontology. In this context, we are par-
ticularly interested in ontology mapping. (Noy 2004) pro-
vides a brief survey about existing ontology-based ap-
proaches, which are either based on syntactic and semantic
heuristics, machine learning text classification techniques
by attaching a set of documents to each concept to repre-
sent its meaning, or linguistics (spelling, lexicon relations,
lexical ontologies, etc.) and natural language processing
techniques.
 Ontology languages in the semantic web, such as OWL2
and RDF(S)3, are based on crisp logic and thus can not
handle incomplete or partial knowledge about an applica-
tion domain. However, uncertainty exists in almost every
aspects of ontology engineering. For example, in domain
modeling, besides knowing that “A is a subclass of B”, one
may also know and wishes to express that “A is a small
subclass of B”; or, in the case that A and B are not logically
related, one may still wishes to express that “A and B are
largely overlapped with each other”. In ontology reason-
ing, one may want to know not only if A is a subsumer of
B, but also how close of A is to B; or, one may want to
know the degree of similarity even if A and B are not sub-
sumed by each other. Moreover, a description (of a class or
object) one wishes to input to an ontology reasoner may be
noisy and uncertain. Uncertainty becomes more prevalent
in concept mapping between two ontologies where it is
often the case that a concept defined in one ontology can
only find partial matches to one or more concepts in an-
other ontology.
 Narrowly speaking, a mapping can be defined as a cor-
respondence between concept A in Ontology 1 and concept
B in Ontology 2 which has similar or same semantics as A.

2 http://www.w3.org/2001/sw/WebOnt/
3 http://www.w3.org/RDF/

72

Most existing ontology-based semantic integration ap-
proaches provide exact mappings in a semi-automatic way
with manual validation, without taking the degree of uncer-
tainty into consideration. In tackling this problem, (Mitra,
Noy and Jaiswal 2004) improves existing mapping results
using BNs (Pearl 1988) by a set of meta-rules that capture
the structural influence and the semantics of ontology rela-
tions.

Figure 1. The System Framework

 Different from their contributions, we propose a new
methodology in supporting uncertainty modeling and rea-
soning in a single ontology, as well as ontology mapping
using Bayesian networks. As can be seen from Figure 1
above, the system includes four components: 1) a learner to
obtain probabilistic ontological information and raw map-
pings using data obtained from web; 2) a representation
mechanism for the learned uncertain information concern-
ing the entities and relations in given ontologies; 3) a
BayesOWL (Ding, Peng, and Pan 2004; Ding and Peng
2004) module to translate given ontologies (together with
the learned uncertain information) into BNs; and 4) a con-
cept mapping module which takes a set of learned raw
similarities as input and finds mappings between concepts
from two different ontologies based on evidential reason-
ing across two BNs. The ideas about these four compo-
nents, as well as their related works, are presented in the
next four sections respectively. The paper ends with a dis-
cussion and suggestions for future research.

Learning Probabilities from Web Data
In this work, we use prior probability distributions P(C) to
capture the uncertainty about concepts (i.e., how an arbi-
trary individual belongs to class C), conditional probability
distributions P(C|D) for relations between C and D in the
same ontology (e.g., how likely an arbitrary individual in
class D is also in D’s subclass C), and joint probability
distributions P(C,D) for semantic similarity between con-
cepts C and D from different ontologies. In many cases
these kinds of probabilistic information are not available
and are difficult to obtain from domain experts. Our solu-

tion is to learn these probabilities using Naïve Bayes text
classification technique (Craven et al. 2000; McCallum and
Nigam 1998) by associating a concept with a group of
sample documents called exemplars. The idea is inspired
by those machine learning based semantic integration ap-
proaches such as (Doan et al. 2002; Lacher and Groh 2001;
Prasad, Peng and Finin 2002) where the meaning of a con-
cept is implicitly represented by a set of exemplars that are
relevant to it.
 Learning the probabilities we need from these exemplars
is straightforward. First, we build a model containing sta-
tistical information about each concept’s exemplars in On-
tology 1 using a text classifier such as Rainbow1, and then
classify each concept in Ontology 2 by their respective
exemplars using the model of Ontology 1 to obtain a set of
probabilistic scores showing the similarity between con-
cepts. Ontology 1’s exemplars can be classified in the same
way by model built using Ontology 2’s exemplars. This
cross-classification (Figure 2) process helps find a set of
raw mappings between Ontology 1 and Ontology 2 by set-
ting some threshold values. Similarly, we can obtain prior
or conditional probabilities related to concepts in a single
ontology through self-classification with the model for that
ontology.

Figure 2. Cross-classification using Rainbow

 The quality of these text classification based mapping
algorithms is highly dependent on the quality of the exem-
plars (how relevant they are to the concept and how com-
prehensive they are in capturing all important aspects of
the concept), and it would be a very time-consuming task
for knowledge workers to choose high quality exemplars
manually. The need to find sufficient relevant exemplars
for a large quantity of concepts manually greatly reduces
the attractiveness and applicability of these machine learn-
ing based approaches.
 Our approach is to use search engines such as Google2 to
retrieve exemplars for each concept node automatically

1 http://www-2.cs.cmu.edu/~mccallum/bow/rainbow
2 http://www.google.com

73

from WWW, the richest information resource available
nowadays. The goal is to search for documents in which
the concept is used in its intended semantics. The rationale
is that the meaning of a concept can be described or de-
fined in the way it is used.
 To find out what documents are relevant to a term, one
can use words of the term as keywords to query the search
engine. However, a word may have multiple meanings
(word senses) and a query using only words of the term in
attention may return irrelevant documents based on a dif-
ferent meaning of that word. For example, in an ontology
for “food”, a concept named “apple” is a subconcept of
“fruit”. If one only uses “apple” as the keyword for query,
documents showing how to make an apple pie and docu-
ments showing how to use an iPod may both be returned.
Apparently, the documents using “apple” for its meaning
in computer field is irrelevant to “apple” as a fruit. Fortu-
nately, since we are dealing with concepts in well defined
ontologies, the semantics of a term is to a great extent
specified by the other terms used in defining this concept
in the ontology, names, the properties of that concept class,
its super- and sub-concept classes. For example, if a given
ontology is a concept taxonomy, the search query can be
formed with all the terms on the path from root to the node
in the taxonomy. By this method, the number of irrelevant
documents returned is greatly reduced. In the “apple” ex-
ample, the query would then become “food fruit apple”
instead of “apple” itself. Documents about iPod and Apple
computers will not be returned.
 Search results returned by search engines are html files.
There are some choices on how to use them. The simplest
one is to use the entire html file as one exemplar. A second
option is to use each paragraph where a keyword in the
query shows up. A third option is to collect sentences con-
taining a keyword in the html file and use this collection as
an exemplar. We are currently experimenting these op-
tions, and the preliminary results suggest the second ap-
proach is the most suitable one.

Representing Probabilities in OWL
Information about the uncertainty of the classes and rela-
tions in an ontology can often be represented as probability
distributions (e.g., P(C) and P(C|D) mentioned earlier),
which we refer to as probabilistic constraints on the ontol-
ogy. These probabilities can be either provided by domain
experts or learned from web data as described in the previ-
ous section.
 Although not necessary, it is beneficial to represent the
probabilistic constraints as OWL statements. We have de-
veloped such a representation. At the present time, we only
provide encoding of two types of probabilities: priors and
pair-wise conditionals. This is because they correspond
naturally to classes and relations (RDF triples) in an ontol-
ogy, and are most likely to be available to ontology de-
signers. The representation can be easily extended to con-
straints of other more general forms if needed.

 The model-theoretic semantics of OWL treats the do-
main as a non-empty collection of individuals. If classe A
represents a concept, we treat it as a random binary vari-
able of two states a and a , and interpret)(aAP = as the
prior probability or one’s belief that an arbitrary individual
belongs to class A , and)|(baP as the conditional prob-
ability that an individual of class B also belongs to class
A . Similarly, we can interpret)(aP ,)|(baP ,)|(baP ,

and)|(baP with the negation interpreted as “not belong-
ing to”.
 We treat a probability as a kind of resource, and define
two OWL classes: “PriorProb” and “CondProb”. A prior
probability of a variable is defined as an instance of class
“PriorProb”, which has two mandatory properties: “has-
Varible” (only one) and “hasProbValue” (only one). A
conditional probability of a variable is defined as an in-
stance of class “CondProb” with three mandatory proper-
ties: “hasCondition” (at least has one), “hasVariable” (only
one), and “hasProbValue” (only one).
 The range of “hasCondition” and “hasVariable” is a
defined class named “Variable” with two mandatory prop-
erties: “hasClass” and “hasState”. “hasClass” points to the
concept class this probability is about and “hasState” gives
the “True” (belong to) or “False” (not belong to) state of
this probability.
 For example, 3.0)(=cP , the prior probability that an
arbitrary individual belongs to class C , can be expressed
as

 <Variable rdf:ID="c">

 <hasClass>C</hasClass>
 <hasState>True</hasState>

 </Variable>
 <PriorProb rdf:ID="P(c)">

 <hasVariable>c</hasVariable>
 <hasProbValue>0.3</hasProbValue>

 </PriorProb>

and conditional probability 8.0)2,1|(=ppcP can be en-
coded as

 <CondProb rdf:ID="P(c|p1, p2)">

 <hasCondition>p1</hasCondition>
 <hasCondition>p2</hasCondition>
 <hasVariable>c</hasVariable>
 <hasProbValue>0.8</hasProbValue>

 </CondProb>

with variables c, p1, and p2 properly defined.
 Similar to our work, (Fukushige 2004) proposes a vo-
cabulary for representing probabilistic relationships in a
RDF graph. Three kinds of probability information can be
encoded in his framework: probabilistic relations (prior),
probabilistic observation (data), and probabilistic belief
(posterior). And any of them can be represented using
probabilistic statements which are either conditional or
unconditional.

74

The BayesOWL Framework
BayesOWL (Ding, Peng and Pan 2004; Ding and Peng
2004) is a framework which augments and supplements
OWL for representing and reasoning with uncertainty,
based on Bayesian networks (BN). This framework pro-
vides a set of rules and procedures for direct translation of
an OWL ontology into a BN structure and a method that
incorporate encoded probability information when con-
structing the conditional probability tables (CPTs) of the
BN. The translated BN, which preserves the semantics of
the original ontology and is consistent with the probability
information, can support ontology reasoning, both within
and across ontologies as Bayesian inferences. Below we
give a brief summary.

Structural Translation
A set of translation rules is developed to convert an OWL
ontology (about TBox only at the present time) into a di-
rected acyclic graph (DAG) of BN. The general principle
underlying these rules is that all classes (specified as “sub-
jects” and “objects” in RDF triples of the OWL file) are
translated into nodes in BN, and an arc is drawn between
two nodes in BN if the corresponding two classes are re-
lated by a “predicate” in the OWL file, with the direction
from the superclass to the subclass. Control nodes are cre-
ated during the translation to facilitate modeling relations
among class nodes that are specified by OWL logical op-
erators, and there is a converging connection from each
concept nodes involved in this logical relation to its spe-
cific control node. There are five types of control nodes in
total, which correspond to the five types of logical rela-
tions: “and” (owl:intersectionOf), “or” (owl:unionOf),
“not” (owl:complementOf), “disjoint” (owl:disjointWith),
and “same as” (owl:equivalentClass).

Constructing CPTs
The nodes in the DAG obtained from the structural transla-
tion step can be divided into two disjoint groups: XR, nodes
representing concepts in ontology, and XC, control nodes
for bridging logical relations. The CPT for a control node
in XC can be determined by the logical relation it represents
so that when its state is “True”, the corresponding logical
relation holds among its parent nodes. When all the control
nodes’ states are set to “True” (denote this situation as CT),
all the logical relations defined in the original ontology are
held in the translated BN. The remaining issue is then to
construct the CPTs for each node in XR so that P(XR|CT),
the joint distribution of all regular nodes in the subspace of
CT, is consistent with all the given probabilistic constraints
(which can be learned from web data as described earlier).
 This is difficult for two reasons. First, the constraints are
usually not given in the form of CPT. For example, CPT
for variable C with two parents A and B is in the form of
P(C|A,B) but a constraint may be given as Q(C|A) or even
Q(C). Secondly, CPTs are given in the general space of X

= XR∪XC, but constraints are for the subspace of CT (the
dependencies changes when going from the general space
to the subspace of CT). For example, with the constraint
Q(C|A), P(C|A,B), the CPT for C, should be constructed in
such a way that P(C|A,CT) = Q(C|A). To overcome these
difficulties, we developed an algorithm named D-IPFP
(Ding, Peng, and Pan 2004) to approximate these CPTs for
XR based on the “iterative proportional fitting procedure”
(IPFP), a well-known mathematical procedure that modi-
fies a given distribution to meet a set of probabilistic con-
straints while minimizing I-divergence to the original dis-
tribution (Deming and Stephan 1940; Csiszar 1975; Bock
1989; Vomlel 1999; Cramer 2000).
 Figure 3 below is a BN translated from a simple ontol-
ogy. In this ontology, “Animal” is a primitive concept
class; “Male”, “Female”, “Human” are subclasses of “Ani-
mal”; “Male” and “Female” are disjoint with each other;
“Man” is the intersection of “Male” and “Human”;
“Woman” is the intersection of “Female” and “Human”;
“Human” is the union of “Man” and “Woman”.
 The following probability constraints are attached to

RX = {Animal, Male, Female, Human, Man, Woman}:

 P(Animal) = 0.5; P(Male|Animal) = 0.5;
 P(Female|Animal) = 0.48; P(Human|Animal) = 0.1;
 P(Man|Human) = 0.49; P(Woman|Human) = 0.51.

We obtained the BN by first constructing the DAG (as
described in Section 3), then the CPT for control nodes in
XC (as described in Subsection 4.1), and finally approxi-
mating the CPTs of regular nodes in RX by running D-
IPFP. Fig. 5 below shows the BN we obtained. It can be
seen that, when all control nodes are set to “True”, the
conditional probability of “Male”, “Female”, and “Hu-
man”, given “Animal”, are 0.5, 0.48, and 0.1, respectively,
the same as the given probability constraints. All other
constraints, which are not shown in the figure due to space
limitation, are also satisfied.

Figure 3. A Translation Example

Reasoning within Single Ontology
The BayesOWL framework can support common ontology
reasoning tasks as probabilistic inferencesg in the trans-
lated BN, for example, given a concept description e, it can
answer queries about concept satisfiability (whether
P(e|CT) = 0), about concept overlapping (how close e is to
a concept C as P(e|C,CT)), and about concept subsumption
(find the concept which is most similar to e) by defining
some similarity measures such as Jaccard Coefficient
(Rijsbergen 1979).

Prototype Implementation
A prototype system named OWL2BN (Figure 4) is cur-
rently under active construction. It takes a valid OWL on-

75

tology and some consistent probabilistic constraints as
input and outputs a translated BN, with reasoning services
provided based on BN inference methods.

Figure 4. OWL2BN: Implementation of BayesOWL

Comparison to Related Works
Many of the suggested approaches to quantify the degree
of overlap or inclusion between two concepts are based on
ad hoc heuristics, others combine heuristics with different
formalisms such as fuzzy logic, rough set theory, and
Bayesian probability (see (Stuckenschmidt and Visser
2000) for a brief survey). Among them, works that inte-
grate probabilities with description logic (DL) based sys-
tems are most relevant to BayesOWL. This includes prob-
abilistic extensions to ALC based on probabilistic logics
(Heinsohn 1994, Jaeger 1994); P-SHOQ(D) (Giugno and
Lukasiewicz 2002), a probabilistic extension of SHOQ(D)
based on the notion of probabilistic lexicographic entail-
ment; and several works on extending DL with Bayesian
networks (P-CLASSIC (Koller et al. 1997) that extends
CLASSIC, PTDL (Yelland 1999) that extends TDL (Tiny
Description Logic with only “Conjunction” and “Role
Quantification” operators), and the work of Holi and Hy-
vönen (2004) which uses BN to model the degree of sub-
sumption for ontologies encoded in RDF(S)).
 The works closest to ours in this field are P-CLASSIC
and PTDL. In contrast to these works, one of BayesOWL’s
major contribution is its D-IPFP mechanism to construct
CPTs from given piece-wised probability constraints.
Moreover, in BayesOWL, by using control nodes, the
“rdfs:subclassOf” relations (or the subsumption hierarchy)

are separated from other logical relations, so the in-arcs to
a regular concept node C will only come from its parent
superclass nodes, which makes C’s CPT smaller and easier
to construct than P-CLASSIC or PTDL, especially in a
domain with rich logical relations.
 Also, BayesOWL is not to extend or incorporate into
OWL or any other ontology language or logics with prob-
ability theory, but to translate a given ontology to a BN in
a systematic and practical way, and then treats ontological
reasoning as probabilistic inferences in the translated BNs.
Several benefits can be seen with this approach. It is non-
intrusive in the sense that neither OWL nor ontologies de-
fined in OWL need to be modified. Also, it is flexible, one
can translate either the entire ontology or part of it into BN
depending on the needs. Moreover, it does not require
availability of complete conditional probability distribu-
tions, pieces of probability information can be incorporated
into the translated BN in a consistent fashion. With these
and other features, the cost of our approach is low and the
burden to the user is minimal. We also want to emphasis
that BayesOWL can be easily extended to handle other on-
tology representation formalisms (syntax is not important,
semantic matters), if not using OWL.

Concept Mapping between Ontologies as an
Application of BN Mapping

It is often the case when attempting to map concept A de-
fined in Ontology 1 to Ontology 2 there is no concept in
Ontology 2 which is semantically identical to A. Instead, A
is similar to several concepts in Ontology 2 with different
degree of similarity. A solution to this so-called one-to-
many problem, as suggested by (Prasad, Peng, and Finin
2002) and (Doan et al. 2003), is to map A to the target con-
cept B which is most similar to A by some measure. This
simple approach would not work well because 1) the de-
gree of similarity between A and B is not reflected in B and
thus will not be considered in reasoning after the mapping;
2) it cannot handle the situation where A itself is uncertain;
and 3) potential information loss because other similar
concepts are ignored in the mapping.
 With BayesOWL, concept mapping can be processed as
some form of probabilistic evidential reasoning between
the BN1 and BN2, translated from the Ontologies 1 and 2.
This may allow us to address some of the aforementioned
difficulties by utilizing BN techniques for integrating
probabilistic knowledge and information from various
sources. This section will first present a framework of vari-
able mapping between BNs, before illustrating how ontol-
ogy mapping can be conducted using this framework.

BN Mapping Framework
In applications on large, complex domains, often separate
BNs describing related subdomains or different aspects of
the same domain are created, but it is difficult to combine
them for problem solving –– even if the interdependency
relations are available. This issue has been investigated in

76

several works, including most notably Multiply Sectioned
Bayesian Network (MSBN) by Xiang (2002) and Agent
Encapsulated Bayesian Network (AEBN) by Valtorta et al.
(2002). However, their results are still restricted in scal-
ability, consistency and expressiveness. MSBN’s pair-wise
variable linkages are between identical variables with the
same distributions, and, to ensure consistency, only one
side of the linkage has a complete CPT for that variable.
AEBN also requires a connection between identical vari-
ables, but allows these variables to have different distribu-
tions. Here, identical variables are the same variables re-
side in different BNs.

What we need in supporting mapping concepts is a
framework that allows two BNs (translated from two on-
tologies) to exchange beliefs via variables that are similar
but not identical. We illustrate our ideas by first describing
how mapping shall be done for a pair of similar concepts
(A from ontology 1 to B in ontology 2), and then discuss-
ing how such pair-wise mappings can be generalized to
network to network mapping. We assume the similarity
information between A and B is captured by the joint dis-
tribution P(A, B).

Now we are dealing with three probability spaces: SA
and SB for BN1 and BN2, and SAB for P(A, B). The map-
ping from A to B amounts to determine the distribution of
B in SB, given the distribution P(A) in SA under the con-
straint P(A, B) in SAB.

To propagate probabilistic influence across these spaces,
we can apply Jeffrey’s rule and treat the probability from
the source space as soft evidence to the target space (Pearl,
1990, Valtorta et al., 2002). The rule is given in (1), where
Q denotes probabilities associated with soft evidence

(1) ∑= i ii XQXYPYQ)()|()(.
As depicted in Figure 5, mapping A to B is accomplished

by applying Jeffrey’s rule twice, first from SA to SAB,, then
SAB to SB. Since A in SA is identical to A in SAB,, P(A) in SA
becomes soft evidence Q(A) to SAB and by (1), the distribu-
tion of B in SAB is updated to

(2) ∑= i ii AQABPBQ)()|()(.
Q(B) is then applied as soft evidence from SAB to node B in
SB, updating beliefs for every variable V in SB by

(3) ∑= j jj BQBVPVQ)()|()(

)()|()|(iii jj j APABPBVP ∑∑=

Figure 5. Mapping concept A to B

 Back to the example in Figure 3, where the posterior
distribution)|(AnimalMaleHumanP ∩¬ is (0.102, 0.898).
Suppose we have another BN with a variable “Adult” with

marginal distribution (0.8, 0.2). Suppose we also know that
“Adult” is similar to “Human” with conditional distribu-
tion

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
3.07.0

)|(HumanAdultP .

Mapping “Human” to “Adult” leads to a change of latter’s
distribution from (0.8, 0.2) to (0.0714, 0.9286). This
change can then be propagated to further update believes
of all other variables in the target BN by (3).

Mapping Reduction
A pair-wise linkage as described above provides a channel
to propagate belief from A in one BN to influence the be-
lief of B in another BN. When the propagation is com-
pleted, (2) must hold between the distributions of A and B.
If there are multiple such linkages, (2) must hold simulta-
neously for all pairs. In theory, any pair of variables be-
tween two BNs can be linked, albeit with different degree
of similarities. Therefore we may potentially have 21 nn ⋅
linkages (1n and 2n are the number of variables in BN1
and BN2, respectively). Although we can update the distri-
bution of BN2 to satisfy all linkages by IPFP using (2) as
constraints, it would be a computational formidable task.
 Fortunately, satisfying a given probabilistic relation be-
tween P(A, B) does not require the utilization, or even the
existence, of a linkage from A to B. Several probabilistic
relations may be satisfied by one linkage. As shown in
Figure 6, we have variables A and B in BN1, C and D in
BN2, and probability relations between every pair as below:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

6.01.0
03.0

),(ACP , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

42.007.0
18.033.0

),(ADP ,

⎟
⎠
⎞⎜

⎝
⎛= 378.0112.0

162.0348.0),(BDP , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

54.016.0
03.0

),(BCP .

Figure 6. Mapping Reduction Example

However, we do not need to set up linkages for all these
relations. As Figure 6 depicts, when we have a linkage
from A to C, all these relations are satisfied (the other three
linkages are thus redundant). This is because not only be-
liefs on C, but also beliefs on D are properly updated by
the mapping A to C.

Several experiments with large BNs have shown that
only a very small portion so fall 21 nn ⋅ linkages are needed
in satisfying all probability constraints. This, we suspect, is

SAB: P(A, B)

Q(A) Q(B)

Jeffrey’s rule

A

P(A)

BN1: SA

B

Q(B)

BN2: SB

soft
evidence

soft
evidence

77

due to the fact that some of these constraints can be de-
rived from others based on the probabilistic interdependen-
cies among variables in the two BN. We are currently ac-
tively working on developing a set of rules that examine
the BN structures and CPTs so that redundant linkages can
be identified and removed.

Discussion and Future Work
This paper describes our ongoing research on developing a
probabilistic framework for automatic ontology mapping.
In this framework, ontologies (or parts of them) are first
translated into Bayesian networks, then the concept map-
ping is realized as evidential reasoning between the two
BNs by Jeffrey’s rule. The probabilities needed in both
translation and mapping can be obtained by using text clas-
sification programs, supported by associating to individual
relevant text exemplars retrieved from the web.
 We are currently actively working on each of these
components. In searching for relevant exemplar, we are
attempting to develop a measure of relevancy so that less
relevant documents can be removed. We are expanding the
ontology to BN translation from taxonomies to include
properties, and develop algorithms to support common
ontology-related reasoning tasks. As for a general BN
mapping framework, our current focus is on linkage re-
duction. We are also working on the semantics of BN
mapping and examine its scalability and applicability.
 Future work also includes developing methods in han-
dling inconsistent probability constraints. The study of
IPFP also motivated us to develop a new algorithm named
E-IPFP (Peng and Ding 2005). This algorithm is more gen-
eral than the D-IPFP algorithm we used for constructing
CPTs in ontology to BN translation in that it can accom-
modate any types of probability constraint, not only priors
and pair-wise conditionals. We are working on a new algo-
rithm that combines both E-IPFP and D-IPFP for a compu-
tationally efficient construction of CPTs for general BN.

Acknowledgement
This work was supported in part by DARPA contract
F30602-97-1-0215 and NSF award IIS-0326460.

References
Bock, H. H. 1989. A Conditional Iterative Proportional
Fitting (CIPF) Algorithm with Applications in the Statisti-
cal Analysis of Discrete Spatial Data. Bull. ISI, Contrib-
uted Papers of 47th Session in Paris, 1: 141-142.
Cramer, E. 2000. Probability Measures with Given Mar-
ginals and Conditionals: I-projections and Conditional It-
erative Proportional Fitting. Statistics and Decisions, 18:
311-329.
Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.;
Mitchell, T.; Nigam, K.; and Slattery, S. 2000. Learning to

Construct Knowledge Bases from the World Wide Web.
Artificial Intelligence, 118(1-2): 69-114.
Csiszar, I. February 1975. I-divergence Geometry of Prob-
ability Distributions and Minimization Problems. The An-
nuals of Probability, 3(1): 146-158.
Deming, W. E.; and Stephan, F. F. 1940. On a Least
Square Adjustment of a Sampled Frequency Table when
the Expected Marginal Totals are Known. Ann. Math. Sta-
tist. 11: 427-444.
Ding, Z.; Peng, Y.; and Pan, R. November 2004. A Bayes-
ian Approach to Uncertainty Modeling in OWL Ontology.
In Proceedings of 2004 International Conference on Ad-
vances in Intelligent Systems - Theory and Applications
(AISTA2004). Luxembourg-Kirchberg, Luxembourg.
Ding, Z.; and Peng, Y. January 2004. A Probabilistic Ex-
tension to Ontology Language OWL. In Proceedings of the
37th Hawaii International Conference on System Sciences
(HICSS-37). Big Island, Hawaii.
Doan, A. H.; Madhavan, J.; Domingos, P.; and Halevy, A.
May 2002. Learning to Map between Ontologies on the
Semantic Web. In WWW 2002. Honolulu, Hawaii, USA.
Fukushige, Y. October 2004. Representing Probabilistic
Knowledge in the Semantic Web. Position paper for the
W3C Workshop on Semantic Web for Life Sciences. Cam-
bridge, MA, USA.
Giugno, R.; and Lukasiewicz, T. April 2002. P-SHOQ(D):
A Probabilistic Extension of SHOQ(D) for Probabilistic
Ontologies in the Semantic Web. INFSYS Research Report
1843-02-06, Wien, Austria.
Heinsohn, J. 1994. Probabilistic Description Logics. In
Proceedings of UAI-94, 311-318.
Holi, M.; and Hyvönen, E. 2004. Probabilistic Information
Retrieval Based on Conceptual Overlap in Semantic Web
Ontologies. In Proceedings of the 11th Finnish AI Confer-
ence, Web Intelligence, vol. 2, Finnish AI Society, Finland.
Horrocks, I.; and Sattler, U. 2001. Ontology Reasoning in
the SHOQ(D) Description Logic. In Proceedings of the
Seventeenth International Joint Conference on Artificial
Intelligence.
Jaeger, M. 1994. Probabilistic Reasoning in Terminologi-
cal Logics. In Proceedings of KR-94, 305-316.
Koller, D.; Levy, A.; and Pfeffer, A. 1997. P-CLASSIC: A
Tractable Probabilistic Description Logic. In Proceedings
of AAAI-97, 390-397.
Lacher, M.; and Groh, G. May 2001. Facilitating the Ex-
change of Explicit Knowledge through Ontology Map-
pings. In Proceedings of the 14th International FLAIRS
Conference. Key West, FL, USA.
McCallum, A.; and Nigam, K. 1998. A Comparison of
Event Models for Naive Bayes Text Classification. AAAI-
98 Workshop on “Learning for Text Categorization”.
Mitra, P.; Noy, N. F.; and Jaiswal, A. R. 2004. OMEN: A
Probabilistic Ontology Mapping Tool. In Workshop on
Meaning Coordination and Negotiation at the Third Inter-
national Conference on the Semantic Web (ISWC-2004).
Hisroshima, Japan.

78

Noy, N. F. 2004. Semantic Integration: A Survey Of On-
tology-Based Approaches. SIGMOD Record, Special Issue
on Semantic Integration, 33 (4).
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufman,
San Mateo, CA.
Pearl, J. 1990. Jeffery’s Rule, Passage of Experience, and
neo-Bayesianism. In H.E. et al. Kyburg, Jr., editor, Knowl-
edge Representation and Defeasible Reasoning, 245-265.
Peng, Y.; and Ding, Z. July 2005. Modifying Bayesian
Networks by Probability Constraints. Submitted to UAI
2005. Edinburgh, Scotland.
Prasad, S.; Peng, Y.; and Finin, T. July 2002. A Tool For
Mapping Between Two Ontologies Using Explicit Infor-
mation. In AAMAS ’02 Workshop on Ontologies and Agent
Systems. Italy.
Stuckenschmidt, H.; and Visser, U. 2000. Semantic Trans-
lation based on Approximate Re-classification. In Proceed-
ings of the Workshop "Semantic Approximation, Granular-
ity and Vagueness”, KR'00.
Valtorta, M.; Kim, Y.; and Vomlel, J. 2002. Soft Evidential
Update for Probabilistic Multiagent Systems. International
Journal of Approximate Reasoning, 29(1): 71-106.
van Rijsbergen, C. J. 1979. Information Retrieval. London:
Butterworths. Second Edition.
Vomlel, J. December 1999. Methods of Probabilistic
Knowledge Integration. PhD Thesis, Department of Cy-
bernetics, Faculty of Electrical Engineering, Czech Tech-
nical University.
Xiang, Y. 2002. Probabilistic Reasoning in Multiagent
Systems: A Graphical Models Approach. Cambridge Uni-
versity Press.
Yelland, P. M. August 1999. Market Analysis Using a
Combination of Bayesian Networks and Description Lo-
gics. Sun Microsystems Technical Report TR-99-78.

79

A Schema-Based Approach Combined with Inter-Ontology Reasoning to
Construct Consensus Ontologies

Jingshan Huang, Rosa Laura Zavala Gutiérrez, Benito Mendoza García, and Michael N. Huhns

Computer Science and Engineering Department, University of South Carolina, Columbia, SC 29208

{huang27, zavalagu, mendoza2, huhns}@engr.sc.edu

Abstract
As the Semantic Web gains attention as the next generation
of the Web, the issue of reconciling different views of
independently developed and exposed data sources becomes
increasingly important. Ontology integration serves as a
basis for solving this problem. In this paper, we describe an
approach to construct a consensus ontology from numerous,
independently designed ontologies. Our method has the
following features: i) the matching is carried out at the
schema level; ii) the alignment of the ontologies is
performed without previous agreement on the semantics of
the terminology used by each ontology; iii) both the
linguistic and the contextual features of an ontology concept
are considered; iv) WordNet is incorporated into the
linguistic analysis phase; v) heuristic knowledge is
integrated into the contextual analysis phase; and vi)
reasoning rules based on the domain-independent
relationships subclass, superclass, equivalentclass, sibling,
and each ontology concept’s property list are used to infer
new relationships among concepts. We describe a set of
experiments and provide an evaluation of the results that
shows the accuracy of our system.

1. Introduction
A major goal of the envisioned Semantic Web is to
provide an environment where data can be shared and
processed by automated tools as well as by people
(Berners-Lee, Hendler, and Lassila 2001). Suppose a user
wants to compare information, e.g., price, rating, and
location, of nearby daycare facilities. Such information
may be on the Web, but it is not in a machine-readable
form. The user would need to review and process all the
data exposed in each provider’s website in order to get the
information needed. On the Semantic Web agents can
carry out this task automatically.

The idea of intelligent software agents that freely surf
the Web and make sense of the information they find and
the fact that such information is organized, represented,
and expressed in different ways, have created the need for
developing tools and techniques in order for the agents to

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

make use of that information. Common ontologies provide
the infrastructure needed to add semantics to the data on
the Web so that it can be understood by agents.

It is impractical to have a unique and global ontology
that includes every concept that is or might be included as
part of the Web. However, it is reasonable that there might
be ontologies for specific domains and sub-domains of the
Web, and even for individual Web pages. It is clear, then,
that the challenge is to be able to align and use different
ontologies.

In this paper, we describe PUZZLE, a system that
constructs a consensus ontology from numerous,
independently designed ontologies. Our work is an
extension of (Stephens, Gangam, and Huhns 2004) where
the main idea is that any pair of ontologies can be related
indirectly through a semantic bridge, consisting of many
other previously unrelated ontologies, even when there is
no direct relationship between the pair.

In (Stephens, Gangam, and Huhns 2004) the main
technique for semantic mapping between two ontology
concepts relies on simple string and substring matching.
We extend this work to incorporate: further linguistic
analysis; contextual analysis based on the properties of the
concepts in the ontology; extended use of WordNet (Miller
1995) to include the search of not only synonyms but also
antonyms, plurals, hypernyms, and hyponyms; use of the
Java WordNet Library API (JWNL 2003) for performing
run time access to the dictionary, instead of having to
initialize the synsets a priori; integration of heuristic
knowledge into the contextual analysis phase; and
reasoning rules based on the domain-independent
relationships subclass, superclass, equivalentclass, sibling,
and each ontology concept’s property list to infer new
relationships among concepts.

Existing research efforts incorporate some of these
features, but none has investigated them in combination.
The combination addresses the major challenges described
in (Stephens, Gangam, and Huhns 2004): different
terminology for similar concepts and inconsistent
relationships among concepts.

Our methodology is appropriate when there are a large
number of small ontologies. Furthermore, in the case
where the information is available through the Web, we
assume that sites have been annotated with ontologies

80

(Pierre 2000), which is consistent with several visions for
the Web (Berners-Lee, Hendler, and Lassila 2001).

The rest of the paper is organized as follows. Section 2
briefly discusses related work in ontology matching.
Section 3 gives an overview of the PUZZLE system,
whose details are described in Section 4. Section 5 reports
the experiments we conducted and analyzes the results.
Section 6 concludes.

2. Related Work
A lot of research work has been carried out in ontology
matching. There are two approaches to ontology matching
(Rahm and Bernstein 2001): instance-based and schema-
based. All of the systems mentioned below belong to the
latter, except for GLUE.

GLUE (Doan et al. 2003) introduces well-founded
notions of semantic similarity, applies multiple machine
learning strategies, and can find not only one-to-one
mappings, but also complex mappings. However, it
depends heavily on the availability of instance data.
Therefore, it is not practical for cases where there is not a
significant number of instances or no instance at all.

For HELIOS (Castano et al. 2004), WordNet is used as
a thesaurus for synonyms, hyponyms, hypernyms, and
meronyms. However the thesaurus has to be initialized for
each domain for which it is used. If additional knowledge
or a different domain is needed then the user has to input
the respective terminology interactively.

PROMPT (Noy and Musen 2000) is a tool making use
of linguistic similarity matches between concepts for
initiating the merging or alignment process, and then use
the underlying ontological structures of the Protege-2000
environment to inform a set of heuristics for identifying
further matches between the ontologies. PROMPT has a
good performance in terms of precision and recall.
However, user intervention is required, which is not
always available in real world application.

Cupid (Madhavan, Bernstein, and Rahm 2001)
combines linguistic and structural schema matching
techniques, as well as the help of a precompiled dictionary.
But it can only work with a tree-structured ontology
instead of a more general graph-structured one, which
introduces many limitations to its application, because a
tree cannot represent multiple-inheritance, an important
characteristic in ontologies.

COMA (Do and Rahm 2002) provides an extensible
library of matching algorithms, a framework for combining
results, and an evaluation platform. According to their
evaluation, COMA performs well in terms of precision,
recall, and overall measures. Although it is a composite
schema matching tool, COMA does not integrate reasoning
and machine learning techniques.

Similarity Flooding (Melnik et al. 2002) utilizes a
hybrid matching technique based on the idea that similarity
spreading from similar nodes to the adjacent neighbors.
Before a fix-point is reached, alignments between nodes
are refined iteratively. This algorithm only considers the

simple linguistic similarity between node names, leaving
behind the node property and inter-node relationship.

S-Match (Giunchiglia, Shvaiko, and Yatskevich 2004) is
a modular system into which individual components can be
plugged and unplugged. The core of the system is the
computation of relations. Five possible relations are
defined between nodes: equivalence, more general, less
general, mismatch, and overlapping. Giunchiglia et al.
claim that S-Match outperforms Cupid, COMA, and SF in
measurements of precision, recall, overall, and F-measure.
However, as Cupid does, S-Match uses a tree-structured
ontology.

In (Williams, Padmanabhan, and Blake 2003), a method
is investigated for agents to develop local consensus
ontologies to help in communications within a multiagent
system of B2B agents. They show the potential brought by
local consensus ontologies in improving how agents
conduct B2B Web service discovery and composition.
They also explore the influence of a lexical database in
ontology merging.

3. Overview of Our Solution
The most important differences between PUZZLE and the
systems mentioned in Section 2 are that PUZZLE:
- Requires no user intervention and is automated;
- Represents an ontology as a graph instead of a tree;
- Integrates WordNet by using the JWNL API;
- Applies heuristic knowledge during linguistic matching;
- Reasons with additional relations during context

matching.
The goal of our work is to construct a consensus

ontology from numerous independently designed
ontologies. The main idea of our approach is that any pair
of ontologies, G1 and G2, can be related indirectly through
a semantic bridge consisting of other previously unrelated
ontologies, even when there is no direct relationship
between G1 and G2. The metaphor is that a small ontology
is like a piece of jigsaw puzzle. It is difficult to relate two
random pieces of a jigsaw puzzle until they are constrained
by other puzzle pieces. Furthermore, for the semantic
bridge between a given pair of ontologies G1 and G2, the
more ontologies the semantic bridge comprises, the better
the semantic match between G1 and G2.

In order to construct a consensus ontology from a
number of ontologies, we take two ontologies and merge
them into a new one, then we iteratively merge the
resultant ontology with each additional one. We will
explain next our method for merging two ontologies.

Suppose that original ontologies are built according to
OWL Full specification (W3C 2004). Internally, our
system represents an ontology using a directed acyclic
graph G (V, E), where V is a set of ontology concepts
(nodes), and E is a set of edges between two concepts, i.e.,
E = {(u, v) | u and v belong to V and u is a superclass of v}.
In addition, we assume that all ontologies share “#Thing”
as a common “built-in” root. In order to merge two
ontologies, G1 and G2, we try to relocate each concept from

81

PUZZLE Algorithm – merge(G1, G2)
Input: Ontology G1 and G2
Output: Merged ontology G2
Begin
 new location of G1 ’s root = G2 ’s root
 for each node C (except for the root) in G1
 Parent(C) = C’s parent set in G1

 for each member pi in Parent(C)
 pj = new location of pi in G2
 relocate(C, pj)
 end for
 end for
end

Figure 1. PUZZLE Algorithm

relocate(N1, N2)
Input: nodes N1 and N2
Output: the modified structure of N2 according to information from N1
begin
 if there exists any equivalentclass of N1 in the child(ren) of N2
 merge N1 with it
 else if there exists any subclass of N1 in the child(ren) of N2
 Children(N1) = set of such subclass(es)
 for each member ci in Children(N1)
 add links from N2 to N1 and from N1 to ci
 remove the link from N2 to ci
 end for
 else if there exists any superclass of N1 in the child(ren) of N2
 Parent(N1) = set of such superclass(es)
 for each member pi in Parent (N1)
 recursively call relocate(N1, pi)
 end for
 else
 add a link from N2 to N1
 end if
end

Figure 2. relocate Function

one ontology into the other. We adopt a width-first order
to traverse G1 and pick up a concept C as the target to be
relocated into G2. Consequently, C’s parent set Parent(C)
in the original graph G1 has already been put into the
suitable place(s) in the destination graph G2 before the
relocation of C itself. The pseudocode in figure 1 describes
the top level procedure of our algorithm.

The relocate function in the above algorithm is used to
relocate C into a subgraph rooted by pj. To obtain the
correct relocation, we need to consider both the linguistic
feature and the contextual feature of these two concepts
(described in sections 4.1. and 4.2. respectively). The
pseudocode for the relocate function is shown in figure 2.
Notice that there is a recursive call to itself within relocate.

This recursive procedure is guaranteed to terminate
because the number of the nodes within a graph is finite,
and the worst case is to call relocate repetitively until we
hit a node without child.

4. Details of the PUZZLE System
When trying to match concepts, we consider both the
linguistic and the contextual features. The meaning of an
ontology concept is determined by its name and its
relationship with other concept(s). In this paper, we
assume that the linguistic factors contribute 70 percent and
the contextual factors contribute 30 percent in concept
matching. The former is greater than the latter, because in
our experiments, the input ontologies have less contextual
information. Therefore, we do not want the contextual
factors to dominate in the matching process. Notice that
these weight values can always be customized according to
different application requirements. For example, when
merging diverse ontologies, i.e., ones with rich linguistic
but poor contextual information versus ones with poor
linguistic but rich contextual information, appropriate
weight values can be applied accordingly.

4.1. Linguistic Matching
The linguistic factor reflects how the ontology designer
wants to encode the meaning of the concept by choosing a
preferable name for it. Our PUZZLE system uses both
string and substring matching techniques when performing
linguistic feature matching. Furthermore, we integrate
WordNet by using JWNL API in our software. In this way,
we are able to obtain the synonyms, antonyms, hyponyms,
and hypernyms of an English word, which is shown to
increase the accuracy of the linguistic matching
dramatically. In addition, WordNet performs some
preprocessing, e.g., the transformation of a noun from
plural form to single form.

We claim that for any pair of ontology concepts C and
C’, their names NC and NC’ have the following mutually
exclusive relationships, in terms of their linguistic features.

- anti-match: NC is a antonym of NC’, with the matching
value vname = 0;

- exact-match: either NC and NC’ have an exact string
matching, or they are the synonyms of each other,
with the matching value vname = 1;

- sub-match: NC is either a postfix or a hypernym of NC’,
with the matching value vname = 1;

- super-match: NC’ is either a postfix or a hyponym of
NC, with the matching value vname = 1;

- leading-match: the leading substrings from NC and NC’
match with each other, with the matching value vname =
length of the common leading substring/length of the
longer string. For example, “active” and “actor” have
a common leading substring “act”, resulting in a
leading-match value of 3/6;

- other.

When relocating C, we perform the linguistic matching
between C and all the candidate concepts. For each
candidate concept C’, if an exact-match or a leading-match
is found, we put C’ into C’s candidate equivalentclass list;
if a sub-match is found, we put C’ into C’s candidate

82

subclass list; and if a super-match is found, we put C’ into
C’s candidate superclass list. Then we continue the
contextual matching between C and each concept in the
three candidate lists to make the final decision.

Notice that using a synonym as the candidate of
equivalentclass is an approximate approach, because each
word could have multiple senses. We are making an
assumption that different ontologies deal with similar
domain (otherwise it is of little significance to align them).
Therefore, in most cases, it is suitable to regard one
concept’s synonym(s) as a possible equivalentclass
concept. Also, the approach to put a sub-match concept
into another’s candidate subclass list is approximate. In
some cases it is not correct, e.g., “firstname” is not a
subclass of “name”. However, this approach does provide
a lot of useful information and possible correct
relationships in many cases. Similarly, leading-match
sometimes does not offer accurate help as we expect.
Because we are not considering linguistic matching alone,
this kind of bias brought by leading-match is tolerable and
under control.

4.2. Contextual Matching
The context of an ontology concept C consists of two parts,
its property list and its relationship(s) with other concept(s).
We discuss this next in detail.
4.2.1. Property List Matching
Considering the property lists, P(C) and P(C’), of a pair of
concepts C and C’ being matched, our goal is to calculate
the similarity value vProperty between them.

vProperty = wrequired * vrequired + wnon-required * vnon-required

vrequired and vnon-required are the similarity values calculated
for the required property list and non-required property
list respectively. wrequired and wnon-required are the weights
assigned to each list. In this paper, we choose 0.7 and 0.3
for wrequired and wnon-required. vrequired and vnon-required are
calculated by the same procedure. We will explain next in
detail how to obtain vrequired, and from this point on,
“property” means “required property” for concision
purpose.

Suppose the number of properties in two property lists,
P1 and P2, is n1 and n2 respectively. Without loss of
generality, we assume that n1≤ n2. There are three different
matching models between two properties.

1. total-match

- The linguistic matching of the property names
results in either an exact-match, or a leading-
match with vname ≥ 0.9; and

- The data types match exactly.

Let v1 = number of properties with a total-match, and
f1 = v1/n1. Here f1 is a correcting factor embodying the
integration of heuristic knowledge. We claim that
between two property lists, the more pairs of

properties being regarded as total-match, the more
likely that the remaining pairs of properties will also
hit a match as long as the linguistic match between
their names is above a certain threshold value. For
example, assume that both P1 and P2 have ten
properties. If there are already nine pairs with a total-
match, and furthermore, if we find out that the names
in the remaining pair of properties are very similar,
then it is much more likely that this pair will also have
a match, as opposed to the case where only one or two
out of ten pairs have a total-match.

2. name-match

- The linguistic matching of the property names
results in either an exact-match, or a leading-
match with vname ≥ 0.9; but

- The data types do not match.

Let v2 = number of properties with a name-match, and
f2 = (v1 + v2)/n1. Similarly to f1, f2 also serves as a
correcting factor.

3. datatype-match

Only the data types match. Let v3 = number of
properties with a datatype-match.

According to the above definition, first, we try to find
out all pairs of total-match and filter them out of the
original properties, then in the remaining properties find
out all pairs of name-match and filter them too, and finally
in the rest of original properties find out all pairs of
datatype-match. Now we can calculate the similarity value
vrequired between the two property lists.

vrequired = (v1* w1 + v2 * (w2 + w2’ * f1) + v3 * (w3 + w3’ *
f2))/n1

where:

- the value range of vrequired is from 0 to 1;

- wi (i from 1 to 3) is the weight assigned to each
matching model. We use 1.0 for total-match, 0.8 for
name-match, and 0.2 for datatype-match;

- wi’(i from 2 to 3) is the correcting weight assigned to
the matching models of name-match and datatype-
match. We use 0.2 and 0.1 respectively;

Notice that all the thresholds and arguments in the
formulas mentioned in this section are based on trial-and-
error.

4.2.2. Relationships among Concepts
Given any two ontology concepts, we can have the
following five mutually exclusive relationships between
them:

 subclass, denoted by ⊆
 superclass, denoted by ⊇
 equivalentclass, denoted by ≡

83

 sibling, denoted by ≈ and
 other, denoted by ≠
OWL Full provides eleven axioms (W3C 2004):

subClassOf, equivalentClass, disjointWith,
sameIndividualAs, differentFrom, subPropertyOf,
equivalentProperty, inverseOf, transitiveProperty,
functionalProperty, and inverseFunctionalProperty. The
first two axioms will be used to represent the subclass-
superclass and equivalentclass relationships respectively.

4.3. Reasoning Rules
Based on the linguistic and contextual features, PUZZLE
uses three domain-independent rules, each regarding the
relationship among ontology concepts, to incorporate the
reasoning into our system. These rules are applied to
concepts from different ontologies. Therefore, we refer to
them as inter-ontology reasoning.

Suppose we have three ontologies A, B, and C, each of
which is designed according to the OWL Full specification.
Furthermore, let n(A), n(B), and n(C) be the sets of
concepts in A, B, and C respectively, with ni(A), nj(B), and
nk(C) be the individual concept for each set (i from 1 to
|n(A)|, j from 1 to |n(B)| , and k from 1 to |n(C)|), and
P(ni(A)), P(nj(B)), and P(nk(C)) be the property list for each
individual concept.

Consider the property lists P(ni(A)) and P(nj(B)), let si
and sj be the set size of these two lists. There are four
mutually exclusive possibilities for the relationship
between P(ni(A)) and P(nj(B)):

 P(ni(A)) and P(nj(B)) are consistent with each other if
and only if

i. Either si = sj or |si – sj|/(si + sj)≤ 0.1, and
ii. vProperty ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B)
by ni(A) ⎯→← p nj(B);

 P(ni(A)) is a subset of P(nj(B)) if and only if

i. si ≤ sj, and
ii. vPoperty ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B)
by ni(A) ⎯→⎯p nj(B);

 P(ni(A)) is a superset of P(nj(B)) if and only if

i. si ≥ sj, and
ii. vProperty ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B)
by ni(A) ⎯⎯← p nj(B);

 P(ni(A)) and P(nj(B)) have other relationship which will
not be considered in our system.

Rule 1 and 2 consider two ontologies, A and B.

[Rule 1] This rule is straightforward, claiming that the
superclass/subclass relationship of a class is transferable to
its equivalent class(es).

- Preconditions:
ni(A) ≡ nk(B) and (ni(A) ⊆ nj(A) or ni(A) ⊇ nj(A))

- Conclusion:
nk(B) ⊆ nj(A) or nk(B) ⊇ nj(A)

[Rule 2] If two classes share the same parent(s), then
their relationship is one of: equivalentclass, superclass,
subclass, and sibling. For example, if we know that two
classes have similar names and similar property lists, we
still cannot conclude that they must be equivalent to each
other, because of the possibility of badly designed
ontologies. However, if we also know that these two
classes have the same parent(s), then the probability of
them being equivalent will increase substantially.

- Preconditions:
 ni1(A) ⊇ ni2(A) and nk1(B) ⊇ nk2(B) and
 ni1(A) ≡ nk1(B) and

1. ni2(A) ⎯→← p nk2(B) and (the names of ni2(A) and
nk2(B) have either an exact-match, or a leading-
match with vname ≥ 0.8)

2. ni2(A) ⎯→⎯p nk2(B) and the name of nk2(B) is a
sub-match of the name of ni2(A)

3. ni2(A) ⎯⎯← p nk2(B) and the name of nk2(B) is a
super-match of the name of ni2(A)

4. None of above three holds

- Conclusion:
1. ni2(A) ≡ nk2(B)
2. ni2(A) ⊇ nk2(B)
3. ni2(A) ⊆ nk2(B)
4. ni2(A) ≈ nk2(B)

Rule 3 considers three ontologies, A, B, and C.
[Rule 3] If two classes have no direct relationship

between them, we will refer to a third one, in order to find
out the semantic bridge between the original two. In theory,
the more ontologies the semantic bridge comprises, the
more likely we can succeed in discovering the hidden
relationships that are not obvious originally.

- Preconditions:
ni1(A) ≡ nj1(C) and nj2(C) ≡ nk2(B) and
nk1(B) ⊆ nk2(B) and nj1(C) ⊆ nj2(C) and

1. ni1(A) ⎯→← p nk1(B) and (the names of ni1(A) and
nk1(B) have either an exact-match, or a leading-
match with vname ≥ 0.8)

2. ni1(A) ⎯→⎯p nk1(B) and the name of nk1(B) is a
sub-match of the name of ni1(A)

84

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Ontologies Merged

Pr
e
c
is

i
o
n

a
n
d

R
e
ca

l
l

Precision of Equivalent Concepts Recall of Equivalent Concepts

3. ni1(A) ⎯⎯← p nk1(B) and the name of nk1(B) is a
super-match of the name of ni1(A)

4. None of above three holds

- Conclusion:
1. ni1(A) ≡ nk1(B)
2. ni1(A) ⊇ nk1(B)
3. ni1(A) ⊆ nk1(B)
4. ni1(A) ≈ nk1(B)

5. Evaluation and Discussion of Our Results
Using a set of local ontologies designed by students, we
evaluated our system in terms of precision, recall, and
merging convergence. The purpose of the evaluation was
to determine whether or not PUZZLE generates a
consensus ontology.

Figure 3. Characteristics of the Test Ontologies

5.1. Experimental Setup
 Configuration of the experimental platform

Pentium 4 1.8GHz processor/512 MB RAM/40 GB
hard disk/Windows XP Professional 2002 with SP2

 Programming environment
 JBuilder 9.0 with J2SE 1.5.0

 Test ontologies
Sixteen ontologies for the domain of “Building” were
constructed by graduate students in computer science
and engineering at our university and used for
evaluating the performance of the PUZZLE system.
The characteristics of these ontology schemas can be
found in figure 3. They had between 10 and 15
concepts with 6 to 26 properties.

5.2. Experimental Results and Analysis
Our experiments simulate having sixteen agents, each of
which has a local ontology and is willing to communicate

with the other agents. They try to reconcile their local
ontologies to form a consensus one.
5.2.1. Evaluation of the Resultant Ontology
To decide whether a consensus ontology is obtained, we
asked two ontology experts to carry out a manual mapping
and we compared their results with ours. A random order
was chosen during the process of merging ontologies one
at a time, and both human and our system carried out the
merging according to that same order, then both precision
and recall measurements were applied in the evaluation.
These two measurements refer to the total number of
concepts with relationship of subclass, superclass,
equivalentclass, and sibling up to the point at the end of
each round of merging. The evaluation result is shown in
figure 4. Notice that this result is not statistically valid but
indicative. Both measurements reflect a promising result,
except when we merged the third and the ninth ontologies.
We checked the original ontologies and found out that a
reason for the unsatisfactory result is due to unreasonably
designed ontologies. For example, in one of the ontologies,
“HumanBeing” and “InsectSpecie” are the only properties
of the concept “LivingThing”.

Figure 4. Precision and Recall Measurements of Resultant
Ontology

5.2.2. Analysis of Merging Convergence
One hypothesis is that as each additional ontology is
merged into a consensus one, there should be fewer new
items (concept, relationship, or property) added to the
consensus. To test this hypothesis, the following
experiment has been conducted. We calculated the number
of newly discovered information when the first, second,
fifth, tenth, twelfth, thirteenth, and fifteenth ontologies
were merged. Figure 5 shows the results of this
experiment, which verifies the hypothesis.

Out of the 16 ontologies we had available for our
experiments, we considered all possible combinations of
the order by which they could be merged, in order to
remove any bias that might be introduced by the presence
of unusual ontology samples. This is a huge number; for
example, there are 1680 combinations when the second
ontology is to be merged, and 25000 for the fifth one. It is
impossible to try all these orders. Our solution is that if the
population size is less than or equal to 30 we try all

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Test Ontologies

Ch
a
ra

c
te

r
is

ti
c
s

o
f

O
nt

ol
o
gy

Number of Concepts Number of Properties

85

possible orders, otherwise we randomly choose a sample
space of size 30.

A monotonically decreasing pattern is shown in figure 5.
As the number of ontologies already merged increases, the
number of concepts, relationships, and properties learned
from additional ontologies decreases. We believe that the
number of new items will eventually converge to zero,
although the sixteen ontologies we have available for this
experiment are not enough to verify this belief.

Figure 5. Merging Convergence Experiment

5.2.3. Other Features of PUZZLE

- PUZZLE removes redundant is-a links that are
already specified by the transitivity of the superclass-
subclass relationship.

- Our use of WordNet increases the accuracy. For
instance, none of the original ontologies mentioned
the relationship between the concepts “Monument”
and “Structure”. However, PUZZLE found out that
the concept “Monument” is a subclass of the concept
“Structure”, which is quite reasonable and is an
additional piece of information added to the merged
ontology.

6. Conclusion and Future Work
Ontology matching is a critical operation in the Semantic
Web. In this paper, we presented the PUZZLE system, a
schema-based approach combined with inter-ontology
reasoning, which reconciles ontologies for applications
within a single domain. This completely automated
matching is carried out at the schema level, without a
previous agreement over the different terminology
semantics. PUZZLE considers both linguistic and
contextual features of an ontology concept, integrates
heuristic knowledge with several matching techniques, and
incorporates the reasoning among ontologies. A set of
experiments showed a promising result from this system.
Note that the resultant ontology represents a consensus

model of a domain, but not necessarily a correct model.
The possible incorrectness comes from the unreasonable
(wrong) design of original ontologies.

Several remaining tasks are envisioned. We plan to
adopt machine learning techniques to obtain more accurate
results; take into consideration other relationships such as
partOf, hasPart, causeOf, and hasCause; integrate the
OWL Validator into our system; analyze the time
complexity of the algorithm; and test our system against
other well-known ones in ontology matching, by using
more general ontology libraries.

Acknowledgements

Thanks to Dr. Larry M. Stephens for providing the source
code and ontology files from a prior project; thanks to Prof.
Ronald D. Bonnell and Dr. Csilla Farkas for encouraging
their students to participate in the experiment. We also
thank Goradia Hrishikesh and Jiangbo Dang for
discussions about the system.

References
Stephens, L.; Gangam, A.; and Huhns, M. N. 2004.
Constructing Consensus Ontologies for the Semantic Web:
A Conceptual Approach. World Wide Web Journal, Vol. 7,
No. 4, pages 421 - 442: Kluwer Academic Publishers.

W3C 2004. OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref.

Miller, A. G. 1995. WordNet: A Lexical Database for
English. In Communications of the ACM, Vol. 38, No. 11,
pages 39 - 41: ACM Press.

Castano, S.; Ferrara, A.; Montanelli, S.; and Racca, G.
2004. Matching Techniques for Resource Discovery in
Distributed Systems Using Heterogeneous Ontology
Descriptions. In Proceedings of the International
Conference on Information Technology: Coding and
Computing (ITCC04), Vol. 1, pages 360 - 366: IEEE
Computer Society Press.

Doan, A.; Madhavan, J.; Dhamankar, R.; Domingos, P.;
and Halevy, A. 2003. Learning to match ontologies on the
Semantic Web. The VLDB Journal (2003), Vol. 12, pages
303 - 319: Springer-Verlag.

Giunchiglia, F.; Shvaiko, P.; and Yatskevich, M. 2004. S-
Match: an algorithm and an implementation of semantic
matching. In Proceedings of the 1st European Semantic
Web Symposium, Vol. 3053, pages 61 - 75: Springer-
Verlag.

Melnik, S.; Garcia-Molina, H.; and Rahm, E. 2002.
Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching. In

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Ontologies Already Merged

Number of Concepts Discovered

Number of Relationships Discovered

Number of Properties Discovered

86

Proceedings of the 18th International Conference on Data
Engineering: IEEE Computer Society Press.

Noy, N. F., and Musen, M. A. 2000. PROMPT: Algorithm
and Tool for Automated Ontology Merging and Alignment.
In Proceedings of the17th National Conference on
Artificial Intelligence (AAAI 2000): AAAI Press.

Rahm, E., and Bernstein, P. A. 2001. A survey of
approaches to automatic schema matching. The VLDB
Journal (2001), Vol. 10, pages 334 - 350: Springer-Verlag.

Do, H., and Rahm, E. 2002. COMA – A system for
flexible combination of schema matching approaches. In
Proceedings of the 28th VLDB Conference: Springer-
Verlag.

Madhavan, J.; Bernstein, P. A.; and Rahm, E. 2001.
Generic Schema Matching with Cupid. In Proceedings of
the 27th VLDB Conference: Springer-Verlag.

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web. Scientific American, Vol. 284, No. 5, pages
34 - 43: Scientific American, Inc.

JWNL 2003. Java WordNet Library – JWNL 1.3
http://sourceforge.net/projects/jwordnet/.

Pierre, J. M. 2000. Practical Issues for Automated
Categorization of Web Sites. In Electronic Proceedings of
ECDL 2000 Workshop on the Semantic Web
(http://www.ics.forth.gr/proj/isst/SemWeb/program.html).

Williams, A.; Padmanabhan, A.; and Blake, M. B. 2003.
Local Consensus Ontologies for B2B-Oriented Service
Composition. In Proceedings of the second international
joint conference on Autonomous agents and multiagent
systems, Session: Ontologies, pages 647 - 654: ACM Press.

87

Privacy-preserving Ontology Matching

Prasenjit Mitra, Peng Liu, Chi-Chun Pan

The Pennsylvania State University,

University Park, PA 16802

{pmitra, pliu, cpan}@ist.psu.edu

Abstract

Increasingly, there is a recognized need for secure
information sharing. In order to implement information
sharing between diverse organizations, we need privacy-
preserving interoperation systems. In this work, we
describe two frameworks for privacy-preserving
interoperation systems. Ontology matching is an
indispensable component of interoperation systems. To
implement privacy-preserving interoperation systems, we
need privacy-preserving ontology matching algorithms. In
this paper, we outline frameworks for privacy-preserving
ontology matching and discuss the privacy implications of
the frameworks.

Introduction

 Though researchers have built tools that enable
organizations to share information, largely, most of these
tools have not taken into the account the necessity of
maintaining the privacy and confidentiality of the data and
the metadata of the organizations that want to share
information.
 Consider the (hypothetical, but seemingly probable)
scenario where the U.S. and U.K. military want to share
information. They want to share data only about the
mission at hand while preserving the privacy of their
systems. That is, they want to share information without
exposing to each other any significant details about the
schema and other metadata about their systems. To the
best of our knowledge, the current state-of-the-art systems
do not allow privacy-preserving information sharing
without sharing that is required in such a scenario.
 Not only does the need for secure information sharing
arise among organizations that want to share information
among each other, but the need also arises for intra-
organization information sharing. Large organizations, like
large corporations or even the U.S. Department of
Homeland Security, have a number of departments with
varying levels of autonomy. That is, even within the same
organization, different departments use information
systems that were autonomously constructed. For example,
in a large software development firm, the data center may

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

be located at a different geographical location than the
software development department, and due to their
different needs, the two departments maintain different
systems. The challenge of secure information sharing is
prevalent even in these scenarios.
 Not only must an organization preserve the privacy of its
data, but it must also preserve the privacy of sensitive
metadata (or meta-information). Metadata describes how
data are organized in the organization (e.g., data schema),
how accesses are controlled in the organization (e.g., the
internal access control policy and role hierarchies), and the
semantics of the data used in the organization (e.g.,
ontology).
 Organizations seeking to interoperate are increasingly
using metadata like ontologies to capture the semantics of
terms used in the information sources maintained by the
organizations. Traditionally, it has been assumed that these
ontologies will be published by the organization. Published
ontologies from different organizations are matched and
matching rules generated. Queries to information sources
are rewritten using these matching rules so that the
vocabulary used in the query is the same as that used by the
information source.
 Unlike in the traditional scenario, some organizations do
not want to publish their metadata or even share the
metadata with external users. Yet, they want to enable
interoperation. In this scenario, the privacy of the
metadata, e.g., the ontologies of information sources or the
schema of databases, must be preserved. That is, any user
outside the host organization should not have access to the
ontologies in cleartext. This is because in a mediated
architecture, if the mediator is malicious or if an intruder
breaks in to the mediator, substantial loss of information
and privacy occurs.
 In this paper, we present two frameworks for privacy-
preserving interoperation and especially highlight their
privacy-preserving ontology-matching components. These
frameworks achieve ontology matching with minimal
“privacy leak” of the ontologies being matched. The
interoperation system does not assume a trusted mediator.
Ideally, the organizations want the mediator to gain
minimal information about the data and the metadata stored
in its information sources. In our system, the mediator
operates over encrypted queries, encrypted ontologies and
encrypted data.

88

 In the first ontology-matching framework, we show how
totally automated ontology mapping can be achieved. In
this framework, the queries and ontologies are encrypted
using a symmetric private key shared between the
organizations interoperating. In the second framework, we
show how semi-automatic ontology mapping can be
achieved. In this framework, the ontologies of each
organization are encrypted using their own private keys and
thus even interoperating organizations do not share their
ontologies. To the best of our knowledge, there exists no
existing work on privacy-preserving ontology matching.
 The difficulty in preserving the privacy of the ontologies
is that totally automated ontology matching does not work
very well in practice (despite individual claims in research
settings). Even if automated methods achieve about 70-
80% accuracy, the matching rules missed by the automated
matchers must be generated manually. Now, in order for a
human expert to match the ontologies to generate the
missing matches, the ontologies need to be exposed to the
expert in cleartext. Therefore, in our second framework,
we try to limit the exposure of the ontologies only to the
ontology-matching expert.

Preliminaries

Ontology mapping techniques can be classified into the
following categories:

1. Word Similarity Based: In this case the concepts
across ontologies are matched using the similarity
of the words that appear in the ontologies (Mitra,
Wiederhold, Decker).

2. Structural Similarity Based: This set of
algorithms use the structure of the ontologies to
match the concepts in the ontologies. (Melnik,
Garcia-Molina, Rahm), (Noy and Musen).

3. Instance Based: Concepts in ontologies are
matched using the similarity of their instances.
Among the instance-based algorithms, we can
further sub-classify them into two types:

a. Opaque Matching: In this case, the
matching does not depend upon the
values of the instances but on the
statistical properties, like distribution,
entropy, mutual information etc. of the
instances of a concept (Kang and
Naughton).

b. Pattern-based Matching: In this case,
the algorithm identifies patterns in the
values of the instances and uses similar
patterns in their values to indicate that
two concepts are similar.

4. Inference Based: The semantics of concepts in
ontologies are expressed as rules using a logical
language (say, the Web Ontology Language,
OWL). Using an inference engine and these
ontology rules, concepts across ontologies can be
matched.

There are also algorithms that use hybrid or multiple
strategies (Doan et al.).

Figure 1. Privacy –preserving Interoperation
System Architecture Using Private Key

Privacy-preserving Automated Ontology

Matching

 In this scenario, we assume that the organizations, say A
and B, seeking to enable interoperation have a symmetric
private key, KA-B. The queries originating from both A and
B, posed to the mediated system (as shown in Figure 1) are
encrypted using the private key KA-B. The ontology
matching rules used by the mediator are also encrypted
using the same key.
 We look at the ontology matching algorithms used to
generate the encrypted ontology matching rules. As shown
in Figure 2, the input to the ontology matcher, the source
ontologies corresponding to the information sources for
both A and B, are encrypted using KA-B. The automated
ontology matcher operates on the encrypted ontologies to
match concepts across the ontologies.
 Several ontology matching algorithms use dictionaries,
thesauri or corpuses of documents to identify matching
concepts. In order for these algorithms to work, the
dictionaries, thesauri, or corpuses should also be encrypted
using the same key, KA-B.

 Structure-based ontology matching techniques work fine
even if the terms and relationships of the ontologies are
encrypted because either they do not depend on the terms
or relationships or even if they do, as long as the same
labels are similarly encrypted, these algorithms are
unaffected.
 Instance-based matching algorithms that are opaque
work fine without any modification because the statistical
properties, like distribution, frequency, entropy, mutual
information, of the instance values are not changed by
encrypting it, however, pattern-based matching algorithms
do not work because in most encryption systems destroy
the patterns in the instance values.

Rewritten

Encrypted Query

Encrypted

Query

Info. Src 1

Mediator

Encrypted

Ontology

Matching

Rules

Info. Src. 2

 Enc.

Results

Enc.

Results

89

Figure2. Privacy-preserving Automated Ontology Mapping

Semi-automated Ontology Matching

Framework

The framework shown above has two important drawbacks:
1. It assumes that the process of ontology matching

can be totally automated. Note that in the process
outlined above, the ontology matcher has access to
only encrypted ontologies and cannot decrypt the
ontologies. Typically, human experts cannot
match encrypted ontologies. Even if they do,
matching ontologies without knowing the
semantics of the concepts (because they are
encrypted and thus their semantics is
undecipherable) will not result in very accurate
match generation.

2. Because the two organizations use a shared
symmetric private key, each organization can
observe the communication of the other with the
mediator and obtain the other organization’s
ontology. In cases, where the organizations do not
want to share their ontologies even with the
organization they are sharing information with,
such an arrangement is not acceptable.

In order to remedy the above-mentioned drawbacks, we
offer the following interoperation and ontology-matching
framework.

Interoperation Framework

Because the mediator cannot be trusted, the queries are
encrypted and sent to the mediator. In this framework,
each organization has a unique secret private key that it
uses to encrypt the queries and ontologies. The mediator
uses encrypted ontology-matching rules. For example, an
encrypted ontology matching rule may be
 ((Y InstanceOf K2(O2.Car)) &
 (Z Equals Y.K2(O2.Price)) &
 (Z > 40,000)
=> (Y InstanceOf K1.(O1.LuxuryCar)) (R1)

The rule above indicates that if Y is an instance of
car(O2.Car), Z is the the price(O2.Price) of Y, and Z is
greater than 40,000, then Y is also an instance of luxury
car. The keys K2 and K1 encrypt terms in O2, O1
respectively.
 Using such an encrypted rule, the mediator can rewrite a
given query, e.g., (?X InstanceOf K1(O1.LuxuryCar)) that
asks for all instances of luxury-car(O1.LuxuryCar), by
substituting the left-handside of (R1) for the query. Note
that all the ontology terms in the query and the ontology-
matching rule are encrypted and thus the mediator does not
have access to those terms.

Privacy-preserving Semi-automated Ontology

Matching

 If we intend to use a human expert in the process of
ontology matching, the human expert must have access to
the ontologies in cleartext because encrypted labels will
make no sense to the expert. In this scenario, as shown in
Figure 3, each organization encrypts the ontologies using a
session key that it shares with the expert (ontology
matcher). Upon receiving the ontologies to be matched,
the expert decrypts the encrypted ontologies using the
session key. Each organization also has a public key that it
has publicized via a certifying authority. The certifying
authority serves as the trusted intermediary between the
expert and the organizations. The expert (using a semi-
automatic ontology matcher) matches the two ontologies
and then creates a set of ontology matching rules similar to
the rule shown in the example above. Let us say the source
ontologies being matched are O1 and O2. Terms appearing
in a ontology matching rule and O1 are encrypted using the
public key (K1) of the first organization and terms
appearing in the ontology matching rule and O2 are
encrypted using the public key (K2) of the second
organization (Figure 4). The mediator rewrites a query
obtained from one organization, say Org1, encrypted using
its key K1, to a query where all terms are from another
organization’s, say Org2, ontology, encrypted using its key
K2 using the ontology mapping rules.

Related Work

 Clifton et al., have argued about the need for and
highlighted issues in privacy-preserving data integration
and sharing. Agarwal and Srikant have shown how to mine
data while preserving privacy. However, to the best of our
knowledge, there exists no prior research that shows how
privacy-preserving ontology matching can be enabled. Our
interoperation architectures have been influenced by
existing works on access-control in information
interoperation systems (Damiani et al., Dawson, Qian and
Samarati, de Capitani di Vimercati and Samarati, Gong and
Qian).
 Though there does not exist work on privacy-preserving
ontology matching, as discussed above, several existing
works have provided algorithms for ontology matching
(Melnik, Garcia-Molina, and Rahm, Noy and Musen, 2001,
Doan, et al., Hovy, Euzenat and Volchev, Shvaiko,

Encrypted

Dictionary

Word-

Similarity-

Based

Ontology

Matcher

KA-B(O1)

KA-B(O2)

Encrypted

Ontology

Mapping

Rules

90

Giunchiglia, and Yatskevich, Mitra, Wiederhold, and Decker,
and Noy and Musen, Prasad, et al).

Figure 3. Privacy-preserving Semi-automatic Ontology
Matching

Figure 4: Privacy-preserving Interoperation Using Public
Keys

 Conclusion

Maintaining privacy in interoperation systems is becoming
increasingly important. Ontology matching is the primary
means of resolving semantic heterogeneity. Ontology
matching helps establish semantic correspondence rules
that are used for query rewriting and translation in
interoperation systems. For information systems that want
maximum privacy, the privacy of their ontologies must be
maintained. In this paper, we describe two frameworks for
privacy-preserving interoperation and show how we can
implement privacy-preserving ontology matching.

References

Agrawal, R. and Srikant, R. Privacy-Preserving Data Mining. In
Proc. of the ACM SIGMOD, 2000.

Clifton, C., Doan, A., Elmagarmid, A., Kantarcioglu, M.,
Schadow, G., Suciu, D., and Vaidya, J. Privacy Preserving Data
Integration and Sharing, Proc. of the 9th Int. Workshop on Data
Mining and Knowledge Discovery, 2004 (DMKD-04)

Damiani, E., De Capitani di Vimercati, S., Fugazza, C., and
Samarati, P. Extending Policy Languages to the Semantic Web.
ICWE 2004 330-343

Dawson, S., Qian, S., Samarati, P. Providing Security and
Interoperation of Heterogeneous Systems. Distributed and
Parallel Databases, vol. 8, no. 1, Jan. 2000, 119-145.

De Capitani di Vimercati, S., and Samarati, P. Authorization
Specification and Enforcement in Federated Database Systems.
Journal of Computer Security, vol. 5, no. 2, 1997, 155-188.

Doan, A., Madhavan, J., Domingos, P., and Halevy, A. Learning
to map between ontologies on the semantic web. In The Eleventh
International WWW Conference, Hawaii, US, 2002.

Euzenat, J., and Valtchev, P. Similarity-based ontology alignment
in OWL-Lite. In The 16th European Conference on Artificial
Intelligence (ECAI-04), Valencia, Spain, 2004.

Gong, L. and Qian, X. The Complexity and Composability of
Secure Interoperation. IEEE Symp. Security and Privacy,
(Oakland, CA, USA. 1994).

Hovy, E. Combining and standardizing largescale, practical
ontologies for machine translation and other uses. In The First
International Conference on Language Resources and
Evaluation (LREC), pages 535–542, Granada, Spain, 1998.

Kang, J., Naughton, J. F.: On Schema Matching with Opaque
Column Names and Data Values. Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD), San Diego, California, June 2003.

Melnik, S., Garcia-Molina, H. and Rahm, E. Similarityflooding:
A versatile graph matching algorithm and its application to
schema matching. In 18th International Conference on Data
Engineering (ICDE-2002), San Jose, California, 2002. IEEE
Computing Society.

Mitra, P. and Wiederhold, G. Resolving terminological
heterogeneity in ontologies. In Workshop on Ontologies and
Semantic Interoperability at the 15th European Conference on
Artificial Intelligence (ECAI), July 2002.

Mitra, P., Wiederhold, W., and Decker, S. A scalable framework
for interoperation of information sources. In The 1st
International Semantic Web Working Symposium (SWWS’01),
Stanford University, Stanford, CA, 2001.

Noy, N.F., and Musen, M.A. Anchor-PROMPT: Using non-local
context for semantic matching. In Workshop on Ontologies and
Information Sharing at the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI-2001), Seattle, WA,
2001.

Noy, N. F., and Musen, M. A.. The PROMPT suite: Interactive
tools for ontology merging and mapping. International Journal of
Human-Computer Studies, 59(6):983–1024, 2003.

Prasad, S., Peng, Y., and Finin, T. A tool for mapping between
two ontologies using explicit information. In AAMAS 2002
Workshop on Ontologies and Agent Systems, Bologna, Italy,
2002.

Shvaiko, P., Giunchiglia, F. and Yatskevich, M. S-Match: an
Algorithm and an Implementation of Semantic Matching, Proc. of
the 1st European Semantic Web Symposium, 2004 (ESWS-04).

O1 O2

Expert

K1-E(O1) K2-E(O2)

Semi-automatic

Ontology Matcher

O1,O2
M(O1,O2)

Encrypted

Ontology

Matching

Rules

Encrypted

Query K1(Q)

Info. Src 1

Mediator

Ontology

Matching

Rules

Encrypted

Using

K1,K2

Info. Src. 2

 Enc.

Results

Enc.

Results
Rewritten Encrypted

Query K2(Q’)

91

Contexts in Dynamic Ontology Mapping

Paolo Besana and Dave Robertson
Centre for Intelligent System and their Applications

School of Informatics
University of Edinburgh

Abstract

Agents in open systems interact continuously, each
possibly having a different ontology. Mapping in ad-
vance all the ontologies that an agent can encounter is
not feasible, as all the possible combinations cannot be
foreseen. Mapping complete ontologies at run time is
a computationally expensive task. This paper proposes
a framework in which mappings between terms may be
hypothesised dynamically as the terms are encountered
during interaction. In this way, the interaction itself de-
fines the context in which small, relevant portions of
ontologies are mapped. We use this way of scoping the
ontology mapping problem in order to apply mapping
heuristics in a more focused way.

Problem description

In order to act properly after receiving a message from an
external entity, an agent must understand the content of the
message.

A message is created by mapping concepts in the sender’s
representation of the domain into the terms that compose the
message, conforming to the syntax of the language it uses.
The receiver maps the terms in the message to the concepts
in his own representation, helped by the syntax rules that
structure the message. If a term is mapped to a different
concept by the receiver agents, or cannot be mapped, then a
misunderstanding arises.

The problem would not exist if both agents shared the
same representation of the domain, but this is not the most
common case.

For example, in an open B2B market, agents gather to of-
fer and to request services or products, working as proxy for
their companies. Agents converge to the market from dif-
ferent backgrounds, and are likely to have different ontolo-
gies. The brokers receive advertisements of offers, and must
classify them correctly to match them with the requests. As
agents continuously arrive to the market and leave, the num-
ber of possible combinations of agents is high, .

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Common approach

Early attempts to overcome the heterogeneity in the rep-
resentations were to develop general ontologies that could
cover a majority of domains and could be shared by the
agents. This approach has been unsuccessful on a large
scale. First, it proved difficult to find an agreement on what
ontology to use. Second, it is difficult to manage the evolu-
tion of the ontology: an old version can be inconsistent with
a newer one (Hameed, Preece, & Sleeman 2003).

More recent attempts are instead focused on reconciling
different ontologies, allowing their coexistence.

Problems with Ontology Mapping in MAS

Most mapping processes are aimed at statically align-
ing complete ontologies (Kalfoglou & Schorlemmer 2003;
Giunchiglia, Shvaiko, & Yatskevich 2004; Nuno & Rocha
1999): two or more ontologies are reconciled and the result
is stored for future use.

Preparing in advance all the possible mappings between
the ontologies is not feasible in open multi-agent systems, as
it is impossible to foresee all the combinations of agents in-
volved in the interactions. Mapping whole ontologies, often
a lengthy process, may not be feasible at real time. Interac-
tions should be quick and many can occur at the same time.
Moreover, only portions of ontologies may match, as agents
can have ontologies about different domains.

Proposed approach

A complete agreement over the semantics is not required
in MAS: agents interact only when they must, and they
need to understand each other just enough to perform their
task. Once the task is performed, mutual understanding is
no longer important: agents in an open system interact con-
tinuously with different agents, and the mapping found once
might be useless any other time.

To perform a coordinated task, the involved agents need to
share only the parts of their knowledge contextual to the in-
teraction. It is possible to exploit this idea and map dynam-
ically and only when needed the portions of the ontologies
required for the context of the interaction.

92

Definitions and assumptions
Agent model
Each agent ai has its own communication environment ei,
consisting of the ontology Oi that defines the terms used by
the agent and of the axioms it can use to reason.

An environment can be seen as the context of an agent, as
described in (Giunchiglia 1992), but renamed to avoid name
conflicts with the concept of context used in this paper.

Any definition is valid only within an environment. An
agent can reason over concepts defined in other environ-
ments only if mapped to its own concepts.

An agent, for the sake of this paper, can be model as be-
ing composed by two layers: a communication layer, and
a reasoning layer. The communication layer is the inter-
face between an agent and the other agents in the system. In
the basic case, it handles the transmission and reception of
messages. The reasoning layer contains all the agent’s skills
and knowledge, and it is accessible from the communication
layer through access points.

Communication model
During an interaction k an agent ai sends to an agent aj a
message m composed of terms. For brevity, terms defined
in the agent’s environment will be called internal terms, and
will be referenced as wi(see figure 1), while terms defined
in other environments will be called external terms, and will
be referenced as ti.

For an interaction k, every involved agent ai publishes an
ontology subset Oki, valid in the context of the interaction,
to explain the terms it has used in the messages.

w10w9w8w7w6w5

w2 w3 w4

w1

Figure 1: Oi ontology

Semantic bridges
The semantic relations between terms defined in different
environments is defined in semantic bridges (Nuno & Rocha
1999). A bridge b is the tuple:

b = 〈relation, t, w, c(true), c(false)〉

where relation can be equivalence or subsumption, while
c(true) is the confidence level that the bridge is correct and
c(false) that the bridge is wrong.

A bridge bh is more generic (�) than another bridge bg , if
the external term t is the same in both and the internal term
wh of bh subsumes the internal term wg in bg:

bh � bg ↔ (wh w wg) ∧ (th = tg)

Conversely bh is more specific than bg if wg subsumes wh:

bh � bg ↔ (wh v wg) ∧ (th = tg)

During the interaction k the bridges are stored in the set Bk

and are used to translate the calls to the reasoning layer.

Framework
An external term t is mapped only when encountered dur-
ing an interaction. Initially it can only guess at the proper
bridges between t and the terms in its own ontology. These
hypotheses must be verified, and the most likely is kept.

Without any a priori knowledge any possible mapping
could be the correct one, and the hypotheses cover all the
possible bridges between the external term t and the terms
wi. To make on-the-fly mapping feasible, the number of hy-
potheses should be drastically reduced.

In the framework, unlikely hypotheses are pruned by the
filter elements using heuristics based on the experience of
past interactions and on the context of the current interac-
tion. The filters aim to minimise, on average, the number of
wrong hypotheses to check.

Once the hypotheses are filtered, the rule elements gen-
erate an arguments in favour or against a hypothesis. The
arguments are then combined by the framework to give an
overall confidence level for the hypothesis.

Rules can exploit algorithms developed for static map-
ping, such as S-Match (Giunchiglia, Shvaiko, & Yatskevich
2004), to compute the matching, as the number of useless
mappings to verify is reduced by filters.

A generated argument is a proposition coupled with two
degrees of confidence, one that the proposition is true, and
one that the proposition is false. Arguments are organised
in a tree: the root is the hypothesis to verify, supported or
attacked by the arguments in the nodes. An argument may
recursively need other arguments to support it.

Framework explained
The mapping process is iterative. At every iteration i a se-
mantic bridge btki, more specific than the bridge btk(i−1)

from the previous iteration, is created for the term t:
bn � bn−1 � . . . � b1

At every iteration i the function executes three steps:
• generates hypotheses,

• filters hypotheses and keeps the most probable ones,

• collects evidence for the remaining hypotheses, selects
the most reliable hypothesis.

The loop ends when it becomes impossible to generate hy-
potheses that imply those proved in the previous step, or
none of the hypotheses generated can be proved. The bridge
created in the last iteration, and therefore the most specific,
is returned and added to the set Bk.

Generate the hypotheses
At this step of each iteration i, the system receives the exter-
nal term t and the mapping btk(i−1) proved in the previous
iteration, and returns a set of hypotheses Ω about the most
generic mappings that imply btk(i−1).

For example, if btk1 = 〈t v w1〉, btk2 = 〈t v w2〉 , given
the ontology in figure 1, then for the iteration #3:

Ω3 = {〈{v,w,≡} , t, w5〉 , 〈{v,w,≡} , t, w6〉}

93

Filter the hypotheses

In the this step, the system combines different filters and
produces an argumentation tree for each of the hypotheses
selected from the set Ω generated in the previous step:

A filter fi is characterised by its breadth and its confi-
dence. The first is the “band-pass” of the filter: the narrower
the filter, the fewer hypotheses are left to verify. If none of
the filtered hypotheses could be proved, this step is repeated
and the narrowest filter used previously is removed. The sec-
ond indicates how likely is it that the correct hypothesis is in
the selected subset. It is used as the first argument added to
the argument tree of each filtered hypothesis.

After a term is successfully mapped, the filter receives the
new bridge as feedback, and uses it to improve its predictive
capability.

Select the best hypothesis

In this step, the system processes the set of hypotheses trees
generated by the previous step, and tries to extract the most
likely one. If the system fails to select any hypothesis, it
goes back to the previous step, relaxes the filter if possible,
and tries to obtain a wider set of hypotheses.

This step is composed of three actions.

Collect evidence For each hypothesis the system gener-
ates arguments using rules. A rule ri is characterised by two
confidence levels, that measure how strong or weak is the
support or the attack of the generated argument: c(hp|arg)
is the confidence that the hypothesis is true, given that the
argument is true, while c(¬hp|¬arg) is confidence that the
hypothesis is false, given that the argument is false. The ar-
gument is produced by an external function, that receives as
input the hypothesis and a set of information specified in the
rule. The information is collected by the system, and it is
relative to the terms in the hypothesis: it can be the super-
class, or the subclasses or the instances of one of the term.
Information about internal terms is easily accessible, while
the agent may ask the information about external terms to
the other agent if it is not contained in the published ontol-
ogy. External information may trigger further mapping to
allow reasoning over the imported terms.

Combine evidence The arguments in the tree are com-
bined to obtain two confidence levels for the hypothesis: one
that the hypothesis is true, and one that it is false.

If a hypothesis is supported by one argument, the confi-
dence that the hypothesis is true is computed as:

c(hp) = c(hp|arg)c(arg)

where c(hp|arg) is given by the rule and c(arg) is computed
for the argument. Similar considerations apply for the con-
fidence of the hypothesis being false. When there is more
than one argument, the confidences must be combined.

It cannot be assumed that the confidences sum to one: if
a rule establishes that a hypothesis is true with 0.4 of confi-
dence, it does not imply that the hypothesis is false with 0.6
of confidence. Therefore, the theory used to combine con-
fidences should be able to express ignorance about the truth
value of the hypothesis.

One possible approach is Dempster-Shafer theory (Yager
1994), which computes the probability of a proposition sup-
ported by evidences. Following Dempster-Shafer theory,
c(hp) is interpreted as the belief that the hypothesis is true.
While 1 − c(¬hp) is the plausibility the hypothesis is true
which is the extent to which the available evidence fails to
refute the hypothesis. The interval between the two values
is the ignorance interval.

The theory provides a formula, called Dempster’s rule of
combination, to combine evidences for a proposition.

Harvest Hypothesis At the end of an iteration i , the hy-
pothesis with the highest confidence is selected. In some
cases there might be more than one hypothesis within a nar-
row band of confidence: in this case the system first tries
to apply more rules - if available - to gather more evidence
for the conflicting hypotheses. If no rules can be applied, the
strongest hypothesis is selected. Then the procedure restarts,
until no more hypotheses can be generated.

Possible models of filters
Filters
Filters must operate rapidly, making it difficult to apply
complex, symbolic or inductive inference methods. Nev-
ertheless, filters can exploit the large volume of event-based
data from the interactions and determine statistical patterns
threaded in the dialogues.

Statistical contexts
A possible pattern to recognise is that some terms tend to
appear together in interactions: some of these terms are con-
textual to the topic of the conversation (buy, computer,...),
while other terms are auxiliary to any kind of conversation
(ask, inform,...).

Following this intuition, the terms can be clustered to-
gether, and each cluster is a possible context for an inter-
action. The contexts are created and updated using the feed-
back from the framework. The contexts are used to classify
dialogues as they unfold, and to predict which are the most
likely terms that can occour during a conversation. This ex-
cludes hypotheses relative to terms that have never appeared
in the context.

Formal description More formally, a context is a triple:

C = 〈id,N, S〉

where N is the number of dialogues classified by the context
and S is the set of internal term elements η that distinguish
the context.

Each term element ηi in S is a pair:

ηi = 〈w, µC〉

where w is the term in the agent’s ontology and µC is the
grade of membership of the term in the context: terms may
appear in different contexts with different frequencies.

Related to the grade of membership of a term there is the
function µC(K) that returns the grade of membership to a
context C of a set K of terms:

µC(K) = 1
|K|

∑
w∈K µC(w)

94

How they are used Contexts are used to classify dialogues
as they are performed. Every time a new term is mapped, the
system tries to classify the dialogue finding the contexts that
maximise the function µC(W), where W is the set of the
internal terms in the bridges contained in Bk.

At the beginning of the mapping process, few terms are
mapped and it is difficult to classify the dialogue properly,
because more than a context can do it. As the dialogue un-
folds, the number of terms in W increases and the number
of contexts that can classify them is reduced.

The contexts that classify the dialogue are used to filter
the generated hypotheses set: if some terms in the set never
appear in the contexts, then it is possible to exclude these
hypotheses, adding evidence for the remaining hypotheses.

How they are created When a dialogue is finished, the in-
ternal terms W are added to the context that better classifies
them. If no context classify them well enough, then a new
context is created.

Past mapping experience

Another possible pattern to identify is that some external
terms tend to have always the same semantic relations with
the same terms in the agent’s ontology.

Formal description The set of previous mappings Λ con-
tains a tuple λi for each mapping proved in the past, com-
posed of three elements:

λi = 〈b, sm, na〉

b is the hypothesis proved in the past, sm is the cumula-
tive confidence of the hypothesis, and na is the number of
time the term mapped in the hypothesis has appeared in dia-
logues.

How they are used When the system must select hypothe-
ses for an external term, it can look in past mappings for the
term. It then keeps the hypotheses implied by the past map-
pings, and discards the others.

For the ontology in figure 1, given the generated hy-
potheses Ω = {t v w2, t v w3, t v w4} and the set of past
mappings Λ = {〈t v w5, 4, 5〉}, the filter should keep only
t v w2 as the past mapping t v w5 implies it.

How they are created Mappings established for a partic-
ular external ontology and received as feedback from the
framework are stored for future use. When mappings are
encountered repeatedly, the confidence sm in the past map-
ping λi is increased by the confidence in the bridge.

There is no issue about inconsistency, as conflicting past
mappings are used only as suggestions about the order in
which the hypotheses should be checked: conflicting hy-
potheses are tolerated by collecting evidence in favour or
against them.

Related work
The COMA project (Do & Rahm 2002) is focused on com-
bining different matchers to obtain a plausibility level for the
computed correspondences. It introduces the reuse of past
mappings, although for a different purpose. The abstraction

of the argumentation tree in this paper subsumes the dis-
tinction between simple matchers and hybrid matchers. The
QOM project (Ehrig & Staab 2004) addresses the trade off
between efficiency and quality, introducing the concept of
filtering the mapping candidates before verifying them with
similarity comparators. However, the filtering is based only
on properties of the ontologies (labels of nodes or hierar-
chy): it is does not exploit gained experience and it is not
concerned about the purpose of the mapping as a mean to
prune useless candidates.

In fact, both projects are oriented toward mapping whole
ontologies, without any reference to interactions and their
contexts.

Conclusion
In this paper we proposed a framework that allows agents
with different ontologies to interact in order to perform a
task. The mutual understanding during the interaction is
reached dynamically mapping the ontologies. The frame-
work exploits both the structure of the ontologies and statis-
tical patterns threaded in the dialogues to produce heuristics
used to improve the work of standard mapping algorithms.

The first advantage is that there is no need to foresee and
map in advance all possible combinations of ontologies, be-
cause mappings take place only when needed. The second is
that part of the algorithms developed and tested for this task
can still be used.

This research is at a very early stage, and many details
still need to be studied in depth.

References
Do, H. H., and Rahm, E. 2002. Coma - a system for flexible
combination of schema matching approaches. In VLDB,
610–621.
Ehrig, M., and Staab, S. 2004. Qom - quick ontology
mapping. In International Semantic Web Conference, 683–
697.
Giunchiglia, F.; Shvaiko, P.; and Yatskevich, M. 2004. S-
match: an algorithm and an implementation of semantic
match. In In Proceeding of the European Semantic Web
Symposium, 61–75.
Giunchiglia, F. 1992. Contextual reasoning. Technical
report, IRST, Istituto per la Ricerca Scientifica e Tecnolog-
ica.
Hameed, A.; Preece, A.; and Sleeman, D. 2003. Ontology
Reconciliation. Germany: Springer Verlag. 231– 250.
Kalfoglou, Y., and Schorlemmer, M. 2003. Ontology map-
ping: the state of the art. Knowledge Engineering Review.
Nuno, S., and Rocha, J. 1999. Mafra - an ontology map-
ping framework for the semantic web. In Proc. of the 13th
European Conf. on Knowledge.
Yager. 1994. Advances in the Dempster-Shafer Theory of
Evidence. John Wiley, New York.

95

Measuring Similarity of Elements in OWL DL Ontologies

Thanh-Le Bach, Rose Dieng-Kuntz

ACACIA Project, INRIA Sophia Antipolis
2004 route des Lucioles, BP 93, 06902 Sophia Antipolis, France

{Thanh-Le.Bach, Rose.Dieng}@sophia.inria.fr
http://www-sop.inria.fr/acacia/acacia.html

Abstract

OWL becomes nowadays a more and more widely-used
language for representing ontologies. The number of OWL
ontologies increasing in direct ratio to the development of
the Semantic Web leads to the heterogeneity problem. The
same concepts may be modeled differently, using different
terms and different positions in concept hierarchy. The task
of identifying similar entities (concepts, relations or indivi-
duals) in different ontologies becomes then crucial for the
success of information integration systems, instance trans-
formation… In this paper, we propose a new similarity
measure for comparing entities in different OWL DL onto-
logies. This measure is designed so as to enable extraction
of information encoded in OWL entity descriptions and to
take into account the underlying meaning of OWL
primitives. We propose a variable weighting scheme for
combining more efficiently component similarities
calculated from components in entity descriptions.

Introduction
Several researchers currently study thoroughly problems of
comparison, alignment, matching, and integration of
ontologies (Euzenat, 2004). The success of these tasks
depends on the way how the similarity between entities of
ontologies is defined. A good measure for the similarity
between two entities in two ontologies will help to identify
corresponding entities correctly.
In this article, we propose a new similarity measure for any
two entities in two different OWL DL ontologies. This
measure is based on the information extracted from the
entity descriptions (definitions). An entity in OWL DL
ontology can be a class, a relation, an instance or even the
ontology itself. In our system, we try to extract as much as
possible information encoded in the entity description.
Extracted components are compared to produce partial
component similarity values. They are then combined
using prefixed weights under a variable weighting scheme
(where weights can be changed during the calculation,
depending on situation, for the better result). The similarity
calculation takes into account the predefined meanings of
OWL DL and RDF(S) primitives such as rdf:type,
owl:equivalentClass… which we can extract from entity
descriptions.

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

A good similarity measure will be crucial for the success
of several other emerging tasks in the context of semantic
web such as comparing, mapping, aligning, merging or
integrating ontologies as well as information.

Entity Similarity Measure

In our system, an entity in an OWL DL ontology can be a
class which can have a name (an URI) or not (anonymous
class), or be a relation. An entity is described in OWL DL
ontology using RDF(S) or OWL DL primitives, such as
rdf:id, rdfs:range, owl:subClassOf… Each of these primit-
ives brings a piece of knowledge to the whole meaning of
the entity. So, we can consider that the similarity between
two entities in two ontologies is a combination of partial
similarities which are similarities between pieces of
descriptions using these primitives. The similarity combi-
nation is a variable-weighted sum calculated from partial
similarities. An OWL DL ontology is an RDF document.
We consider an OWL DL ontology as a set of RDF triples.
Let O an ontology, let (s, p, o) a triple, where s, p, o are
respectively subject, predicate, and object, O = { (s, p, o)
}. Note that in OWL DL ontology, for every triple (s, p, o)
⊂ O in entity descriptions, p is a predicate which is one of
33 RDF(S) and OWL primitives. Representation of OWL
DL ontology in our system is lightly-modified RDF graph
representation (Fig. 1). The labels on arcs starting from
entities (classes, relations) are primitives in 33 RDF(S) or
OWL primitives. For nodes which are instances, labels on
arcs starting from them can be user-defined properties.
Let (s, p, o) a triple. We define:
T(e) = { (e, p, o) | (e, p, o) ∈ O }, the set of RDF triples
having the entity e as their subject. P(e) = { p | ∃o, (e, p, o)
∈ T(e)}, the set of predicates, which are parts of triples
having entity e as their subject. O(e, p) = { o | (e, p, o) ∈
T(e) }, the set of (RDF) objects, which are parts of triples
having entity e as their subject and p as their predicate.
E(e) = {(p,o) | (e, p, o) ∈ T(e) }, the set of predicate-object
pairs, where the first is predicate and the second object in
a triple having entity e as subject.
The similarity measure between two entities e1 in ontology
O1 and e2 in ontology O2, named Sim(e1,e2) is based on
two values: (1) similarity between their components and
(2) similarity of their graph structure.

96

Similarity between Components
The components in an entity description are triples.
Similarity between components of two entities is similarity
between two sets of pairs E(e1) and E(e2). For comparing
these two sets of pairs in order to produce a similarity
value between [0,1], we propose the following steps:
1. Identify set of predicates Pc1 which contain predicates in
pairs in E(e1) having a similar predicate in a pair in E(e2)
and similarly, Pc2. Let Pc the union of these two sets.
Pc1 = { p | p ∈ P(s1) ∧ (∃q ∈ P(s2), SimPred(p,q) > 0) }
Pc2 = { p | p ∈ P(s2) ∧ (∃q ∈ P(s1), SimPred(p,q) > 0) }
Pc = Pc1 ∪ Pc2
where SimPred(p,q) is a similarity function between two
predicates, which are RDF(S) or OWL properties. SimPred
is defined as follows: (i) SimPred(p,p) = 1; (ii)
SimPred(p,q) is a predefined value in [0,1] if p ≠ q. Some
OWL properties can be considered as similar semantically,
e.g. owl:cardinality and owl:maxCardinality.
2. To be able to calculate partial similarities over
predicates which can appear several times in description of
an entity, such as rdfs:label, rdfs:subPropertyOf…, we
firstly collect objects in triples having this same predicate
p. We thus obtain two sets of objects for two entities in
two ontologies: O(s1,p) and O(s2,p). Secondly, objects in
these two sets are paired, in order to calculate the similarity
between object sets. The object pairing is done by the
following algorithm: Let o1i and o2j two objects in these
sets, o1i ⊂ O(s1,p), o2j ⊂ O(s2,p), (a) Find o1i and o2j whose
Simtotal(o1i,o2j) is maximal. (o1i,o2j) is an object pair; (b)
Remove o1i from the set O(s1,p) and remove o2j from the
set O(s2,p); (c) Repeat step (a) until no more (o1i,o2j) is
found.
Finally, after the pairing process, similarities between
paired objects are summed up, and then the summed value
is divided by the maximal cardinality of both object sets.
The obtained value is the partial similarity Simpartial over
the considered predicate.

Using example in Fig. 1, O(ANIMAL1, rdfs:label) will
result {“Animal”}, O(ANIMAL2, rdfs:label) will give
{“Animal”, “Beast”}. Pairing two sets gives {(“Animal”,
“Animal”)}. So the Simpartial over predicate rdfs:label for
two classes ANIMAL will be 0.5.
Some predicates, such as owl:equivalentProperty, owl:
sameAs, owl:equivalentClass which can appear several
times in the description of an entity, require a different
processing. Instead of pairing objects in triples having the
same considered predicate in order to compute the partial
similarity from the similarity between two sets of objects,
the partial similarity is calculated based on the meaning of
the predicate, and in this case, is the maximal similarity
value of objects in two sets.

3. For predicates which can only appear at most once in
any entity description, such as rdf:id, owl:complementOf,
owl:inverseOf…, the partial similarity is only based on two
objects and the underlying meaning of the predicate.
Function θ, depending on meaning of given predicate and
objects, returns similarity value of two entities.

As example, if the predicate is owl:complementOf, the
partial similarity of two entities is based on the similarity
between two objects of two triples: if two objects are
similar classes, their complementary classes are also
similar. The Simpartial of two entities over the predicate owl:
complementOf will then be the Simtotal of the two objects.
4. Depending on the ontology modeling, description of an
entity (class, relation) can consist of one or several RDF(S)
/OWL properties. A given property (predicate) can appear
in the description, others not. The total similarity between
two entities is a combination of their partial similarities
calculated as described above: it is a weighted sum from
the obtained partial similarities. As discussed, the entity

()
()() () ()()

() ()()psOpsO

ooSim
pssSim psOpsOPairingoo total

partial ,,,max

,
,, ,,,,

21

21
21

2121
∑ ∈=

()

() ()
() () ()()212121,,,

21

,,,,,max

,,

2211

soSimosSimooSim

pssSim

totaltotaltotalpsOopsOo

partial

∈∈

=

() ()()2121 ooSimppssSim totalpartial ,,,, θ=

rdf:id animalB.owl#Male

rdf:type

rdfs:label
“Male”

rdfs:subClassOf
ANIMAL

MALE

owl:Class

animalA.owl#Male

“Male”

ANIMAL

owl:Class

rdf:id

rdf:type

rdfs:label

MALE rdfs:subClassOf

Fig. 1. Extract of modified RDF graph representations for two different ontologies: animalA.owl and animalB.owl

animalA.owl#Animal
animalB.owl#Animal

owl:Class
owl:Class

“Animal”
“Animal”

“This class of animals is illustrative of a
number of ontological idioms.”

rdf:id rdf:id

rdf:type rdf:type

rdfs:label
rdfs:label

rdfs:comment “Beast”
rdfs:label

97

description components are not fixed, they vary from
entity to entity. So, applying a fixed weighting scheme
over partial similarities might be not efficient. Let us use a
simple example: suppose that we have a simple ontology
language which supports only three property primitives:
ol:id, ol:label and ol:comment. An entity description is an
arbitrary combination of these primitives: one can be
defined using only ol:id for its identification, another one
can be described by all three primitives for its
identification, its human-readable name and comment. For
two entities, our method will produce partial similarities
from these components. In related research for combining
partial similarities, each component is assigned a pre-fixed
weight (e.g. 0.5, 0.35 and 0.15 respectively), and then the
final result is the weighted sum of products of partial
similarities and these weights. If the descriptions for both
entities being compared contain only one primitive ol:id,
the maximal similarity of two entities is only 0.5 (in the
case that both identifications are same). To solve this
problem, we propose a variable weighting scheme where
predefined weights can be modified automatically in the
calculation depending on descriptions of entities being
compared. Using previous example, notifying that both
entities have only one primitive ol:id in their descriptions,
the corresponding weight for this primitive changes from
0.5 to 1.0, thus the obtained total similarity value may
reach the value of 1.0.

φ(w) is an adaptation function for modifying weights.
There are several weight-changing strategies. We propose
the following one: (1) Initiate the 33 pre-fixed weights
corresponding to the 33 RDF(S)/OWL primitives, so that
their sum is equal to 1.0. These weights are firstly assigned
manually to different values to give different emphasis to
different components (corresponding to primitives) in
entity descriptions. The fact that for entity similarity
calculation, the information getting from rdf:id is more
important than from owl:versionInfo, so the weight
assigned to the former is set higher than one assigned to
the latter; (2) When comparing two entities, for each
RDF(S)/OWL primitive pi which does not appear in the
descriptions of both entities, set (automatically) its
corresponding weight from wi to 0.0 and increase
(automatically) all other non-zero weights by an amount
being equal to wi/[number of non-zero weights]. This
guarantees that their sum is always equal to 1.0.

Similarity of Entity Graph Structures
An entity description is represented by an RDF graph.
Similarity between two entities can be derived not only
from similarities between their description components,
but also from the similarity between the structures of the
RDF graphs representing them. In our system, the entity
graph similarity is formulated from the ratio between the
number of similar predicates over the maximal number of
triples of both entities. Taking into account the underlying
meaning of RDF(S)/OWL properties, some properties are

considered as similar, e.g. owl:cardinality, owl:maxCardi-
nality and owl:minCardinality. The formulation does not
regard the similarity of objects, but only the similarity of
predicates of two entities.

Total Similarity

The total similarity between two entities is the combinat-
ion of two similarity values: their component similarity
Simcomponent and their graph structure similarity Simgraph.
Here, a fixed weighting scheme is applied for the combi-
nation. The reason is that these two similarity components
are not optional, they exist for every pair of entities. The
weights can be chosen following experimental results.

Implementation and Results

Our entity similarity measure was implemented in Java.
Jena API 1 was used for loading OWL DL ontologies into
memory. The OWL DL graph representation is derived
from the Jena RDF model.
Ontologies used for evaluation are ontologies proposed in
the context of the I3CON conference2 even though we did
not compete in 2004. To evaluate our similarity measure, a
very simple algorithm is installed: for each entity (class,
property) in an ontology, the similarity value with all other
entities in the other ontology is calculated using our
measure. The maximal similarity value will be shown out.
Note that our goal is to test the measure, not the efficiency
of the matching algorithm.

Order Entity in ontology
animalA.owl

Entity in ontology
animalB.owl Similarity value

1 Shoesize shoesize 1.0
2 Shirtsize Shirtsize 1.0
3 Animal Animal 1.0
…
23 hasFemaleParent hasWife 0.037
24 hasMaleParent hasHusband 0.034

Table 1: compare ontology animalA.owl with animalB.owl
We calculated similarity values (see table 1) between
entities in ontology animalA.owl (having 35 entities) and
entities in ontology animalB.owl (having 24 entities). The
latter is a modified version of the former. It has no instance
and it has reduced entity descriptions. Note that this simple
non-optimized algorithm is not recursive and has no
similarity matrix. Its total averaged running time for the
test is about 2.204 second. As result, we have 3 entity pairs
with similarity value of 1.0. The worst value is 0.034 for
the (incorrect) pair hasMaleParent-hasHusband. All we
know about the entity hasMaleParent is information
extracted from its description. This informs us that the
entity type is owl:ObjectProperty and that it is
owl:equivalentProperty with hasFather. As the algorithm

1 http://jena.sourceforge.net/
2 http://www.atl.external.lmco.com/projects/ontology/i3con.html

() () ()()21
21 sPsP

P
ssSim c

graph ,max
, =

1 where =+

∗+∗=

graphcomponent

graphgraphcomponentcomponenttotal

ww
SimwSimwSim

() () ()∑
∈

=
ci

i
Pp

ipartialpcomponent pssSimwssSim ,,*, 2121 φ

98

does not store temporary similarity values, it does not
know that hasFather in animalA.owl ontology is exactly
similar (similarity value of 1.0) to the entity hasFather in
animalB.owl ontology. That explains why hasMaleParent
is not matched with hasParent but hasHusband in the
second ontology. But in the future work, we will adapt an
incremental algorithm which can overcome these limits.

Related Work
The closest related work with our proposition is the work
of (Euzenat and Valtchev, 2004). Similarity between two
nodes depends on categories which they belong to and
relations between categories. It is a fixed weighted sum of
partial similarities while we apply a variable weighting
scheme. (Weinstein & Birmingham, 1999) proposes
several similarity measures for comparing concepts in
differentiated ontologies. Their measures are mainly based
on the compatibility comparison of structural descriptions
and do not rely on the underlying meaning of relations
between concepts. (Maedche & Staab, 2002) presents
another work for measuring the global similarity between
the whole two ontologies. Contrarily to theirs, our measure
is for the similarity between entities in two ontologies.
Other researchers (Doan et al., 2002), (Melnik et al.,
2002), (Noy and Musen, 2000) propose algorithms for
finding entity mappings between two schemas (simple
ontologies). They do not focus specially on constructing a
similarity measure as we do. For lack of room, we don’t
detail all related work but good surveys can be found in
(Rahm and Bernstein, 2001), in (Kalfoglou and
Schorlemmer, 2003) and in (Euzenat, 2004).

Conclusions and Future Work

In this paper, we presented our new measure for
calculating similarity of two entities (classes, relations)
from two different OWL DL ontologies. These ontologies
are represented in RDF-like graphs and the similarity
measure is formulated based on two parts: (1) similarity
between the components of the entity descriptions and (2)
similarity between graphs representing entities. For the
first part, we proposed methods for dealing with the
similarity of two sets and for combining component partial
similarities in a variable weighting scheme. Our similarity
measure also takes into account the underlying meanings
of RDF(S) and OWL properties, which are used in entity
descriptions. The measure was implemented in Java and
tested with entities in OWL ontologies for the validation.
In addition to I3CON1, we will test our measure on EON2
and on two real-world ontologies O’COMMA and
O’Aprobatiom compared with our previous algorithm
(Bach et al, 2004).

1 http://www.atl.external.lmco.com/projects/ontology/i3con.html
2 http://co4.inrialpes.fr/align/Contest/

Many algorithms based on similarity measures to discover
mappings can be developed using our measure. A mapping
will be created for two entities in two different ontologies
when these entities are considered as (semantically)
similar, i.e. when their similarity value is higher a certain
threshold. For future work, we will focus on the
integration of our proposed measure in an ontology
matching algorithm or in a merging algorithm and evaluate
its performance and efficiency in these real and crucial
tasks.

References
Bach, T.L., Dieng-Kuntz, R., Gandon, F. 2004: On
Ontology Matching Problems - for Building a Corporate
Semantic Web in a Multi-Communities Organization. In
Proc. of ICEIS’04, Porto, Portugal, 2004, p. 236-243.
Cohen, W. W., Ravikumar, P., and Fienberg, S. 2003. A
Comparison of String Distance Metrics for Name-
Matching Tasks. IJCAI’2003 Workshop on Information
Integration on the Web.
Deborah, L. M., Fikes, R., Rice, J., and Wilder, S. 2000.
An Environment for Merging and Testing Large
Ontologies. In Proc. of KR’00. Breckenridge, Colorado,
USA. April 12-15, 2000.
Dieng, R. and Hug, S. 1998. Comparison of "Personal
Ontologies" Represented through Conceptual Graphs. In
Proc. of ECAI'98, p. 341-345, Brighton, UK.
Doan, A., Madhavan, J., Domingos, P., and Halevy, A.
2002. Learning to Map between Ontologies on the
Semantic Web. In Proc. of WWW'02, Hawaii, USA.
Euzenat, J., Valtchev, P.: Similarity-based ontology
alignment in OWL-Lite. ECAI’04, Valencia, pp333-337
Euzenat, J.: State of the art on current alignment
techniques, 12/2004, IST Knowledge Web Network of
Excellence no FP6-507482, #KWEB/2004/ D2.2.3.
Kalfoglou, Y. and Schorlemmer, M. 2003. Ontology
mapping: the state of the art. The Knowledge Engineering
Review Journal, (18(1)):1-31, 2003.
Maedche, A. and Staab, S. 2002: Measuring Similarity
between Ontologies. In Proc. of EKAW’02. Madrid, ES.
Melnik, S., Garcia-Molina, H., and Rahm, E. 2002.
Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching. In
Proc. 18th ICDE’02, San Jose CA.
Noy, N. F. and Musen, M. A. 2000. PROMPT: Algorithm
and Tool for Automated Ontology Merging and Alignment.
In Proc. of AAAI’00, Austin, TX.
Rahm, E. and Bernstein, P. A. 2001. A survey of
approaches to automatic schema matching. In The VLDB
Journal: Volume 10 Issue, pages 334-350.
Weinstein, P., and Birmingham, W.: Comparing concepts
in differentiated ontologies. In Proc. of KAW’99, 1999.

99

Enhance Reuse of Standard e-Business XML Schema Documents
Buhwan Jeong1, Boonserm (Serm) Kulvatunyou2*, Nenad Ivezic2, Hyunbo Cho1, Albert Jones2

1Pohang University of Science and Technology, San 31, Hyoja, Pohang, 790-784, South Korea
2National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA, *Corresponding Author

Abstract
Ideally, e-Business application interfaces would be built
from highly reusable specifications of business document
standards. Since many of these specifications are poorly
understood, users often create new ones or customize
existing ones every time a new integration problem arises.
Consequently, even though there is a potential for reuse, the
lack of a component discovery tool means that the cost of
reuse is still prohibitively high. In this paper, we explore the
potential of using similarity metrics to discover standard
XML Schema documents. Our goal is to enhance reuse of
XML Schema document/component standards in new
integration contexts through the discovery process. We are
motivated by the increasing access to the application
interface specifications expressed in the form of XML
Schema. These specifications are created to facilitate
business documents exchange among software applications.
Reuse can reduce both the proliferation of standards and the
interoperability costs. To demonstrate these potential
benefits, we propose and position our research based on an
experimental scenario and a novel evaluation approach to
qualify alternative similarity metrics on schema discovery.
The edge equality in the evaluation method provides a
conservative quality measure. We review a number of
fundamental approaches to developing similarity metrics,
and we organize these metrics into lexical, structural, and
logical categories. For each of the metrics, we discuss its
relevance and potential issues in its application to the XML
Schema discovery task. We conclude that each of the
similarity measures has its own strengths and weaknesses
and each is expected to yield different results in different
search situations. It is important, in the context of an
application of these measures to e-Business standards that a
schema discovery engine capable of assigning appropriate
weights to different similarity measures be used when the
search conditions change. This is a subject of our future
experimental work.

An Experimental Scenario and Evaluation⋅

Experimental Scenario
We propose a Schema Discovery Engine that applies
different combinations of similarity metrics to one or more
relevant, standard, document (component) schemas that
may satisfy given integration requirements. Figure 1
illustrates the experimental evaluation planned for our
Schema Discovery Engine running a similarity metric.

⋅Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

We will use test data from a real, industrial integration
problem involving B2B data exchange. The component
library, stored in the repository on the left-hand side of the
figure, will be based on the Open Applications Group
Integration Specification (OAGIS) [3]. The OAGIS is a
horizontal standard for business data exchange including
supply chain data. Sample data exchange requirements
(originally captured in a class model or SQL statements)
will be taken from the Automotive Industry Action Group
(AIAG) supply chain standards and the Oracle ERP
interfaces as shown on the right-hand side of the figure. To
facilitate our computing environment, the data exchange
requirements will be translated into a common syntax such
as an XML Schema or a pseudo XML instance. Those
requirements have maps, with possible extensions, to the
OAGIS. The maps are considered to be correct and will be
compared against discovered components in the evaluation
phase.

Figure 1 shows how this might work from the
requirement in the AIAG Min/Max Vendor Managed
Inventory scenario called the QuantityOnHand (QOH) [4].
The QOH model indicates that the required data fields are
Item, SiteId, Quantity, MinQuantity, and MaxQuantity. A
user who has the model of this component searches the
library for reusable components. The schema discovery
engine uses the QOH model information and any other
relevant documentation to calculate similarities against the
components in the library. It can evaluation options that
consists of several combinations of different types of
similarity measures to determine the best potential
matches. The user can choose different combination
options, such as the Harmonic mean, and set the threshold
that determines how many and which kinds of components
are returned.

In the figure, the InventoryBalance and the WIP
components whose overall similarity values are above the
threshold, 0.7, are returned. Within each final result,
individual similarities are computed indicating the strength
of the mapping between each field within the discovered
component and each field in the requirement. Within the
illustration, the discovery engine might not be able to
identify any fields with sufficiently high similarity
measures to induce equivalences for the MinQuantity and
the MaxQuantity fields; however, it could indicate that the
two fields could establish some relationships with the
Quantity field. The relationships may include equivalent,
more (or less) general, and overlapping [1].

We expect that the results from such an analysis could
guide users by making better and more efficient judgments
about the potential reuse of existing schemas. In Figure 1,

100

OAG Components
(XML Schema)

Schema Discovery Engine

Component Library

AIAG
Requirements

(XML Schemas)

Ex: QuantityOnHand
(QOH) Using, for example , harmonic

mean of a lexical relatedness,
structural similarity, and
logical similarity with
threshold value of 0.7

Retrieve

Search InventoryBalance

 ProductAvailability
WIP

…

Inventory
Balance
- Item
- Site
- ItemQuantity

QOH
- Item
- SiteId
- Quantity
- MinQuantity
- MaxQuantity

Matched Rank 1 – 0.84

Quantity

Matched Rank 2 – 0.8

QOH
- Item
- SiteId
- Quantity
- MinQuantity
- MaxQuantity

WIP
- Item
- Site
- Completed
Quantity

Quantity

1
0.9
0.9
0.7

0.7

1

0.7

0.7

0.7

0.9

Figure 1: Experimental Scenario.

Oracle ERP
Requirements

(XML Schemas)

the result could be interpreted to mean that the QOH may
be designed appropriately as an extension of the
InventoryBalance components where the MinQuantity and
MaxQuantity are the extensions of the basic Quantity field.
Additionally, the discovery result also points to the WIP
component as a possible basis for the QOH component. It
is important to note that extensions to existing components
should be added to the component library so that they
could be discovered and reused in subsequent integration
activities.

Experimental Evaluation
In the previous section, we said that the schema discovery
engine selectively uses and combines similarity metrics. In
this section, we illustrate an example approach to evaluate
and compare the schema discovery quality in different
combinations of similarity measures.

Since the components in the library and the
requirements are represented using an XML tree-based
structure, we argue that each data field, either element or
attribute, can be addressed using the XPATH expression
[2]. In Figure 1, we can address the fields as
InventoryBalance/Item or QOH/Item and
InventoryBalance/Site or QOH/SiteId, for example.

Let a set U = {ui}, i = 1, 2,, n be a set of XPATH
expressions, ui, for each element or attribute field of the
target component (the requirement) U. Similarly, let a set V
= {vj}, j = 1, 2, …, m be that of the true mapped
component(s) from the library, and a set W = {wk}, k = 1,
2, ..., p be that of a discovered component.

Then, let a set of edge constraint Et = { et = (u’
i', v'

j’) }, i’
= 1, 2, …,n’ and j’ = 1, 2, …, m’, n’ ≤ n and m’ ≤ m be the
true map from the fields in U to V. Similar to Et, let Ed = {
ed = (u’

r’, w’
k’) }, r’ = 1, 2, ..., r, k’ = 1, 2, …, p’, r ≤ n, and

p’ ≤ p be the map from U to W as estimated by the
discovery engine. A graphical representation of Ed is as
shown in the output from the schema discovery engine in
Figure 1. As shown in the figure, there may be some fields
in U that have no map to any field in W (e.g., the
MinQuantity and the MaxQuantity fields). Alternatively,
components may be discovered for which some of the
fields cannot be mapped (used) onto the required fields. It
should be noted that in practice, u’

i’ (w'
k’) can be either a ui

(wk) or a composition of two or more ui (wk). Although not

shown, a graphical representation of Et and relationship
between v'

j’ and vj are similar to that of Ed. Using the above
definitions and typical information retrieval measurements,
we can measure the quality of a discovered component d,

using Jaccard as Qd = | Et ∩ Ed | / | Et ∪ Ed | or
using Recall as Qd = | Et ∩ Ed | / | Et | or
using Precision as Qd = | Et ∩ Ed | / | Ed |

where two edges et ∈ Et, and ed ∈ Ed are matched, i.e., et =
ed if and only if the paths u’

i’ = u’
r’ and v'

j’ = w’
k’.

If the schema discovery engine returns multiple
components, an example of the overall discovery quality
could be QD = maxd ∈ D (Qd), where D is a set of discovered
components.

There are some issues with this discovery quality
measure. First, the edge equality definition makes this
quality measure a conservative one, because it requires that
the labels on both paths be identical. For a discovered
component where some labels are different yet
semantically equal, the quality would be unrealistically
low.

Second, the discovery quality (QD) may not indicate the
performance of the overall system, if our intent is to
consider multiple alternatives. In that case, the measure has
to be normalized against the number of suggestions
returned. In addition, the discovered component providing
the maximum quality, max (Qd), may not be the component
ranked the most similar by the discovery engine. Thus, we
want the discovery engine to produce a similarity value
that is highly correlated with the quality associated with
the component. We envision the correlation value between
the similarity value of a component d and Qd across the
members of the set of discovered components D as a
dimension of the overall discovery quality. The advantage
of such quality measure is that it is orthogonal to the
number of discovered components.

Similarity Metrics: A Literature Review
We organize the review of similarity approaches into three
groups: lexical, structural, and logical. For each of the
approaches, we discuss its relevance and potential issues in
applying it to the XML Schema discovery task. In closing
this section, we give our perspective on the respective
roles and potentials of the investigated categories of

101

similarity metrics, both considered individually and in
combination.

Lexical Perspective
A lexical similarity measure quantifies the commonality
between individual component names using purely lexical
information. Commonly used lexical similarity measures
include Tanimoto [19], n-gram [18], (weighted-) distance-
based [5, 6, 13, 14], word sense-based [1], and information
content-based [7] metrics.

We found that the existing lexical similarity measures
may not be directly applicable to our schema discovery
problem. The reason is that an XML component name
usually consists of several words and/or allowable
abbreviations concatenated to enhance their expressivity.
Such composite words (e.g., QuantityOnHand,
InventoryBalance) provide more information than
individual words because the additional words provide
additional context information. Moreover, the composite
words make the meaning of the included words more
specific. This information is particularly important when a
domain-specific lexical resource is not available. For
example, we can eliminate several senses associated with
the term Contact within the component name
DeliveryToContact. Because Contact follows the verb, it
must be a noun. Further, the relationship and the surface
senses of the Contact can be eliminated because one would
not deliver a product to a relationship or a surface in the
business sense. Hence, the similarity measure should be
constructed to focus on the meaning of the Contact
associated with a person. Furthermore, we envision that
each word in a component name should have different
salience depending on its part of speech. For example, we
would like the component name DeliveryToContact to
have a higher similarity value when comparing it to the
ShipToContact than to the DeliveryFromContact since the
latter is, in fact, an opposite. The research to advance the
lexical similarity measures for the schema discovery
should exploit this type of additional information.

We also recognize that domain-specific resources are
very important in analyzing lexical similarity.
Consequently, our future research may include methods to
model domain-specific resources in our supply-chain and
logistics problem contexts. In addition, the schemas and
requirements documentations are context specific
resources for the content-based similarity analysis.

Structural Perspective
A structural similarity measure quantifies the commonality
between components by taking into account the lexical
similarities of multiple, structurally related sub-
components of these terms (e.g., child components, child
attributes). A structural similarity metric typically provides
a more conservative measure than the lexical similarity,
because it looks beyond the individual labels and their
definitions to the context surrounding these labels. The tree
structure is a native structure for XML documents; hence,

it is most related to our problem context. While significant
research has been done to apply these methods to XML
instance documents, they may be applied to schema
discovery by representing the XML schema using one or
more pseudo XML instances. Commonly used structural
similarity measures include node, path, and/or edge
matching, tree edit distance (TED) [8, 9, 12], (weighted)
tag similarity [9], weighted tree similarity [10], and Fourier
transformation-based approach [15].

Although existing structural similarity measures can be
useful in schema discovery, there are several issues that
need to be addressed. First, the existing measures are
geared toward content rather than meta-data; hence, the
perspective of these approaches needs to be adjusted.

Second, one of the most powerful structural measures,
TED, is more applicable to ordered trees because this
insures computability in polynomial time. However, the
order constraint does not always apply to schemas; hence,
further research is required to determine conditions under
which this restriction can be relaxed. One possible
approach is to re-order and represent schemas in abstract
tree structures. Another is to ignore the structure in local
areas and aggregate them into a single node. The less
powerful measures such as path or inclusive path matching
do not exploit fully context-specific information embedded
in the structural relationships. The weighted measures
require a practical way to obtain weights.

Logical Perspective
A logical similarity measure quantifies the commonality of
properties/constraints restraining components definitions
beyond the lexical and structural aspects such as type,
cardinality, etc. The logical similarity is often classified as
a structural category [18, 19]. However, we treat it as an
independent category because it is the most restrictive and
accurate measure. That is, even if two components have
identical label and structures, their logical similarity value
can still be imperfect.

Take a term TelephoneNumber, which consists of two
child elements: an AreaCode element followed by a
Number element. Suppose that there are two
TelephoneNumber definitions, one defines the types
(ranges) associated with child elements as Integer while
the other defines them as String. Although the two have
exact labels and structures, a good logical similarity
measure would indicate that they are not identical and
potentially incompatible. The logical similarity measures
can provide more powerful estimates when matching
schemas using additional model-based information. For
example, if there is model-based information that indicates
that the String type subsumes the Integer - indicating the
Integer is convertible to the String, but not vice versa- then
the measure may be used to indicate that the term is always
translatable to the other but not vice versa. Some example
approaches in this category include DL-based [1, 17],
instance-based [16], and graph-based [11] approaches.

Although the logical similarity measures are potentially
more accurate due to their formal basis, they require the

102

model to provide significant additional information, which
is often unavailable. When model-based information is
shallow, the quality of the approach may be reduced
drastically. Hence, any schema discovery engine using
logical similarity measures has to adjust the weights based
on the amount and kind of model-based information
available. In particular, a lower weight should be given to
the logical similarity if the subsumption hierarchy is very
shallow.

Finally, we offer our synthesized view of the respective
roles and potentials uses of the aforementioned similarity
metrics on the XML Schema discovery task. Schema
discovery in the enterprise-applications-integration context
is a unique information retrieval problem, because the goal
is not to retrieve the content but the data model associated
with the content. Specific consideration must be given to
terms and naming conventions, design and structure
conventions, usage cases, and semantic/ontology models,
all of which must be considered simultaneously when
matching schemas to a requirement. Therefore, it is not
likely that a single similarity category would yield optimal
results.

Synthesis of various similarity metrics within a search
algorithm is likely to produce more accurate results.
However, achieving such a synthesis is not
straightforward. On the one hand, lexical measures may be
more effective when a domain-specific thesaurus or
dictionary is available. On the other hand, structural
measures will be more effective when the data exchange
requirements and the standard specification schemas
within the repository are similarly constructed or are
known to follow the same design conventions. In such
well-controlled situations, the two similarity metric
categories may play more deterministic roles, while the
measures within the logical similarity category may
appropriately play an auxiliary role, particularly when the
schemas and the requirement are totally disparate.

References
1. Giunchiglia, F., Shvaiko, P., and Yatskevich. M. 2004.

S-Match: An Algorithm and an Implementation of
Semantic Matching. In Proc. of ESWS:61-75.

2. WWW Consortium. 1999. XML PATH Language 1.0.
3. The Open Application Group. 2002. Open Application

Group Integration Specification version 8.0.
4. Automotive Industry Action Group. 2005. Proof of

Concept Phase 1 Project Summary.
5. McHale, M. 1998. A Comparison of WordNet and

Roget’s Taxonomy for Measuring Semantic Similarity.
In Proc. of the COLING/ACL Workshop on Usage of
WordNet in Natural Language Processing Systems,
Montreal, Canada:115-120.

6. Jarmasz, M., and Szpakowicz, S. 2003. Roget’s
Thesaurus and Semantic Similarity. In Proc. of Conf. on
Recent Advances in Natural Language Processing
(RANLP), Borovets, Bulgaria:212-219.

7. Resnik, P. 1995. Using Information Content to Evaluate
Semantic Similarity in a Taxonomy. In Proc. of the 14th
Intl. Joint Conf. on AI, Montreal, Canada:448-453.

8. Zhang, Z., Li, R., Cao, S., and Zhu, Y. 2003. Similarity
Metric for XML Documents. In Proc. of Workshop on
Knowledge and Experience Management, Karlsruhe,
Germany.

9. Buttler, D. 2004. A Short Survey of Document Structure
Similarity Algorithms. In Proc. of the 5th Intl. Conf. on
Internet Computing, Las Vegas, Nevada.

10. Bhavsar, V.C., Boley, H., and Yang, L. 2003. A
Weighted-Tree Similarity Algorithm for Multi-Agent
Systems in e-Business Environments, In Proc. of the
Business Agents and the Semantic Web (BASeWEB)
Workshop, Halifax, Nova Scotia, Canada.

11. Noy, N.F., and Musen, M.A. 2001. Anchor-PROMPT:
Using Non-Local Context for Semantic Matching. In
Proc. of the Workshop on Ontologies and Information
Sharing at the 17th Intl. Joint Conf. on Artificial
Intelligence, Seattle, WA.

12. Nierman, A. and H.V. 2002. Evaluating Structural
Similarity in XML Documents. In Proc. of the 5th Intl.
Workshop on the Web and Databases, Madison, WI.

13. Sussna, M. 1993. Word Sense Disambiguation for
Free-Text Indexing using a Massive Semantic Network.
In Proc. of the 2nd Intl. Conf. on Information and
Knowledge Management, Arlington, VA.

14. Richardson, R., and Smeaton, A.F. 1995. Using
WordNet in a Knowledge-based Approach to
Information Retrieval, Working Paper, School of
computer applications, Dublin City University, Ireland.

15. Flesca, S., Manco, G., Masciari, E., Pntieri, L., and
Pugliese, A. 2002. Detecting Structural Similarities
between XML Documents. In Proc. of the 5th Intl.
Workshop on the Web and Databases, Madison, WI.

16. Doan, A., Madhavan, J., Domingos, P., and Halevy,
A. 2003. Learning to Match Ontologies on the Semantic
Web, VLDB Journal, Special Issue on the Semantic
Web.

17. Peng, Y., Zou, Y., Luan, X., Ivezic, N., Gruninger,
M., and Jones, A. 2003. Semantic Resolution for e-
Commerce, Innovative Concepts for Agent-Based
Systems. Springer-Verlag :355-366.

18. Do, H. and Rahm, E. 2001. COMA: A System for
Flexible Combination of Schema Matching Approaches,
In Proc. of VLDB, Roma, Italy:610-621.

19. Duda, R., Hart, P., and Stork, D. 2001. Pattern
Classification, 2nd Edition, Wiley-Interscience.

20. Castano, S., De Antonellis, V., and De Capitani di
Vimercati, S. 2001. Global Viewing of Heterogeneous
Data Sources, IEEE Transactions on Knowledge and
Data Engineering 13(2):277-297.

Disclaimer
Certain commercial software products are identified in this
paper. These products were used only for demonstration
purposes. This use does not imply approval or
endorsement by NIST, nor does it imply these products are
necessarily the best available for the purpose.

103

What Is Ontology Merging?
– A Category-Theoretical Perspective Using Pushouts

Pascal Hitzler and Markus Krötzsch and Marc Ehrig and York Sure
Institute AIFB, University of Karlsruhe, Germany;

{hitzler,kroetzsch,ehrig,sure}@aifb.uni-karlsruhe.de

Introduction
In this paper we explain how merging of ontologies is cap-
tured by the pushout construction from category theory, and
argue that this is a very natural approach to the problem. We
study this independent of a specific choice of ontology repre-
sentation language, and thus provide a sort of blueprint for
the development of algorithms applicable in practice. For
this purpose, we view category theory as a universal “meta
specification language” that enables us to specify properties
of ontological relationships and constructions in a way that
does not depend on any particular implementation. This can
be achieved since the basic objects of study in category the-
ory are the relationships between multiple ontological spec-
ifications, not the internal structure of a single knowledge
representation.

Categorical pushouts are already considered in some
approaches to ontology research (Jannink et al. 1998;
Schorlemmer, Potter, & Robertson 2002; Goguen 2005;
Kent 2005) and we do not claim our treatment to be entirely
original. Still we have the impression that the potential of
category theoretic approaches is by far not exhausted in to-
days ontology research. For our particular case the treatment
will focus on the ontology merging, for which we will give
both intuitive explanations and precise definitions. This re-
flects our belief that, at the current stage of research, it is
not desirable to fade out the mathematical details of the cat-
egorical approach completely, since the interfaces to current
techniques in ontology research are not yet available to their
full extent. We will also keep this treatment rather general,
not narrowing the discussion to specific formalisms – this
added generality is one of the strengths of category theory.

A long version of this paper with a tutorial character is
available from the first author’s homepage.

Categorical preliminaries
In order to approach the concept of a category, we view it
as a system of ontological specifications that includes both
ontologies and their interrelations. Informally, an ontology
can be viewed as something which conveys a certain spec-
ification (e.g. of some data) based on a given classification

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

system. Mathematically, this description allows for a num-
ber of realizations: tree structures, formal contexts, partially
ordered sets, or deductive systems of some logic are only
examples. These approaches vary widely in their expressive
power and may appear rather diverse indeed.

On the other hand, any suitable notion of an ontology
should feature certain properties. This derives from the fact
that ontologies are conceived as a means of sharing and
reusing knowledge. Hence a typical task is to compare sev-
eral (specifications of) ontologies or to combine them into a
more extensive one. The latter process is often termed on-
tology merging, and will be discussed herein. For the sake
of simplicity, our examples will use is-a hierarchies in order
to explain the abstract notions involved.

The mathematical structure of is-a hierarchies is simply
that of partially ordered sets, posets in short. Two posets
can be considered to be equivalent, if there exists a bijective
function (i.e. one which is one-to-one and onto) between
these sets which does also preserve the order (i.e. which
is monotonic). In this case, being monotonic means that a
function respects the internal structure of partially ordered
sets, while bijectivity indicates the equivalence of two or-
dered sets. Structure-preserving functions are a typical im-
plementation of what is called a morphism in category the-
ory, and what we will recognize as a suitable substitute for
the consideration of internal structures.

While monotonic functions are reasonable morphisms for
comparing posets, other mathematical spaces may suggest
different kinds of morphisms: Vector spaces are considered
with linear functions, groups with group homomorphisms,
topological spaces with continuous functions, etc. The idea
that emerges from these observations is that the relationships
between objects are basically captured by the morphisms
that exist between them. By deciding for a particular type
of morphisms, we determine which internal properties of the
mathematical objects are considered “essential” (e.g. order
structure or cardinality). This is the approach taken in cat-
egory theory: a class of objects (e.g. order structures) is
equipped with morphisms (e.g. monotonic functions), thus
forming a large directed graph with objects as nodes and
morphisms as arrows. Depending on the given situation, ar-
rows can be identified with certain functions or relations be-
tween the entities that were chosen for objects, but no such
concrete meaning is required. In order to constitute a cate-

104

gory, a directed graph only has to include a composition op-
eration (denoted ◦) for pairs of compatible arrows, satisfying
some simple axioms that are typical for the composition of
functions and the relational product. A precise definition is
found in the aforementioned full version of this paper.

Specific relationships between objects can now be defined
in purely categorical terms. Let us explore the notion of
equivalence (or, speaking categorically, isomorphism) for
the category of posets and monotone functions, where com-
position of morphisms is just usual composition of func-
tions. Restating our earlier insights, we find that two par-
tially ordered sets P and Q are equivalent (isomorphic)
whenever there is a monotone function f : P→ Q that has a
monotone inverse, i.e. for which there is a monotone func-
tion g : Q→ P with g◦ f = idP and f ◦g = idQ. Generalizing
this to arbitrary categories, we call a morphism an isomor-
phism if it has a (necessarily unique) inverse morphism. We
continue next with discussing some constructions which will
help in understanding pushouts.

Products and Relations
In set theory, the cartesian product of two sets is defined as
the set of all pairs of elements from two given sets. This
is not a suitable description from the viewpoint of cate-
gory theory, since we want to avoid to mention the internal
(element-based) structure of our objects. In order to rephrase
this in categorical language, we need to find alternative cri-
teria that rely exclusively on properties of the morphisms.
To this end, an important observation is that a product does
in general also provide two projection functions to the first
respectively second component of the product. Furthermore,
the product is distinguished by a universal property given in
the next definition.

Definition 1 Consider a category C and objects A, B ∈ |C |.
Given an object C ∈ |C | and morphisms p1 : C → A and
p2 : C → B, we say that (C, p1, p2) is the product of A and
B if the following universal property holds:

For any object D ∈ |C | and morphisms q1 : C → A and
q2 : C → B, there is a unique morphism 〈q1, q2〉 : D →
C, such that q1 = p1 ◦ 〈q1, q2〉 and q2 = p2 ◦ 〈q1, q2〉.
The latter situation is depicted in the following diagram:

B

D 〈q1,q2〉___ //___

q2 //

q1
//

C
p2

55lllllll
p1

))RRRRRRR

A

For example, in set theory for the usual cartesian product,
we can define the function 〈q1, q2〉 by setting 〈q1, q2〉(d) =
(q1(d), q2(d)). In spite of this, the above defines the carte-
sian product of sets only up to isomorphism (i.e. bijective
correspondence) – any set with the cardinality of the carte-
sian product can be equipped with appropriate morphisms.
This is a typical feature of category theory: isomorphic ob-
jects are not distinguished, since they behave similar in all
practical situations. It is the choice of morphisms that deter-
mines what distinctions are considered relevant in the first

place. We also remark that products do not necessarily exist
in every category.

We remark, nevertheless, that the notion of product of two
objects depends solely on the chosen category, i.e. on the
objects and their morphisms. Fixing, for example, a specific
ontology language, and finding an agreement on which fea-
tures of an ontology should be preserved by a corresponding
morphism, we obtain a notion of product in a canonical way.

The categorical product definition also turns out to be suit-
able to model many well-known product constructions. For
instance, when considering posets and monotone functions
one obtains the usual product order, i.e. the cartesian prod-
uct of the two sets, ordered such that a pair (a, b) is below a
pair (c, d) whenever a is below c and b is below d.

By means of the product construction, we can also in-
troduce binary relations on objects. Indeed an ordinary set-
theoretic binary relation is just a subset of the cartesian prod-
uct of two objects. Hence it makes sense to consider a mor-
phism r : D → (A × B) from some object D to the prod-
uct of A and B as a binary relation between A and B. Note
that this does also give us two functions p1 ◦ r : D → A
and p2 ◦ r : D → B to the two components of the product,
for which the morphism r is already the unique factorization
that exists due to the definition of a product.

Merging ontologies via pushouts
We will now return to our initial motivation. Our intuition
is that the objects of our category represent ontologies and
that the morphisms between them serve as meaningful tran-
sitions between these specifications. The categorical prod-
uct construction is not suitable for the purpose of modelling
ontology merging, since it does obviously not consider any
relationship between two ontologies. Such a relationship –
commonly referred to as an ontology mapping – however is
the base of an ontology merging process, so we have to find
a means of modelling it in our categorical setting. We are in
fact more interested in a certain kind of sum than in a prod-
uct. Indeed, if two ontologies were entirely unrelated, they
could be combined by just taking their disjoint union (pro-
vided that this operation makes sense for the chosen ontol-
ogy representation language). However, we are more inter-
ested in merging ontologies that do overlap (via some map-
ping), where some elements are related while others are not.
Merging two such ontologies should lead to a new ontol-
ogy that identifies equivalent elements but that tries to keep
unrelated elements apart, as far as this is possible without
violating the requirements that are imposed on the structure
of an ontology.

As an example, let us consider the following two partial
orders:

P ?>=<89:;a
llllllll

DD
D

?>=<89:;b
zz

z DD
D

?>=<89:;c

?>=<89:;d
DDD

D
?>=<89:;e

zzz
z

?>=<89:;g

/.-,()*+f

Q ?>=<89:;1
zz

z DD
D

?>=<89:;2 ?>=<89:;3

?>=<89:;4

?>=<89:;5 ?>=<89:;6
We assume that some elements of these structures are known
to be equivalent. This is expressed by a relation R ⊆ P × Q

105

R
&&NNNNNN r2

))

\ [Z X V U S

r1

$$

4
8

<
A

E

P × Q //

��

Q
e2��

P e1
// mergeR(P,Q)

Figure 1: The pushout construction

(usually called an ontology mapping) that we define as
R = {(a, 1), (b, 2), (c, 4), (f , 5), (g, 3)}. A reasonable result
of merging the posets P and Q would then be the following
structure:

76 5401 23{a, 1}
lllll RRRR

76 5401 23{b, 2}
zz DD

76 5401 23{c, g, 3, 4}

76 5401 23{d}
DD

76 5401 23{e}
zz76 5401 23{ f , 5} 76 5401 23{6}

Observe that all elements related by R are indeed identi-
fied, but that some additional identifications are necessary to
obtain a partially ordered set. Categorically, we can already
specify the data that we have considered for such an opera-
tion. The given situation is depicted in Figure 1. The dotted
arrows r1 and r2 are those that are obtained by composing
the projections of the product with the morphism from R to
P×Q. They project every pair of elements of R to its first and
second component, respectively. Now the result of merg-
ing P and Q is not just some poset mergeR(P,Q), but also
the two obvious embeddings of P and Q into mergeR(P,Q).
The property that R-related elements are identified can now
be expressed in terms of functions: we find that, for any pair
(p, q) ∈ R, e1(p) = e2(q). Still a better way to express this
for arbitrary morphisms is to say that e1 ◦ r1 = e2 ◦ r2.

This condition alone, however, does not suffice. Usually,
there are many objects for which e1 ◦ r1 = e2 ◦ r2 holds.
Which of these is the one which we want to consider as the
merging of P and Q? Clearly, the merging shall not iden-
tify anything unnecessarily. This can be stated by means of
another universal property, as follows.

Definition 2 For a category C , consider objects R, P, Q,
and morphisms p1 : R → P and p2 : R → Q. An object S
together with two morphisms e1 : P→ S and e2 : Q→ S is
a pushout if it satisfies the following properties:

(i) e1 ◦ p1 = e2 ◦ p2, i.e. the diagram in Figure 2 (left)
commutes.

(ii) For every other object T and morphisms f1 : P → T
and f2 : Q → T , with f1 ◦ p1 = f2 ◦ p2, there is a
unique morphism m : S → T such that f1 = e1 ◦ m
and f2 = e2 ◦ m. This situation is depicted in Figure 2
(right).

Condition (ii) in this definition states the universal prop-
erty of the pushout, requiring that it is in a sense the most

R

p1

��

p2 // Q

e2

��
P e1

// S

R
p1 ��

p2 // Q
e2�� f2

��

P e1
//

f1

--

S m

%%K
K

K

T

Figure 2: Diagrams for the pushout

general object that meets all requirements. Let us try to ex-
plain this a bit further. We have already understood that in
this setting we can encode the ontology mapping (e.g. bi-
nary relation) R conveniently, in that the resulting S iden-
tifies (at least) all those elements which are related by R.
But now we want to avoid the identification of other ele-
ments as much as possible. Intuitively, this means that a
suitable pushout object needs to keep elements from both
components as distinct as possible, while still implementing
all necessary identifications, and without including irrele-
vant information. Enforcing the desired identifications was
achieved by condition (i) in the above definition. Excessive
identifications are prevented by requiring the existence of a
factorization m: appending m to e1 and e2 cannot make prior
identifications undone, and hence a pair that was merged in
S can never be separated in an alternative solution (T, f1, f2)
if a suitable m is known to exist. Finally, the possibility of
including entirely unrelated information, like adding some
elements not present in either P or Q, is ruled out by assur-
ing uniqueness of the factorization m: if S would include
elements that are neither in the image of e1 nor in the image
of e2 then a valid factorization can assign these to arbitrary
values in T without loosing the factorization property – but
this would result in many possible choices in place of m. In
other words, having “unnecessary” elements in the S would
result in additional degrees of freedom in the choice of m,
thus violating the required uniqueness.

How to put our approach into practice
Let us now see how our approach can be used as a guidance
for ontology merging. Decisions need to be made step by
step, and we propose the following workflow. Later steps,
however, may indicate that earlier decisions need to be re-
vised, and thus to retrace to earlier points.

1. Decide on ontology representation language used. This
first step is probably the most unproblematic, since there
are standard ontology languages around, and the specific
application case will usually dictate the language. Poten-
tial candidates are e.g. F-Logic (Kifer, Lausen, & Wu
1995) and different variants of OWL (OWL 2004).

2. Determine what suitable morphisms are. This step con-
sists of describing the conditions which morphisms must
satisfy. These conditions will primarily be dictated by the
semantic interpretation of the ontology representation lan-
guage chosen earlier, and by the specific requirements of
the application case. Typical conditions could include the
following.

106

• The preservation of class hierarchies, i.e. functions
shall be monotonic with respect to the general class
inclusion orders on classes and/or roles.
• The preservation of types (e.g. classes, roles, annotated

objects).
• The taking into account of model-theoretic logical

properties, if featured by the underlying ontology rep-
resentation language, like satisfiability, or the preserva-
tion of specific models.
• The taking into account of proof-theoretic properties,

i.e. such relating to particular inference methods cho-
sen for reasoning with ontologies.
• The preservation of language classes, e.g. by requiring

that the merging of two OWL Lite ontologies shall not
result in an OWL ontology which is not in OWL Lite.

3. Determine what the ontology mapping is for this setting.
Usually, ontology mappings will be given by (binary) re-
lations between elements of ontologies, indicating which
elements shall be identified in the merging process. How-
ever, as the product of two ontologies may not always be
described conveniently as a set of pairs of elements – as
in the case of sets or posets –, it needs to be understood at
this stage, what the product really is, and thus what ontol-
ogy mappings are in this setting.

4. Determine what pushouts are for this setting. While the
characteristics of a pushout are fully determined by the
previous steps, it is still necessary to find a particular in-
stance of the pushout (both for the object and the embed-
ding morphisms) in terms of the ontology language. This
requires to define a possible result for arbitrary pushout
operations and to show that it satisfies the formal require-
ments of a pushout. Difficulties at this stage arise from
the fact that, like products, pushouts are not guaranteed
to exist in general. Negative results may yield effective
conditions for the existence of pushouts or even suggest a
modification of the considered theory.

5. Algorithmize how to obtain the mapping. The issue of
how to obtain suitable ontology mappings is a separate is-
sue from the one discussed here, and will usually depend
heavily on the application domain and on the ontology
representation language chosen. Machine learning tech-
niques may be used here together with linguistics-based
approaches (see e.g. (Ehrig & Sure 2004)). Fuzzy rela-
tions usually obtained by such approaches may however
have to be defuzzified at some stage, in order to obtain
a precise ontology mapping which will be used for the
merging.

6. Algorithmize how to obtain the pushout. At this stage, it is
theoretically clear what the pushout – and thus the merged
ontology – will be. Casting this insight into an algorithm
may require a considerable amount of work. The prac-
titioner may also choose at this step to forego an exact
implementation of the merging, and settle for an approxi-
mate or heuristic approach for reasons of efficiency, while
at the same time being guided by the exact merging result
as the ontology to be approximated.

Conclusions
We have argued that the problem of merging ontologies
based on a given ontology mapping can be formulated con-
veniently in the language of category theory. This lead to the
well-known definition of the categorical pushout construc-
tion, which describes ontological merging independently
from the concrete implementation that was chosen. Since
pushouts do not exist in all categories, this also yields gen-
eral guidelines for devising systems of interrelated ontolo-
gies. Methods and insights from category theory could be
used to assist in the development both of rigorous theoretical
settings for ontology merging and of conceptually sound al-
gorithms for practical implementations. Conversely, similar
considerations can also be useful to validate merging con-
structions that have been conceived exclusively on practical
grounds, since one may ask in which sense (in which cat-
egory) a given merging process produces results of general
validity.

Acknowledgements We are grateful for helpful comments
by the referees on the subject and purpose of this pa-
per. We also acknowledge support by the by the Euro-
pean Commission under contracts IST-2003-506826 SEKT
and FP6-507482 KnowledgeWeb, and by the German Fed-
eral Ministry of Education and Research (BMBF) under the
SmartWeb project. The expressed content is the view of the
authors but not necessarily the view of any of the projects as
a whole.

References
Ehrig, M., and Sure, Y. 2004. Ontology mapping – an
integrated approach. In Bussler, C.; Davis, J.; Fensel, D.;
and Studer, R., eds., Proceedings of the First European Se-
mantic Web Symposium, volume 3053 of Lecture Notes in
Computer Science, 76–91. Heraklion, Greece: Springer
Verlag.
Goguen, J. 2005. Three perspectives on information inte-
gration. In Kalfoglou, Y., and et al., eds., Semantic Inter-
operability and Integration, Dagstuhl Seminar Proceedings
04391.
Jannink, J.; Pichai, S.; Verheijen, D.; and Wiederhold, G.
1998. Encapsulation and composition of ontologies. In
Proceedings of the AAAI Workshop on AI & Information
Integration.
Kent, R. E. 2005. Semantic integration in the Information
Flow Framework. In Kalfoglou, Y., and et al., eds., Se-
mantic Interoperability and Integration, Dagstuhl Seminar
Proceedings 04391.
Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical founda-
tions of object-oriented and frame-based languages. Jour-
nal of the ACM 42.
2004. Web ontology language (OWL). www.w3.org/
2004/OWL/.
Schorlemmer, M.; Potter, S.; and Robertson, D. 2002. Au-
tomated support for composition of transformtional com-
ponents in knowledge engineering. Technical Report EDI-
INF-RR-0137, Division of Informatics, University of Ed-
inburgh.

107

Reasoning about multi-contextual
ontology evolution

Maciej Zurawski

CISA (Centre for Intelligent Systems and their Applications)
School of Informatics, Edinburgh University

Appleton Tower, Crichton Street,
Edinburgh, EH8 9LE, Scotland, UK

m.zurawski@sms.ed.ac.uk

Abstract
In this paper we develop a formalization and algorithms that
can manage the evolution of several ontologies from
different contexts, using automated reasoning. It is in
general difficult to maintain consistency between several
ontologies, but we focus on developing computationally
efficient ways of achieving this. Our formalization uses
both the notions of several local contexts and of a sequence
of states. We believe such a system can become a
component in for example a distributed knowledge
management system or some other knowledge infrastructure
that requires semantic autonomy, i.e. lack of centralized
semantics, but presence of a type of semantic coherence. In
this paper version we summarize our approach.

Background and motivation1
We envision that there will be a need for different kinds of
systems that can support several ontologies, their
individual evolution and maintain a type of coherence
between them. For example, we would like to be able to
build systems that will function as organizational
knowledge infrastructures. The organizations using these
will probably be decentralized and consist of separate
divisions that have local autonomy in their knowledge-
creating processes. Here we particularly mean semantic
autonomy (see the partial definition in figure 1). Such an
organization should act as a unified whole, because
otherwise entities from outside (e.g. customers) interacting
with the organization might be disappointed that it
contradicts itself. Creating an organizational knowledge
infrastructure is one application area (Zurawski, 2004), but
there should exist other applications as well that also
requires semantic autonomy. In both cases, this is modeled
using several ontologies that can evolve, but where a kind
of consistency is maintained between them.

1Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

We mention here again very briefly a partial definition
of semantic autonomy (for a full definition and detailed
discussion about all the requirements, see Zurawski 2004).
Semantic autonomy requires the properties in figure 1 to
hold. Considering these requirements it is natural that our
system should have an explicit notion of states. In the
mentioned paper we discussed these requirements and why
they make sense, and have to be possessed by distributed
knowledge management system (DKM). In this paper we
will instead focus on how to actually develop algorithms
that have satisfied the requirements listed here.
This paper version is only a short summary of our
approach. We don’t present the full formalization, but
focus more on the motivation.

Notions
We will first explain the basic notions we are using in
order to design a system that has the above-mentioned
properties.

 By multi-contextual we mean that we have defined a
finite set of subsets that all have their unique identifiers,

Semantic autonomy requires (among others) these
properties to hold at the same time:

1. The local contexts have the freedom to propose a

change in their local ontology (i.e. the ontology of the
local context).

2. The system does “in some way” maintain global
ontological consistency (although it may be the case
that the system doesn’t have a global theory).

3. The ontological language is dynamic and open-ended
(i.e. not confined by a pre-defined set) and there is an
oracle (knowledge source) that can answer questions
about this language.

Figure 1. In this paper we focus on developing algorithms that
exhibit these three properties.

108

individual ontologies and represent a certain cognitive
perspective, i.e. an individual way of representing a certain
domain. Because different contexts describe the same
domain (but using different ontologies) it will be natural
that it is possible to create mappings between concepts in
the different ontologies. We use the compose-and-conquer
type of context-sensitivity (Bouquet et al. 2001).
By ontology we currently mean a subsumption hierarchy of
logical concepts, that belongs to a certain context (we
don’ t have any global ontology).

 By evolution we mean that every individual ontology
can change. We will particularly focus on the case when a
new concept is added to an ontology together with a
mapping within its home ontology and a mapping to
another ontology. Because ontology evolution is so
important, we have defined the notion of states that
describe in which state a certain ontology is in. Every time
an ontology changes it moves from one state to the next
one, and all states are ordered.

The logical representation of ontology
mappings

Because of limited space we don’ t define the model theory
here, but we however summarize its characteristics. Now
we will focus on how to formalize the ontology mappings
themselves. The logic we are using has two fundamental
dimensions that are used simultaneously: contexts and
states. The basic entities that inhabit this logical space are
concepts. Every concept belongs to a unique context, and
there are no concepts outside the contexts. Every concept
has to be created in a certain state and persists either
forever or until it is deleted in some state in the future.
Concepts can be applied to instances and then they act as
logical predicates applied to constants. However, in the
algorithms that we mention we will only focus on concepts
and mappings – no instances will explicitly be present.
Two concepts belonging to the same ontology can also be
used be combined in these formulas: i iR Q∧ and i iR Q∨
(and these can be nested). We have to some extent been
inspired by intensional logic (see L. T. F. Gamut, 1991),
although we will later focus only on the proof theory and
rewrite rules.

State operators and their combination
In order to understand the ontology mapping notation we
have understand its three main components, and the first
component is the collection of state operators. We don’ t
provide the formal definition here. However, informally
speaking, Gr means that something will be true in all future
states after r, that Fr means that something will be true at
least once in the future after state r and Nr that something
is true in state r. We also use a state c from which a state
operator is evaluated (i.e. observed).
Moreover, we have defined a way of combining state
operators, so that two state operators can be combined into

one. The motivation is that this is needed when we want to
combine two ontology mappings into one (and all
mappings contain state operators as we will see). The
reason for introducing the variables r and c is that this
becomes practical later for talking about when an ontology
mapping was created and in which states it is valid.

Quantifiers and their combination
The second component of ontology mappings is quantifier
symbols, and there just two of them: 1α and 2α . We don’ t
provide the formal definitions here, but 1α approximately
means that we use a universal quantifier and 2α an
existential one. The reason why we have introduced these
symbols is that they will be used in the ontology mappings,
and can discern the difference between saying that a
certain concept is true for all instances or for at least one
instance.

Boolean functions and their combination
This is the third component of ontology mappings. We use
the standard Boolean functions of two variables and they
are represented in 2-DNF form. Two such Boolean
functions can be combined by conjunction into a new
Boolean function, using standard logical operations.

The ontology mapping notation
Here we show a part of the notation that is used for
describing ontology mappings. The reason why we choose
this kind of formalization is it that it seems to be good
when doing efficient and automated proofs about ontology
mappings. Let us call every mapping between two
concepts mi, where i is its unique identifier. A mapping mi
that holds between the concept C1 in ontology j and the
concept C2 in the ontology k can always be expressed
using on of the two following forms:

1 2 1 2(,) (((,)))i j k j km C C op f C Cα= or

1 2 1 2 1 2(,) (((,))) (((,)))i j k j k j km C C op f C C op f C Cα α′ ′ ′= ∧

where

{ }, , , , ,a b cop N F G a b c S∈ ∈ (the set of states)

{ }1 2() , and α λ α α∈

{ }1 2 1 2 1 2 1 2 1 2(,) , , ,j kf C C e e e e e e e e∈ ∧ ∧ ¬ ¬ ∧ ¬ ∧ ¬

where 1 1 2 2() and ()j j k ke C x e C y= =

(the notation of the Boolean function is the set of the
conjunctions that a 2-DNF form would contain)

Combining ontology mappings by using the three
kinds of rewrite or combination rules
Using the three kinds of rewrite or combination rules, we
can now use them in a sequence and use them for

109

combining any two ontology mappings into one – that is
their purpose. The first transformation is the application of
rewrite rules for state operators in a way that combines two
state operators into one. The second transformation is the
application of rewrite rules for expressions with quantifiers
in a way two combines to operators into one. The third
transformation is the application of combination of
Boolean functions in a way that combines two such
functions into one.

Examples of mappings
The language mentioned above allows creating a huge
variety of mappings. We can for example imitate the five
proposed mapping types by Giunchglia (see for example
Bouquet 2003) and restate them in this new concise
language. Both formalisms use the notion of contexts, but
the difference is that our definitions utilize the notion of
states as well. The state when a mapping was created is
denoted by r. Here are some examples:

CORRESPONDENCE – COR(C1j, C2k)

1 1 2 1 2 1 1 2 1 2{ , } { , }r rN e e e e G e e e eα α∧ ¬ ∧ ¬ ∧ ∧ ¬ ∧ ¬

IS (C1j, C2k)

1 1 2 1 2 1 2

1 1 2 1 2 1 2

{ , , }

{ , , }
r

r

N e e e e e e

G e e e e e e

α

α

∧ ¬ ∧ ¬ ¬ ∧ ∧

∧ ¬ ∧ ¬ ¬ ∧

DISJOINT (C1j, C2k)

1 1 2 1 2 1 2

1 1 2 1 2 1 2

{ , , }

{ , , }
r

r

N e e e e e e

G e e e e e e

α

α

¬ ∧ ¬ ∧ ¬ ∧ ¬ ∧

¬ ∧ ¬ ∧ ¬ ∧ ¬

COMPATIBLE (C1j, C2k)

2 1 2{ }rF e eα ∧

(We should stress that for example
 1 2 1 2 1 2{ , , }e e e e e e∧ ¬ ∧ ¬ ¬ ∧ is equivalent to

to 1 2e e→ , i.e. it is a DNF-form)

 For example, the relationship Compatible means “There
is at least one future state after r where there is at least a
pair of instances (one from ontology j and one from
ontology k) where the concept C1j is true (when applied to
its instance) at the same time as the concept C2k is true
(when applied to its instance)”.

Algorithms for verifying consistency between
ontology mappings

The problem we are trying to solve can be described as the
following proof task. Given a set of existing ontology
mappings 1(,)ax bym C C , 2 (,)ax bym C C … (,)n ax bym C C ,

how can we prove if it is consistent the additional mapping
1(,)n ax bym C C+ or not? The variables x and y refer to the

ontologies of the concepts and a and b are unique concept
identities (note that all these variables can be different for
every mapping).
To be able to address this proof task we need to have
operators that let us express the following things:

x ym m∧ , x ym m� and xm¬ (and formulas that this can

generate). Please note that this language is different from
the one that was defined in the beginning (for talking about
concepts). Now the basic entity is a mapping.

 Then we need two algorithms (called A and B) that will
build proof trees using refutation proofs and breath-first
search (for proofs), for solving the proof task mentioned.
Because of limited space we don’ t write them down here in
full detail, but the algorithms returns an answer (yes/no)
each to the following questions:

Algorithm A - “Is mapping G inconsistent with the current
mappings?” Output: yes/no

Algorithm B - ”Is mapping G valid, because it can be
inferred from existing mappings?” Output: yes/no

 This means that in both cases G is the newly proposed
mapping, and there is a set of existing mappings (i.e. these
are the inputs to algorithms). The algorithms are used in
the following way. A newly proposed ontology mapping G
is given and first we run algorithm A. If it answers “yes”,
then we know it is inconsistent with the existing ones. If it
answers “no” we run algorithm B. If that algorithm
answers “yes” then we know that the newly proposed is
valid because it can be inferred from existing mappings
(i.e. redundant in some way), and it answers “no” then the
proposed mappings is consistent with the existing ones, but
can’ t be inferred from them. Therefore, by using these two
algorithms we have covered all three possible cases.
We don’ t provide here a proof of correctness and
completeness. However, we just want to mention that our
proof search procedure for refutation proofs using a
breadth-first search, and the language used are horn
clauses (since we use conjunction, implication and
negation). So if the procedure finds a proof, it is valid, and
if there is a proof, the procedure will find the shortest one.

Applying the algorithms to ontology evolution
Once both algorithms are in place, it is actually rather
straightforward to use them for ontology evolution. An
ontology transformation has to be translated to “one or
more ontology mappings that are proposed to be added”.
For example, the addition of a new concept can be seen as
inventing a new concept in an ontology and adding an
internal mapping (within its home ontology) and a
mapping to an external ontology. Then we run algorithms

110

A and B for both these proposed mappings, and only if
there is no created inconsistency detected in neither of the
cases, the evolutionary step is accepted and the ontology
changes to a new state. Otherwise, the evolutionary step
would be forbidden, and the ontology would remain
unchanged.

Related research
Background to multi-context logic is give by (Giunchiglia
1993) and multiple languages and bridge rules are
discussed. A description and motivation of cognitive
context is given by (Giunchiglia et al. 1997) and the
notions of locality and compatibility are discussed. In the
interesting paper by (McGuiness et al. 2004) automated
reasoning using SAT-solvers for class hierarchies is
discussed. That is a separate case from the one we are
investigating, because WordNet is not an ontology in the
sense that there is a strict subsumption relationship
between all connected terms. The paper by (Serafini et al.,
2003) also investigates semantic matching using SAT and
class hierarchies. Some of the inspiration how to design
and formalize our logical representation comes from
(Gamut, 1991) that describes intensional logic. A variety
of different ontology-change operations are classified and
described by (Noy & Klein, 2004). Much of the motivation
why we need a system that can evolve multiple ontologies
is given in (Zurawski 2004).

Conclusions
It will be important for many applications to be able to
support many ontologies, that all can evolve at the same
time as consistency is maintained between them. We have
proposed an approach that uses a logical formalization that
consists both of contexts and of states. Every local context
has its own individual ontology, and it can evolve – this
moves it into the next state. We have already implemented
a part of the system (in Java) and when the whole system
will be implemented we will evaluate the scalability by
running some experiments. Our approach is an alternative
to the model theoretical approach where SAT-solvers are
used. Many of the systems described in the literature
usually only allow for a few types of ontology mappings
whereas our ontology mapping language is relatively rich.
We have to investigate how this approach compares to
other approaches (such as SAT-solving) and investigate
how well it scales in cases when there are extensive
amounts of ontology mappings that have to be taken into
account. The problem of maintaining consistency between
multiple evolving ontologies might seem to be intractable,
but by adapting the reasoner to the unique properties of the
problem, we might make the problem tractable (but
experimental evaluation is needed as well). Finally, we
believe that these methods could become one of the
components in the design of an organizational distributed
knowledge management system or some other knowledge

infrastructure that will become valuable in the upcoming
era of the knowledge society.

Acknowledgements
This research was funded by the Marcus Wallenberg
Foundation for Education in International Industrial
Enterprise. The author would like to thank Dave Robertson
and Jessica Chen-Burger (both at CISA) for their valuable
comments and feedback.

References
Bouquet, P., Ghidini, C., Giunchiglia, F., Blanzieri, E., “ Theories
and uses of context in knowledge representation and reasoning” ,
IRST Technical Report 0110-28, Istituto Trentino di Cultura,
October, 2001.

Bouquet, P., Giunchiglia, F., van Harmelen, F.,Serafini, L.,
Stuckenschmidt, H. ” C-OWL: Contextualizing Ontologies” ,
Proceedings of the Second International Semantic Web
Conference, K. Sekara and J. Mylopoulis (Ed.), pp 164-179,
LNCS. Springer Verlag, October, 2003.

Gamut, L. T. F. “ Logic, Language, and Meaning, Volume 2:
Intensional Logic and Logical Grammar” . The University of
Chicago Press, 1991.

Giunchiglia, F., “ Contextual reasoning” , In: Epistemologia -
Special Issue on I Linguaggi e le Macchine, XVI, pp 345-364,
1993.

Giunchiglia F., Bouquet P., “ Introduction to contextual reasoning.
An Artificial Intelligence Perspective” , In: Perspectives on
Cognitive Science, B. Kokinov (ed.), 3, NBU Press, Sofia
(Bulgaria), 1997.

McGuiness, D. L., Shvaiko, P., Giunchiglia, F., da Silva, P. P.,
“ Towards explaining semantic matching” . Technical Report DIT-
04-019, Informatica e Telecomunicazioni, University of Trento,
2004.

Noy, N. F. and Klein, M., “ Ontology evolution: Not the same as
schema evolution” . In: Knowledge and Information Systems, 6(4),
pp 428-440, 2004.

Serafini, L., Bouquet, P., Magnini, B., Zanobini, S., “ An
algorithm for matching contextualized schemas via SAT” .
Technical Report DIT-03-003, Informatica e Telecomunicazioni,
University of Trento, 2003.

Zurawski, M., “ Towards a context-sensitive distributed
knowledge management system for the knowledge organization” ,
Workshop on Knowledge Management and the Semantic Web,
14th International Conference on Knowledge Engineering and
Knowledge Management. EKAW 2004, Northamptonshire, UK,
October, 2004.

111

Default Reasoning with Contexts

Daniel B. Hunter, Daniel F. Bostwick

BAE Systems, Advanced Information Technologies
6 New England Executive Park

Burlington, Massachusetts 01803
daniel.hunter@baesystems.com

daniel.bostwick@baesystems.com

Abstract
We describe a system that combines default reasoning with
contexts. Contexts are arranged in a hierarchy where more
specific contexts represent revisions of the state of belief in
more general contexts. We describe our algorithm for
default reasoning in a context hierarchy and provide a
translation of our representation into a default logic theory
whose inferences agree with our algorithm. We conclude
with a discussion of different notions of context and give a
justification of our default rules when contexts are
understood as states of belief.

Introduction

People apply default reasoning all the time; we fill in
missing information about a particular situation based on
our experience and knowledge of what is usually true.
Applying this type of reasoning is useful as it saves us from
having to re-obtain information that remains largely static
across most similar situations. Default reasoning in formal
systems is likewise useful; it saves us from re-representing
information that does not (usually) change.

People also believe different things at different times and in
different situations; we operate in different states of belief
according to changes in the information we have. The
ability to revise our states of belief is an essential part of
living in a dynamic world. Representing different states of
belief in an automatic inference system is also useful; it
allows us to do 'what-if' reasoning and can have a positive
impact on inference efficiency. In this paper we view
contexts as states of belief and investigate how default
reasoning and contexts interact in reasoning.

We describe an algorithm for default reasoning in contexts
that we have implemented in an automated inference
system. We then provide a translation of our representation

Copyright © 2005, BAE Systems/Advanced Information Technologies. All
rights reserved.

into a formal theory of default reasoning and show that our
algorithm agrees with the theory. Finally we justify the
theory when contexts are understood as states of belief.

Default Reasoning with Contexts in AKS

We have designed and implemented the AIT Knowledge
Server (AKS), a computationally-efficient, constraint-based
knowledge server that provides a semantics richer than
conventional frame system attribute/value relations
[Minsky, 1975]. In addition, the AKS supports contexts,
which partition the knowledge base. Contexts enable
reasoning within a subset of the knowledge base, and they
allow different parts of the knowledge base to be
inconsistent with each other, facilitating “what if”
reasoning. In the AKS, contexts are arranged in a single
(tree-structured) inheritance hierarchy such that anything
that is true in a context is also true in its subcontexts.

The expressions in our representation language that are
relevant to default reasoning are:

• instance(C, I, K): class K is the most specific
superclass of instance I in context C

• parent_class(C, H, K): class K is a most specific
superclass of class H in context C

• subcontext(C2, C1): context C1 is the most specific
supercontext of context C2

• direct_assignment(C, I, S, V): V is assigned to be a
value of slot S on instance I in context C

• default_value(C, K, S, D): D is the default value of
slot S on class K in context C

Default Reasoning in AKS

The AKS also supports a form of default reasoning in which
a slot on a class may be assigned a default value. Default
values are inherited by subclasses and instances of the class;

112

these default values can be overridden by subclasses and
instances. In the event that an instance does not specify a
value for a slot, then the inherited default value for the slot,
if specified, becomes the value of the instance’s slot. Slots
are not required to have any value assigned to them.

The value for a slot on an instance can either be assigned
directly or inherited from a default value in a superclass. If
slot S on instance I (notated as I.S) has no directly assigned
value, we search upwards in the class hierarchy for a most
specific superclass of I that has a default value for S. With
contexts, the reasoning becomes more complicated.
Consider Figure 1 where we have two contexts:

1. a context called birds in which we are agnostic as
to whether or not birds can fly, but we know that
penguins, in general, cannot

2. a subcontext called birds_can_fly in which we
have modified our belief to be that birds, in
general, can fly

Context birds

Class bird
slot: can_fly

Class penguin : bird
slot: can_fly = false

Context birds

Class bird
slot: can_fly

Class penguin : bird
slot: can_fly = false

Class bird
slot: can_fly = true

Instance george : penguin

Context birds_can_fly: birds

Class bird
slot: can_fly = true

Instance george : penguin

Context birds_can_fly: birds

Figure 1. Class hierarchy over two contexts

The question is whether or not george can fly in the context
birds_can_fly. Given a context C, an instance I of class K
(where K is a most specific superclass of I), and a slot S on
I, we use the following algorithm to determine the value of
I.S in C. We use a special symbol no_value_found to
indicate that no value has been assigned to I.S in C.

The function value_of(C, I, S) returns a value for slot S on
instance I in context C. value_of first looks for a value that
is directly assigned to I.S in C or any supercontexts of C.
Failing that, value_of looks for a default value on slot S in
the superclass of I in context C.

value_of(C, I, S):
 V = direct(C, I, S)

 if V == no_value_found
 return default(C, K, S)
 else
 return V

direct(C, I, S) returns a value that is directly assigned to slot
S on instance I in context C or any ancestor contexts of C.

direct(C, I, S) :

 if direct_assignment(C, I, S,V) then
 return V
 else
 if subcontext(C, Cp)
 return direct(Cp, I, S)
 else
 return no_value_found

The function default(C, K, S) returns a default value for slot
S on class K in context C. The context hierarchy is
searched before the class hierarchy. All ancestor contexts
of C are searched for a default value on K.S before any
superclasses of K are searched.

default(C, K, S) :
 V = default_for_class(C, K, S)
 if V != no_value_found
 return V
 else
 for each Kp where parent_class(C, K, Kp)
 V = default(C, Kp, S)
 If V != no_value_found
 return V
 return no_value_found

The function default_for_class(C, K, S) returns a default
value for slot S on class K in context C. default_for_class
does not examine any superclasses of K; it searches only in
context C and its supercontexts for a default value on K.S.

default_for_class(C, K, S) :
 if default_value(C, K, S, V)
 return V
 else
 if subcontext(C, Cp)
 return default_for_class(Cp, K, S)
 else
 return no_value_found

For the situation illustrated in Figure 1 this algorithm gives
the result:

 value_of(birds_can_fly, george, can_fly) = false

Justification of Default Reasoning Mechanism

[Etherington, 1988] provides a translation of a class
inheritance hierarchy with exceptions into a set of default
rules in Reiter’s system of default logic. A similar
translation can be given for our system of default reasoning.

In Reiter’s system of default logic [Reiter, 1980], a default
theory is a pair ∆ = <D, W>, where W is a set of first-order
formulas and D is a set of rules of the form:

)(
)(:)(

x
xx

χ
βα

113

where)(),(xx χα , and)(xβ are first-order formulas
whose free variables are among x .

W is the set of facts and D provides a means of drawing
tentative conclusions. The intuitive meaning of the above
default rule is that if)(aα is known and it is consistent to
believe)(aβ , then)(aχ may be inferred. (a is a
sequence of individual constants replacing the variables x .)

A more formal interpretation of a default theory is provided
by the notion of an extension. An extension of a default
theory <D, W> is a set E of formulas that is a minimal fixed
point1 of an operator Γ on sets of formulas satisfying:

1. W ⊆ Γ(S)

2. Γ(S) is closed under logical consequence

3. Given)(/)(:)(xxx χβα ∈ D, if)(aα ∈
Γ(S) and ∉¬)(aβ S , then)(aχ ∈ Γ(S)

An extension for a default theory is often regarded as a set
of propositions constituting an “acceptable” set of beliefs
given the theory.

A default rule with)(xβ =)(xχ is said to be normal;
one with)(xβ =)()(xx ϕχ ∧ for some)(xϕ is semi-
normal. Our translation will always result in either normal
or semi-normal default rules.

If Σ is a set of AKS assertions describing an inheritance
hierarchy with contexts, we give a translation of Σ into a
default theory <D(Σ), W(Σ)> as follows:

1. If instance(C, I, A) ∈ Σ, then C → A(I) ∈ W(Σ)

2. If parent_class(C, B, A) ∈ Σ, then (x)(C∧B(x) →
A(x)) ∈ W(Σ)

3. If subcontext(C2, C1) ∈ Σ, then C2 → C1 ∈ W(Σ)

4. If direct_assignment(C,I,S,V) ∈ Σ, then the
default),(/),(: 1 VISCCVISC k¬∧¬∧ … ∈
D(Σ), where the Ci are nearest subcontexts of C
such that direct_assignment(Ci, I, S, V′) ∈ Σ for
some V′ (i.e. there is no context between C and Ci
in which a direct assignment to S for I is made).

5. If default_value(C, K, S, D) ∈ Σ, then
),(/),(:)(1 DxSEEDxSxKC k¬∧¬∧∧ …

∈ D(Σ), where the Ei are all the exceptions
(defined below) to default_value(C, K, S, D).

The exceptions to default_value(C, K, S, D) are the following:

i. If direct_assignment(C′, I, S, V) ∈ Σ, where C′ is
C or a subcontext of C and I is an instance of K,
then)(IxC =∧′ is an exception.

1 X is a fixed point of an operator O if O(X) = X.

ii. If direct_assignment(C′, I, S, V) ∈ Σ, where C′ is a
supercontext of C and I is an instance of K, then

Ix= is an exception.

iii. If default_assignment(C′, H, S, D′) ∈ Σ, where C′
is a subcontext of C and H is K or a subclass of K,
then C′∧H(x) is an exception.

iv. If default_assignment(C′, H, S, D′) ∈ Σ, where C′
is a supercontext of C and H is a subclass of K,
then H(x) is an exception.

Given this translation, the algorithm for default reasoning
described in the previous section can be shown to agree
with the conclusions derivable from <D(Σ), W(Σ)>. More
precisely, we have the following theorem:

Theorem 1. If AKS infers conclusion P from default theory
<D(Σ), W(Σ)>, then P is in an extension of <D(Σ), W(Σ)>2.

What Contexts Represent

Applying the translation to the example in the previous
section yields the following default theory:

W = { birds_can_fly → birds, birds_can_fly → penguin(george) }

D = { birds∧penguin(X) : can_fly(X,false)/can_fly(X,false),

 birds_can_fly∧bird(X) : can_fly(X,true) ∧¬penguin(X)/

 can_fly(X,true) }

It is straightforward to show that can_fly(george,false) is
derivable from birds_can_fly.

Figure 2. Avian inheritance hierarchy.

As the above default theory shows, we regard penguins as
exceptions to birds flying even in subcontexts of the context
in which penguins are declared not to fly by default; yet we
don’t regard birds in the context birds_can_fly as special
kinds of birds whose default properties can override those
of other subclasses of bird. This introduces an asymmetry in
the treatment of subclasses and subcontexts. We might
have regarded contexts as defining special subclasses of the
classes defined within them, in which case we could

2 For reasons of space, proofs could not be included in this
paper. They are available upon request from the authors.

isa isa

subclass subclass

george

bird-in-C penguin

bird

114

represent the entire class/context hierarchy in the previous
section in terms of a single class hierarchy with no explicit
contexts as shown in Figure 2. The context information is
embedded in a special subclass of bird, the class bird-in-C
(where C stands for a subcontext of the context birds).

If the default flying status for a bird-in-C is that it flies, then,
we cannot arrive at a clear conclusion about George’s flying
ability. (This example is isomorphic to the notorious
“Nixon diamond” [Touretzky, 1984].)

We wish to argue that whether or not any inference can be
made about George’s flying abilities given the above default
rules depends upon how contexts are interpreted. [Akman
and Surav, 1996] surveys the multifarious ways in which
the notion of context has been understood. Some think of
contexts as being the same or similar to situations as
understood, say, in situation theory [Barwise and Perry,
1983]. A situation is regarded as a collection of states of
affairs, where states of affairs might be thought of as
possible facts. An actual situation might even be identified
with a particular spatio-temporal slice of the universe.

If contexts are thought of as situations, then it does make
sense to regard the restriction of a class to those instances
occurring in a particular context as a subclass of that class1.
For on this construal of contexts, C2 is a subcontext of C1 if
C2 is a restriction of C1 to some particular subset of the
facts occurring in C1. Thus the set of instances of a class K
that occur in context C2 will be a subset, and often a proper
subset, of the set of instances of K occurring in C1. For
example, if by default penguins don’t fly and one considers,
say, birds-inhabiting-Patagonia, which do fly by default,
there’s no reason to simply assume that penguins-
inhabiting-Patagonia don’t fly. (Perhaps unusual
gravitational conditions in Patagonia give all birds the
ability to fly.)

 Another interpretation of “context” is as a state of belief.
On this interpretation a subcontext represents an extension
of its parent’s state of belief. Thus a subcontext represents
a state of belief in which all of the beliefs in the parent are
still held plus other beliefs that are added in the subcontext
(provided the new beliefs are consistent with the old ones).

On this interpretation of what a context is, defaults holding
in supercontexts are inherited by a context unless
overridden. Hence the context birds_can_fly simply adds to
the information present in its parent context birds, the
information that by default birds can fly. This default rule
is consistent with the information contained in birds that by
default penguins cannot fly and so that piece of information

1 In Cyc, for example, it is assumed that quantifiers in
rules for a given microtheory range only over objects
existing in the situation described by the microtheory.

is inherited by birds_can_fly. The default inference rules for
AKS class/context hierarchies can therefore be justified
when contexts are understood as belief states2.

Conclusion

We have described an implementation of a default
reasoning system that combines class inheritance
hierarchies with contexts. A translation of assertions in our
system into default rules in Reiter's system of default logic
was given. These default rules can be justified when the
notion of a context is understood as a state of belief and a
subcontext as an extension or revision of a state of belief.

References

Akman, V. and Surav, M. 1996. “Steps Toward
Formalizing Context,” in AI Magazine 17(3), pp. 55-72,

Barwise, J. and Perry, J. 1983. Situations and Attitudes.
Cambridge:MIT Press.

Etherington, D. W., 1988. Reasoning with Incomplete
Information. Los Altos: Morgan Kaufmann Publishers.

Minsky, M. 1975. “A framework for representing
knowledge” in P. Winston ed., The Psychology of Computer
Vision. New York: McGraw-Hill, pp. 211-280.

Reiter, R. 1980. “A logic for default reasoning” in
Artificial Intelligence 13, North-Holland, pp. 81-132.

Shore, J. “Relative Entropy, Probabilistic Inference, and
AI.” In Proceedings of the First Conference on Uncertainty
in Artificial Intelligence, ed. L. Kanal and J. Lemmer,
Elsevier Science Publishing Co., Inc., 1985.

Touretzky, D. S., 1984. “Implicit ordering of defaults in
inheritance systems.” In Proceedings of the Fifth National
Conference on Artificial Intelligence, pp. 322-325.

Acknowledgement

This material is based upon work supported by the Air
Force Research Laboratory under Contract No. F30602-01-
C-0041. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
United States Air Force.

2 A more formal argument for this conclusion can be given,
using maximum relative entropy updating for belief revision
and a probabilistic/statistical model of default rules.

115

Architecting a Search Engine
for the Semantic Web

David E. Goldschmidt and Mukkai Krishnamoorthy

Rensselaer Polytechnic Institute
Troy, New York, USA

{goldsd, moorthy}@cs.rpi.edu

Abstract
Since its emergence in the early 1990s, the World Wide
Web has rapidly evolved into a global information space of
incomparable size. Keyword-based search engines such as
Google™ index as many webpages as possible for the
benefit of human users. Sophisticated as such search
engines have become, they are still often unable to bridge
the gap between HTML and the human. Tim Berners-Lee
envisions the Semantic Web as the web of machine-
interpretable information that complements the existing
World Wide Web, providing an automated means for
machines to truly traverse the Web on behalf of their human
counterparts. A cornerstone application of the emerging
Semantic Web is the search engine that is capable of tying
components of the Semantic Web together into a traversable
landscape. This paper describes both an architecture for
and a prototype of a Semantic Web Search Engine (SWSE)
using Jena that provides more sophisticated searching with
more exacting results. To compare keyword-based search
via Google with semantics-based search via the SWSE
prototype, we utilize the Google CruciVerbalist (GCV), a
system we developed that attempts to solve crossword
puzzles via a generic search interface.

Introduction
For many, a search engine is the starting point for locating
new information on the Web. Among companies
specializing in Web search technologies, Google currently
enjoys a top spot in terms of both coverage and reliability
(Elgin 2004). Google’s search technologies rely on the
linked structure of the Web to rank webpages based on
their popularity. Other search engines use a variety of
word-frequency and clustering techniques, as well as
additional keyword-based approaches. Regardless of the
underlying architecture, users specify keywords that match
words in huge search engine databases, producing a ranked
list of URLs and snippets of webpages in which the
keywords matched.
 While such technologies have been successful, users are
still often faced with the daunting task of sifting through

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

multiple pages of results, many of which are irrelevant.
Surveys indicate that almost 25% of Web searchers are
unable to find useful results in the first set of URLs that
are returned (Roush 2004). Such results are designated for
human consumption rather than machine processing.
 Tim Berners-Lee, the inventor of the World Wide Web,
defines the Semantic Web as “The Web of data with
meaning in the sense that a computer program can learn
enough about what the data means [in order] to process it”
(Berners-Lee 1999). Rather than a Web filled only with
human-interpretable information, Berners-Lee’s vision
includes an extended Web that incorporates machine-
interpretable information, enabling machines to process
the volumes of available information, acting on behalf of
their human counterparts (Fensel et al 2003).
 In this paper, we present the building blocks of the
Semantic Web and describe a scalable architecture for a
Semantic Web Search Engine (SWSE) using Jena. A
prototype implementation of the SWSE is also presented,
including sample ontologies and results. Keyword-based
search results from Google are compared to SWSE search
results via the Google CruciVerbalist (GCV), a system
developed to solve crossword puzzles using only the
results of Google or another such search engine interface
(Goldschmidt and Krishnamoorthy 2004).

Building Blocks of the Semantic Web
Much of the infrastructure of the Semantic Web has
already been defined (see Berners-Lee et al 2001, Fensel et
al 2003, Hjelm 2001, Heflin et al 2002, and others).
Uniform Resource Identifier (URI). Uniform Resource
Identifiers (URIs) are used to represent tangible objects,
people, places, abstract relationships, intangible or fuzzy
concepts—just about anything (Connolly 2003).
Syntactically, URIs resemble URLs. Defining URIs
enables the development of ever-expanding machine-
interpretable vocabularies. These are the nouns, verbs, and
other language constructs that make up the Semantic Web.
Resource Description Framework (RDF). The Resource
Description Framework (RDF) is used to combine URIs
together to form machine-interpretable statements. Akin to
simple prose, an RDF statement consists of a subject, a
predicate, and an object. In general, the subject is a

116

resource, the predicate is a property, and the object is
either a resource or a literal value (see Lassila and Swick
1999, Manola and Miller 2002).
RDF Schema (RDFS). Using basic RDF constructs, rich
machine-interpretable vocabularies may be developed.
RDF Schema (RDFS) is an example of a widely used
vocabulary language based on RDF that allows you to
define classes, subclasses, properties, and subproperties
(see Brickley and Guha 2002).
Web Ontology Language (OWL). Incorporating RDF
and RDF Schema, the Web Ontology Language (OWL)
further enriches the family of ontology languages available
for use on the Semantic Web. OWL provides such
constructs as: (1) relations (e.g. equivalence, disjointness);
(2) cardinality; (3) richer typing; (4) characteristics of
properties (e.g. symmetry, transitivity); and (5) enumerated
classes (see McGuinness and van Harmelen 2004).
Ontologies. Using the aforementioned languages,
domains of knowledge called ontologies are defined. An
ontology “formally defines a common set of terms that are
used to describe and represent a domain,” thus making the
terms and knowledge therein reusable (Fensel et al 2003).
Jena Framework. Designed and implemented by Brian
McBride et al of HP Labs, the Jena Framework is a set of
Java APIs devoted to Semantic Web application
development. Jena supports ontologies developed using
RDF, OWL, and RDFS. Based on these ontology
languages, Jena provides a reasoning subsystem that
supports RDFS and the OWL Lite subset, though OWL
support is described as being “preliminary and still under
development” (McBride et al 2005). Since the given
ontology languages allow the specification of constraints, a
means of validating an RDF model is provided via Jena’s
validation inference interface.

Sample Ontologies
Organized ontologies and other RDF documents are
currently being created to support Semantic Web
applications. Not surprisingly, much of these efforts are
catalogued on the World Wide Web (see SchemaWeb
2005, Swoogle 2005). We constructed numerous
ontologies as part of our SWSE implementation, including
vocabularies for genealogy, mythology, United States
Presidents, the Solar System, geography, and so on.
WordNet® Ontology. In an effort to bring a voluminous
and practical vocabulary to the Semantic Web, we looked
to WordNet®, an open lexical reference of over 200,000
English words and phrases, including their semantic
relationships with one another. WordNet has been
developed by the Cognitive Science Laboratory at
Princeton University under the direction of Professor
George A. Miller (WordNet 2005).
 In early 2001, Melnik and Decker converted the
WordNet vocabulary to RDF and RDFS (Melnik and
Decker 2001). We have further translated WordNet to
OWL, enabling the use of the WordNet vocabulary as both
resources and properties. WordNet defines nouns, verbs,

adverbs, and adjectives. We translated these vocabulary
constructs to OWL as both properties and resources,
appending the corresponding part of speech to distinguish
usage. For example, the concept of life is translated to the
life-Noun resource and the life-Noun-as-Verb property,
enabling specific use as subject, predicate, or object in
RDF statements.
Semantic Webgraphs. Information on the Semantic Web
may be represented via semantic webgraphs. Such
constructs are graphs in which resources and literal values
are represented as nodes, and properties as either nodes
(see Figure 1) or directed edges (see Figure 2). Semantic
webgraphs provide a graph-based human-readable format,
and enable software agents to traverse the Semantic Web
via well-known graph traversal algorithms.

Figure 1. Semantic webgraph showing Earth’s support for life

Figure 2. Semantic webgraph focused on Ronald Reagan, including
vocabulary from the genealogy, WordNet, and Presidents ontologies

Implementing a Semantic Web Search Engine

SWSE Architecture and Prototype
From a bird’s-eye view, the architecture of the Semantic
Web Search Engine resembles that of traditional keyword-
based search engines. Queries are accepted and results
generated based on summarized data in a central database.
Search Queries. The basic search query form is plaintext,
which supports intuitive features much like that of Google.
Text may be quoted to treat multiple words as a single unit,
and stop words (e.g. “is,” “the,” “of,” etc.) will—to some
degree—be ignored. Starting with a plaintext query form
maximizes the flexibility of future search enhancements.

support-Noun-as-VerbEarth life-Noun

Planetrdf:type

GeorgeBush

RonaldReagan

JaneWyman
isHusbandOf

presidentBefore

actor

former-Adverb

isWifeOf

NancyDavis

isHusbandOf

isWifeOf

thespian

synonymOf

synonymOf

a theatrical performer

GlossaryEntry

GlossaryEntry

117

Using Search Keywords to Identify URIs. In the SWSE
architecture, keyword-based search still plays a role.
Given a search query Q in plaintext form, phrases of Q are
matched via case-insensitive string matching against
the <rdfs:label> and <rdfs:comment> elements of all
available RDF documents, as well as all <rdfs:Literal>
elements, as identified by property definitions. Results of
this string-matching phase are URIs of both properties and
non-properties, weighted according to frequency.
Forming RDF Queries. Once potential properties and
resources are identified, they are combined to form RDF
queries against the RDF knowledge base. This is the heart
of the SWSE architecture in which the various
combinations of properties and resources are queried and
results collected and ranked.
 As an example, if a given plaintext query results in
potential properties p1 and p2, and potential non-property
resources n1, n2, and n3, a query will be generated for each
combination in which either zero or one element is missing
(e.g. n1 p1 n2; n1 p1 n3; n1 p1 ?; ? p2 n1; etc.). This “fill-in-
the-blank” RDF statement detection process is repeated
with those new elements discovered forming a “hop” in the
sense of a breadth-first search algorithm.
 Given example query “wife of President before Adams,”
we match substrings against the SWSE knowledge base.
From the genealogy ontology, we match the isWifeOf
property; from the US Presidents ontology, we match the
presidentBefore and presidentAfter properties, as well
as the JohnAdams and JohnQuincyAdams resources. During
the first pass, we detect statements shown in Figure 3.

GeorgeWashington presidentBefore JohnAdams.
JamesMonroe presidentBefore JohnQuincyAdams.
ThomasJefferson presidentAfter JohnAdams.
AndrewJackson presidentAfter JohnQuincyAdams.
AbigailSmith isWifeOf JohnAdams.
LouisaJohnson isWifeOf JohnQuincyAdams.

Figure 3. Detected RDF statements shown in weighted order

For each new resource detected, the process repeats itself,
yielding new RDF statements (see Figure 4).

MarthaCurtis isWifeOf GeorgeWashington.
ElizabethKortwright isWifeOf JamesMonroe.
MarthaSkelton isWifeOf ThomasJefferson.
RachelRobards isWifeOf AndrewJackson.
JamesMonroe presidentAfter JamesMadison.
ThomasJefferson presidentBefore JamesMadison.
etc.

Figure 4. RDF statements detected during the second pass

Though this process may be repeated many times, we limit
the number of repetitions—i.e. the maximum breadth—to a
small number such as two or three, otherwise results will
be flooded with irrelevant inferences.
Traversing Semantic Webgraphs. The RDF statements
discovered via the aforementioned querying process form a
semantic webgraph. In an attempt to match multiple RDF

statements to a given plaintext query, we number each
word of the plaintext query, as shown in Figure 5.

wife of President before Adams
1 2 3 4 5

Figure 5. Sample plaintext query with order specified

 We then count the number of potential properties, np,
detected for the plaintext query string, deduplicating based
on location. For the given example, the word “wife” in
location 1 matches the isWifeOf property, whereas the
word “President” in location 3 matches both the
presidentAfter and presidentBefore properties.
Counting location 3 only once, np is two, indicating that
our results should combine at most two RDF statements.
More specifically, we traverse only two properties in our
semantic webgraph. See Table 1 for example results.

SWSE Prototype Results
As described above, we have successfully implemented
and tested an SWSE prototype. Rather than use a
relational database, the SWSE prototype stores all of its
knowledge in memory.
Sample SWSE Query Results. With the aforementioned
ontologies, the SWSE prototype provides results to queries
in a fashion reminiscent of Prolog. Example results appear
in Table 1.

Plaintext Query Top SWSE Results

Wife of President
before Adams

Martha Curtis | Is Wife Of | George
Washington | President Before | John Adams.

Elizabeth Kortwright | Is Wife Of | James
Monroe | President Before | John Quincy
Adams.

Daughter of wife of
Norse God of
Mischief

Hel | Is Daughter Of | Angrboda | Is Wife Of |
Loki | Is God Of | Mischief.

Who wrote the
Gettysburg Address?

Abraham Lincoln | wrote | Gettysburg
Address.

Abraham Lincoln | penned | Gettysburg
Address.

Table 1. Example query results using SWSE

Google CruciVerbalist. A fundamental goal of the
Semantic Web is to enable machines to communicate with
one another via machine-processable vocabularies. In an
effort to compare keyword-based search and semantics-
based search, we constructed the Google CruciVerbalist
(GCV), a system that attempts to solve crossword puzzles
using Google or the SWSE prototype to answer clues.
 GCV utilizes numerous keyword-based “tricks” to
translate crossword puzzle clues into “Google-friendly” or
“search-friendly” query strings. For each query string,
candidate answers are obtained from the list of top ten

118

query results. None of the actual HTML pages are fetched
(Goldschmidt and Krishnamoorthy 2004).
Comparative Crossword Puzzle Results. A set of
theme-based children’s crossword puzzles were used to
compare keyword-based searching via Google to
semantics-based searching via the SWSE prototype.
 As shown in Table 2, the keyword-based approach
yields many irrelevant results, whereas the semantics-
based approach is much more exacting.

Crossword puzzle Candidate answers
per clue via Google
(min / avg / max)

Candidate answers
per clue via SWSE
(min / avg / max)

Norse Mythology 15 / 68.44 / 124 1 / 1.36 / 3

US Presidents 25 / 107.69 / 206 1 / 5.31 / 12

Solar System 34 / 89.45 / 192 1 / 3.09 / 8

US Geography 4 / 42.00 / 72 1 / 1.10 / 2

Table 2. Comparing the number of candidate answers per clue

 Given the set of candidate answers for each clue, GCV
attempts to fill in the crossword grid. Each candidate
answer is assigned a confidence value based on word
frequency; such confidence values drive the depth-first
search algorithm used to populate the grid. The fewer
incorrect candidate answers, the higher the success rates,
as shown in Table 3.

Crossword puzzle Correctly placed
words via Google

Correctly placed
words via SWSE

Norse Mythology 9 / 25 (36%) 25 / 25 (100%)

US Presidents 8 / 13 (62%) 12 / 13 (92%)

Solar System 11 / 11 (100%) 11 / 11 (100%)

US Geography 4 / 10 (40%) 10 / 10 (100%)

Table 3. Comparing the success of solving crossword puzzles

Conclusions
Though Google searches occur by the thousands every
second (Elgin 2004), technologies for searching the World
Wide Web are reaching a plateau. New developments and
advancements in keyword-based search technologies will
continue to improve search services on the Web; however,
the growth rate of these improvements will likely be slight.
Problems of imprecise and irrelevant results will continue
to hinder Web searchers, especially with the continued
expansion of the Web.
 A new, semantically based approach is necessary not
only to reduce the “information overload” problem of the
day, but also to enable more effective and productive
services over the Web. By providing a viable architecture
and prototype for a Semantic Web search engine, our
research aims to help open the floodgates of the emerging
Semantic Web.

References
Berners-Lee, T. 1999. Weaving the Web: the Original
Design and Ultimate Destiny of the World Wide Web by Its
Inventor. New York: HarperSanFrancisco.
Berners-Lee, T. et al 2001. The Semantic Web. Scientific
American. May 2001.
Brickley, D. and Guha, R. eds. 2002. RDF Vocabulary
Description Language 1.0: RDF Schema. W3C,
http://www.w3.org/TR/rdf-schema.
Calishain, T. and Dornfest R. 2003. Google Hacks: 101
Industrial-Strength Tips & Tools. Sebastopol, Calif.:
O’Reilly & Associates, Inc.
Connolly, D. et al 2003. Web Naming and Addressing
Overview. W3C, http://www.w3.org/ Addressing.
Elgin, B. 2004. Why the world’s hottest tech company
will struggle to keep its edge. BusinessWeek. May 3,
2004.
Fensel, D. et al eds. 2003. Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential.
Cambridge, Mass.: MIT Press.
Goldschmidt, D. and Krishnamoorthy, M. 2004. Solving
Crossword Puzzles via the Google API. In Proceedings of
the IADIS International Conference WWW/Internet 2004,
382-389. Madrid, Spain: IADIS Press.
Heflin, J. et al eds. 2002. Requirements for a Web
Ontology Language. W3C, http://www.w3.org/TR/
webont-req.
Hjelm, J. 2001. Creating the Semantic Web with RDF.
John Wiley & Sons, Inc.
Lassila, O. and Swick, R. eds. 1999. Resource Description
Framework (RDF) Model and Syntax Specification. W3C,
http://www.w3.org/TR/REC-rdf-syntax.
Manola, F. and Miller, E. eds. 2002. RDF Primer. W3C,
http://www.w3.org/TR/rdf-primer.
McBride, B. et al 2005. HP Labs Semantic Web Research,
http://www.hpl.hp.com/semweb/.
McGuinness, D. and van Harmelen, F. eds. 2004. OWL
Web Ontology Language Overview. W3C,
http://www.w3.org/TR/owl-features.
Melnik, S. and Decker, S. 2001. WordNet via RDF,
http://www.semanticweb.org/library/.
Roush, W. 2004. Search beyond Google. Technology
Review. March 2004. http://www.technologyreview.
com/articles/print_version/roush0304.asp.
SchemaWeb 2005. http://www.schemaweb.info/.
Swoogle 2005. http://swoogle.umbc.edu/.
WordNet 2005. http://wordnet.princeton.edu/.

119

SWARMS: A Tool for Exploring Domain Knowledge on Semantic Web

Liang Bangyong, Tang Jie, Wu Gang, Zhang Peng, Zhang Kuo, Xu Hui, Zhang Po, Yan Xuedong,
Li Juanzi

Knowledge Engineering Group, Department of Computer Science, Tsinghua University

{liangby97, j-tang02}@mails.tsinghua.edu.cn

Abstract
This paper introduces SWARMS, a tool for exploring
domain knowledge in semantic web. By domain knowledge
exploration, we mean searching for or navigating the
knowledge in a specific domain. We have found, through an
analysis of survey result and an analysis of using log data,
that requirements for domain knowledge exploration can be
grouped into three categories. The categories include
knowledge search, schema based navigation, and search
results analysis. Traditional methods usually focus on one
of the three types, for example, retrieval of ‘relevant
knowledge’ by exploiting full-text retrieval methods. We
propose a tool, called SWARMS, for exploring domain
knowledge, in which we provide the ability to conduct
domain knowledge exploration by the three categories.
Specifically, users can conduct search for special kind of
knowledge and they can also interact with the tool by
navigating the knowledge base. Furthermore, we conduct
analysis for the search or navigation results. The tool is
applied to the software management domain. We use
ontology as the mean for knowledge representation. The
paper describes the architecture, features, and component
technologies of the tool.

1. Introduction
Domain knowledge management has made significant
progress in recent years, particularly after the emergence
of Semantic Web. Many knowledge bases are constructed
for managing domain knowledge [AMO03]. However,
domain knowledge management does not seem to be so
successful. One of the most challenges for domain
knowledge management is the exploration of domain
knowledge.

Several systems have been developed for domain
knowledge exploration [NSD01]. However, most of them
look on domain knowledge exploration as a problem of
either conventional relevance search or knowledge
browsing. In relevance search, when users type a query,
the system returns a list of ranked ‘targets’ with the most
relevant ‘target’ on the top. Here, the target can be
document or object in the knowledge base. In knowledge
navigation, users select the concept that they want to
browse and input some specific constraints from the
knowledge schema, and the system returns the ‘targets’
that belong to the concept and satisfy the constraints.

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Navigation also enables users to navigate to the objects
that are ‘similar’ to the current browsing object.

In this paper, we try to address the domain knowledge
exploration in a novel approach. We categorize the
requirements for domain knowledge exploration into three
categories, i.e. knowledge search, schema based navigation,
and search results analysis.

Our proposal first is to take a strategy of divide-and-
conquer, and then is to combine them into a unified system.
Users can start their exploration on the knowledge base by
typing a keywords-based query. The system returns the
relevant objects. And then users select what they want to
browse. The object is shown in a navigation view, in
which users can browse its schema information, its value,
and those objects related to it. In this view, users can
navigate to other objects related by the help of a graphic
user interface. Users can also specify some constraint and
search directly in the navigation view. Finally, for the
search results, we provide two kinds of analysis on it by
using text mining technologies. The former is similarity
analysis and the later is knowledge summary. In the paper,
we refer to the approach as ‘unified domain knowledge
exploration’. The advantage of unified domain knowledge
exploration lies in that it can accommodate the knowledge
search, navigation, and knowledge analysis well.
Furthermore, analysis helps users understand the
knowledge easier. It is reasonable particularly in domain
knowledge management, because in a domain knowledge
is usually represented by a knowledge language (e.g. Web
Ontology Language OWL) which makes it difficult for
users to understand. Knowledge summary aims to
represent knowledge by understandable natural language
to users. Similarity analysis helps users to locate the
similar objects to what they have obtained or to compare
the objects in the knowledge base. We have developed a
system based on the approach, which is called SWARMS.

The rest of the paper is organized as follows. In section
2, we introduce related works. In section 3, we explain our
approach to the problem. In section 4, we describe the
main viewpoints of SWARMS to end users and we
introduce the architecture and implementation of
SWARMS in section 5. Finally the conclusions are made
in section 6.

2. Related Works
Knowledge search can be seen as one part of knowledge
management. Knowledge search is concerned with finding
the ‘relevant’ knowledge from knowledge base. For

120

example, Swoogle uses the techniques from information
retrieval to build a search center of semantic web resources
[DFJ04]. The search results by Swoogle can be ontology
file, concepts, properties and instances. The results are not
easily understandable for average user. Semantic Search
project extends the keyword based search [GMM03]. It
can find the instances that do no contain the keywords in
the query. The project aims to enhance the traditional
search by the semantic search techniques.

Knowledge navigation aims at ‘focus+context’
navigation in knowledge exploration. The focus means the
object that satisfies current criteria (usually specified by
user) and the context means the related objects to the
current target. For example, Janecek and Pu propose an
interactive visualization technique for exploring an
annotated image collection [JP03]. The focus and context
are considered and the search results provide both of them.
Flink(http://prauw.cs.vu.nl:8080/flink/) gives a graphical
view of researcher social network. For a researcher, the
view displays his interest fields and researchers that have
the same interests with him.

3. Our Approach to Domain Knowledge
Exploration

The underlying data models in SWARMS are ontology.
Domain knowledge base stores the information organized
according to the domain knowledge schema predefined by
domain experts. Different from traditional search in which
the ‘target’ is only document and the corresponding search
task is the retrieval of relevant documents, domain
knowledge can have complicated schema. For example, in
the software domain we have defined, there are 19
concepts, 109 properties and 2925 instances in total.

The knowledge schema can help users to organize their
data well. It presents explicit semantics for the data, which
makes it possible for more advanced applications such as
reasoning. On the other hand, it has higher requirement for
the knowledge exploration. Question Answering is an ideal
form for knowledge access. When users type a natural
language question or a query (a combination of keywords)
as a description of his search criteria, it is ideal to have the
machine ‘understand’ the input and return only the
necessary information based on the request. However,
there are still lots of research work to do before putting QA
into practical uses. In short term, we need consider
adopting a different approach.

We have found that we can group the users’ needs into
three categories. Specifically, when users don’t know the
knowledge schema or other domain knowledge, they can
launch a search process by only typing several keywords.
And the system returns all concepts/properties/instances
that contains the keywords. Secondly, when users have
specific object that they want to search, they can specify
the concepts/properties/instances in the knowledge
navigation view. They can specify more constraints before
conduct the search. Finally, since data in knowledge base

is represented by triples, general users without enough
domain knowledge may have difficulty to understand it.
We propose analysis technique to deal with the problem.
We make use of two methods for analysis, i.e. knowledge
summary and similarity analysis.

4. SWARMS

Features
Currently, SWARMS provides three types of exploration.
1) Knowledge Search. It searches the concepts, properties
and instances in the knowledge base by making use of full-
text search technology. 2) Knowledge Navigation. It
provides three kinds of navigation, i.e. concept navigation,
instance navigation and eagle eye navigation. 3) Search
Result Analysis. It summarizes the knowledge into natural
language. A text in natural language describing the
meaning or the content of the concepts or instances that
users select is returned. Users can also use it to find the
similar concepts/instances to what they are interested in.

Ontology Definition and Knowledge Base
Construction
We define a software ontology1 by referencing the schema
on SourceForge (http://ww.sourceforge.net), one of the
biggest open source software development websites.

We have developed a rule-based wrapper to get the data
from SourceForge and store them into the knowledge base
according to the ontology.

Search View
There are four types of searches in Search View: full-text
search (also called ‘document’ search), Instances Search,
Classes Search, and Properties Search. In document search,
users type the keywords, and the system returns a list of
ranked entities. The entity can be concept, instance, or
property. Each entity is assigned a score representing its
relevance to the input keywords. We assign the scores
using information retrieval model. The returned entities are
grouped into concepts, instances, and properties
respectively.

As model, we employ VSM (Vector Space Model)
[SWY75], which computes the Cosine Similarity between
the input keywords and entities in knowledge base. For
computing the Cosine Similarity, we need to construct a
document for each entity. We extract bag of words for a
concept from its name and properties that are related to it
and view the bag of words as the document for the concept.
For properties, we further divide it into object properties
and datatype properties. Document for both of the
properties are defined by words in its name only. For
instances, we only consider concept instances. We do not
take into consideration of property instances. There are

1 The ontology is available at
http://www.schemaweb.info/schema/SchemaDetails.aspx?i
d=235

121

two reasons: almost all property instances are related to
one or more concept instances and a preliminary survey
indicates that usually user prefers concept instances to
property instances. Score of each entity ranges from 0 to 1,
where 0 indicates non-relevance and 1 indicates exact
match.

In search, given a query, all entities matched against the
query keywords are retrieved and presented in descending
order of the relevant scores.

Figure 1 shows an example of instance search. There are
two tab views: Text Search view and Visual Search view.
Here as the search view, we mean the Text Search view,
which is the default view in SWARMS. There are four
radio buttons corresponding to the four types of searches.
The check box “Summary” indicates knowledge summary
(we will describe it in detail below). The left window
displays the retrieved instances and the right window
displays the detailed information for the selected instance.
Detailed information of instance includes its name, value
(e.g. string or numeric) of related datatype property, and
value (i.e. another concept instance) of related object
property. The bottom window is retained for knowledge
summary.

Figure 1. An example of instance search

Navigation View
There are two means to enter the Navigation View: users
can double click the entity name in the Search View and
users can directly switch to Navigation View by clicking
the Navigation View tab.

When users directly switch to Navigation View, the
system displays a graph with the concept “Project” in the
middle of the view (we think the concept “Project” is a
more important concept in software management) and
concepts that related to it (as shown in figure 2). In the
graph, round node denotes concept, directed edge denotes
object property. Users may have different preferences to
the concept for navigation. We provide a drill mode for
facilitating the navigation. When users are interested in
one of the concept, they can double click the round node
denoting the concept. A new graph will be rendered which
displays the clicked concept in the middle of the graph and
surrounds it with concepts that related to it. We have tried
displaying all the concepts and relations in the graph, but it
results into a very complicated graph that is full of nodes
and edges.

Figure 2 shows an example in concept navigation. The
main window displays the concept graph, and the top-right
window displays properties of the selected concept. The

bottom right window is the eagle-eye window. Users can
go to any part of the navigation view by selecting the zone
in the eagle-eye window.

Figure 3 shows a concept navigation scenario. Users
double-click the concept “Project_Admin” or “LatestNew”,
and then the system returns the corresponding graph that
places them in the middle.

Eagle eye
view

Property value
view

Visualization and
Navigation pane

Similarity
control pane

Figure 2. A concept navigation example

Double click
the node

Double click
the node

Figure 3. A concept navigation scenario

We also tried to combine knowledge search and
navigation into a unified mode. We called it navigation
based search. In navigation based search, when users click
a concept in the concept navigation view, the top right
window list its properties with none values. Then users can
input some property values and conduct search by these
constraints directly in the navigation view. For example,
users may be interested in the projects which are
developed by Java language. He can input “Java” in the
datatype property “Programming_language”, and clicks the
“search” button to perform the search. Figure 4 shows the
example.

S p e c if y th e
v a lu e o f th e

p r o p e r ty

S e a rc h
B u tto n

re su lt s

Figure 4. An example of navigation based search

Search Result Analysis
Similarity Analysis
We exploit VSM for computing the similarity between two
instances. For instance, we construct the document as we
did in the sub-section “Search View”. We extract the bag

122

of words from the ‘document’ and compute the similarity
between two documents by Cosine Similarity method. In
similarity analysis, we compute similarity score for every
pair of instances of a concept and display the similarity in
the graph as shown in figure 5. A similarity threshold
slider is placed in the middle of the right window. With the
threshold slider, users can control the number of similarity
links that displayed in the graph.
Knowledge Summary
Here we conduct the knowledge summary in the interface
as an optional function. When search results are displayed,
users can select a result and check the “Summary”
checkbox. The summary of the entity will be displayed in
the summary pane. Figure 5 shows an example summary.
The bottom window displays the summary result

Similarity values
of the two
instance

Selected
entity

Selected
entity

The summary
result

Figure 5. Similarity Analysis and Knowledge Summary
5. Architecture and Implementation

There are six main components in SWARMS: Knowledge
Extractor, Domain Knowledge Base, Indexing, Knowledge
Search, Navigation, and Search Results Analysis modules.

Knowledge Extractor

Domain
Knowledge

Base Indexing

Index corpus

Knowledge
Search

Knowledge
sources

Navigation Search Results
Analysis

SWARMS
UI

Figure 6. Architecture

We chose SourceForge (http://ww.sourceforge.net) as
the knowledge data source. Totally, 1180 software projects
are crawled into the knowledge base.

In Indexing module, we derive the ideas from the
community of Information Retrieval and build an inverted
table indexing. In the inverted table, besides indexing the
entities, we also index properties that related to the entities.
Indexing for concepts and instances are built
independently. For knowledge exploration, we have
implemented two kinds of search mechanisms. The first
search mechanism makes use of the inverted table indexing.
It is aimed for full-text search. The other mechanism is
implemented by RDQL(RDF Data Query
Language)[Sea03]. It is designed for complicated query. It
is appropriate to allow for both high efficiency and
advanced search functions.

The Knowledge Search makes use of inverted table
indexing. The principle of obtaining the search list and
ranking it are described in prior sections. In Navigation,
we use both inverted table indexing and RDQL. For
navigation based search, we use only RDQL, since the

query can be very complicated. The graph visualization in
navigation is implemented by
JUNG(http://jung.sourceforge.net).

Both similarity analysis and knowledge summary have
great computational costs. So they are processed in
advance. When new instances come to the knowledge base,
the analysis module is called to incrementally calculate the
similarity scores among instances and conduct the
summary for the new instances. We only calculate the
similarity score between any two instances that belong to
the same concept

Finally, we provide two kinds of versions: standalone
application and web version. They are both available at
http://keg.cs.tsinghua.edu.cn/project/pswmp.htm.

6. Conclusion
In this paper, we have investigated the problem of domain
knowledge exploration. We have made clear the following
issues in the work. 1) Through an analysis, we have found
that exploration needs on domain knowledge can be
categorized into three types. 2) Based on the finding, we
propose a new approach to domain knowledge exploration
in which we combine the search, navigation, and search
result analysis into a unified method. 3) We have
developed a system called ‘SWARMS’, based on the idea.
In SWARMS, we provide features for knowledge search,
knowledge navigation, and search result analysis.

References
[AMO03]Angele, J., Mönch, E., Oppermann, H., Staab, S.,
and Wenke, D. Ontology-Based Query and Answering in
Chemistry: OntoNova @ Project Halo. International
Semantic Web Conference 2003: 913-928
[DFJ04]Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S.,
Peng, Y., Reddivari, P., Doshi, V.C., and Sachs, J.
Swoogle: A Search and Metadata Engine for the Semantic
Web. In Proceedings of the Thirteenth ACM Conference
on Information and Knowledge Management, November
2004 : 652-659
[GMM03] Guha, R., McCool, R., and Miller, E. Semantic
Search. In International World Wide Web Conference
Proceedings of the twelfth international conference on
World Wide Web. ACM Press. Budapest, Hungary.
2003:700-709
[JP03] Janecek, P. and Pu, P. Searching with Semantics:
An Interactive Visualization Technique for Exploring an
Annotated Image Collection. OTM Workshops 2003: 185-
196
[NSD01] Noy, N.F., Sintek, M., Decker, S., Crubzy, M.,
Fergerson, R.W., Musen, M., Creating Semantic Web
Contents with Protege-2000. IEEE Intelligent Systems
48(2): 60-71, 2001.
[Sea03]Seaborne, A. RDQL-A query language for RDF.
http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/, 2003.
[SWY75]Salton, G., Wong, A. and Yang, C. S. A Vector
Space Model for Automatic Indexing. Commun. ACM
18(11): 613-620 (1975)

123

Context-Driven Information Demand Analysis in Information Logistics
and Decision Support Practices

Magnus Lundqvist1, Kurt Sandkuhl1, Tatiana Levashova2, Alexander Smirnov2

1School of Engineering at Jönköping University,
Gjuterigatan 5, SE-551 11 Jönköping, Sweden

{magnus.lundqvist, kurt.sandkuhl}@ing.hj.se
2St.Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences,

39, 14th line, St.Petersburg, 199178, Russia
{oleg, smir}@mail.iias.spb.su

Abstract
Decision making and knowledge intensive work requires
information supply tailored to the need of the user in
question. Context management is considered a key
contribution to this objective. The paper investigates
context definitions and representations from two different
viewpoints: information demand analysis and decision
support. Discussion and comparison of these viewpoints
includes enterprise models as a source for information
demand analysis, ontologies and object-oriented constraint
networks as representation technique and correspondences
between information demand context and context in
decision support.

Introduction
Making decisions, solving problems, and performing
knowledge intensive work require readily available
information. Today, many different approaches exist to
provide users with streamlined information and knowledge
to better support them in the process of decision making
and problem solving. Among these approaches are con-
text-based decision support and problem solving (Smirnov
et al. 2005) and Information Logistics, a demand-driven
approach to information supply (Deiters et al. 2003).

The context-based approach to decision support focuses
on dynamic problem modeling and solving for decision
support. It involves integration of knowledge represented
by multiple domain ontologies into context sensitive
knowledge. Context sensitive means (a) that knowledge
relevant to a problem at hand or situation is integrated, and
(b) the integrated knowledge is linked to information
sources providing up-to-date information. Main techno-
logies supporting this approach are ontology management,
context management, and constraint satisfaction.

While context-based decision support focuses on
providing information necessary to solve problems
Information Logistics has a similar but somewhat wider

Copyright © 2005 American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

perspective on providing users with information. From an
Information Logistics point of view only information
considered relevant with respect to such aspects as time,
location, organizational role, and work activities should be
provided to the users. Development of methods, tools and
techniques for the analysis of information demand (ID) is
the core of the information demand based approach to
Information Logistics.

The paper is devoted to a study of context models used
within information demand analysis and decision support
approaches. The first part of the paper will introduce the
information demand viewpoint including relevant
definitions and the role of enterprise modeling. The second
part focuses on use of context in decision support, which
encompasses representation means and decision making
stages. The third part finally compares the two viewpoints
and draws conclusions.

Context as Dimension of Information Demand
Ongoing research at Jönköping University aims at
developing methods, tools and techniques for analyzing ID
and to develop systems providing demand-driven
information supply. The starting point for work in this area
is the following definition of ID:

Information Demand is the constantly changing need
for current, accurate, and integrated information to
support (business) activities, when ever and where
ever it is needed.

Among other implications, this definition implies that
• models representing ID need to be able to capture the

dynamics of information demand in order to reflect
changes over time,

• the context, in which the demand exists, as well as some
mechanism for understanding when a switch in context
takes place has to be provided.

The above clearly identifies the complexity of ID as a
concept. It has been proposed that this complexity can be
handled by breaking down the concept into several
different but interconnected dimensions as Context,

124

Situation, Information Demand, and Plan/Agenda
(Lundqvist & Sandkuhl 2004).

To be able to support activities and provide integrated
information it’ is necessary to capture and evaluate
information about these activities. Thus the concept of
Context is considered to be the most important aspect of ID
defining the settings in which the users’ ID exists.

Many different definitions of context exist in areas such
as ubiquitous computing, contextual information retrieval,
etc. but for the purpose of information demand analysis,
context is here simply defined as:

An Information Demand Context is the formalized
representation of information about the setting in
which information demands exist and is comprised of
the organizational role of the party having the
demand, work activities related, and any resources
and informal information exchange channels
available, to that role.
In this definition, several important concepts can be

identified, the central of them being the Role. Thus, when
Context is mentioned here it is considered to be the context
of a particular role. It could be argued that it is equally
relevant to speak of an ID as related to a specific activity
and that some resources are necessary to perform some
activities no matter who performs them but Role is
nevertheless the one concept that in a natural way
interconnects the others.

In its simplest form Role can be described as a part of a
larger organization structure clearly defined by it’s
responsibility within that structure. Associated with that
role are a number of activities that fall within, as well as
define, the responsibility of that role. Furthermore there are
a number of different resources available to a specific role
that can be utilized to perform particular activities. Such
resources might be anything from information systems to
devices or machines used in the activities. Not all
resources are available to all roles and not all resources are
suitable for use in all activities, hence the connection
between Role, Activities, and Available Resources.

Finally it is proposed that an information demand
context incorporates Contact Networks, which describe the
informal information exchange channels that exist between
peers despite not being based on, or formally represented
in, any organizational structures, process descriptions, or
flow charts. Such informal structures might be based on
anything from personal networks, the comfort of turning to
other individuals with whom a common interests or the
same educational or demographical background is shared.
These structures are brought into an organization by
individuals but connected to a role since the model above
does not include humans but rather the formalized view on
humans as roles within an organization.

Deriving Information Demand Context
Contextual information can be derived in many different
ways and from many different sources, such as interviews

with different roles within an organization, work- or
information flow analysis, or various kinds of process
modeling methodologies. When trying to reduce the effort
necessary, there are mainly two ways to do this; (1) by
utilizing already existing knowledge about the object being
analyzed and (2) generalize and reuse knowledge gained
from the analysis of similar objects. One particularly
suitable source for deriving large parts of the contextual
information necessary, and thereby utilizing existing
knowledge, are Enterprise Models (EM).

Enterprise Modeling has been described as the art of
externalizing enterprise knowledge. This is usually done
with the intention to either add some value to an enterprise
or share some need by making models of the structure,
behavior and organization of that enterprise (Verndat
2002). The motivation often given to why enterprises
should be analyzed and modeled is that it supports
management, coordination and integration of such diverse
things as markets, processes, different development and
manufacturing sites, components, applications/systems,
and so on as well as contributes to an increased flexibility,
cleaner and more efficient manufacturing etc. Such models
usually include (Verndat 2002), business processes,
technical resources, information flow, organizational
structures, and human resources. If business processes are
considered to be sequences of Activities, technical
resources and information to be Resources, organization to
be the structure in which roles (humans) can be identified,
these model elements also correspond well to the different
aspects of information demand context presented above.

Context-Based Decision Support
The approach to context-based decision support aims at
modeling the user’s (decision makers’, and other partici-
pants’ involved in the decision making process) problem
and solving it. The concept “problem” is used for either a
problem at hand to be solved or a current situation to be
described. The problem is modeled by two types of con-
text: abstract and operational. Abstract context is a knowl-
edge-based model integrating information and knowledge
relevant to the problem. As knowledge representation
means ontology model is chosen. Operational context is an
instantiation of the abstract context with data provided by
information sources.

Decision making is a complex process where a large
number of factors can have an effect on a single problem.
To naturally take into account the various factors and
constraints imposed by the environment, the mechanism of
object-oriented constraint networks (OOCN) (Smirnov et
al. 2003) is employed. The problem is modeled by a set of
constraints. Constraints can provide the expressive power
of the full first-order logics (Bowen 2003) that is tended to
be used as the key logics for ontology formalization.

Problem solving within the model of decision making
process (Simon 1987) suggests resolving a problem by
selecting a “satisfactory” solution. Within the approach the

125

problem expressed by a set of constraints is to be solved by
a constraint solver as constraint satisfaction problem
(CSP). A result of CSP solving is one or more satisfactory
solutions for the problem modeled.

CSP model consists of three parts: a set of variables; a
set of possible values for each variable (its domain); and a
set of constraints restricting the values that the variables
can simultaneously take. To express the problem by a set
of constraints that would be compatible with ontology
model and with internal solver representations, the
formalism of OOCN is used. Typical ontology modeling
primitives are classes, relations, functions, and axioms. A
correspondence between the primitives of the ontology
model and OOCN is shown in Table 1.

Table 1. Primitives of Ontology Model and OOCN

Ontology Model OOCN
Class Object
Attribute Variable
Attribute domain (range) Domain
Axioms and relations Constraints

Decision support within the approach is considered
consisting of two stages: a preliminary stage and a decision
making stage. The preliminary stage is responsible for
preparedness of a decision support system to make
decisions. Activities carried out at this stage are:
• Creation of semantic models for components of a

decision support system. The following components are
defined: information sources, domain knowledge, and
users. These components are modeled as follows:
domain knowledge is modeled by ontology model;
semantics of information sources is described by
information source capabilities model; users are
modeled by user profile model. All the components are
represented by OOCN formalism;

• Accumulation of domain knowledge. The approach re-
lies on an availability of sufficient domain knowledge
represented by multiple ontologies using the internal
representation. As a repository for the collected knowl-
edge an ontology library serves. The domain knowledge
is collected before it can be used in problem solving and
decision making. Knowledge collecting includes phases
of knowledge representation and integration;

• Coupling domain knowledge with information sources.
In order to obtain up-to-date information from the
environment, ontologies are linked to information
sources (sensors, Web-sites, databases, etc.) that keep
track of environment changes. Applying the internal
representation, attributes of domain ontology and
attributes of the representations for information sources
and users are linked by associative relationships.
The decision making stage concerns integration of

information and knowledge relevant to the problem,
problem modeling and solving. The starting point for this
stage is the user request containing a formulation of the
user problem in a user presented view. Based on the results

of request recognition the knowledge relevant to it is
searched for within the collected knowledge, extracted,
and integrated. Ontology-driven knowledge integration
enables to involve methods of consistency checking for the
integrated knowledge. To operate on the extraction of
relevant knowledge, its integration and consistency
checking ontology management techniques are used.

The consistent knowledge is considered as an abstract
context that is an ontology-based problem model supplied
with links to information sources that will provide data
needed for the given problem. The linked information
sources instantiate the abstract context producing the
operational context that is the problem model along with
problem data. Obtaining information, its organization in
contexts, and context versioning are context management
issues.

Context-Based Decision Support for
Information Demand Definition

In order to compare the two different viewpoints on
context presented, dimensions of information demand
combining the two viewpoints have been identified.

The user plays different roles depending on the activities
this user carries out and other factors. E.g., within a
decision support system the user plays the role of a
decision maker and, as well, can have several more roles
within the organization.

User Request
recognition

Ontology
library

Abstract
context

Operational
context

Solution set

Role
User’s problem

definition

Organisation
knowledge

Role’s problem
formalisation

Role’s problem
instantiation

Request

Pattern
Problem
solution

Figure 1. Dimensions of information demand

within decision support

The ontology library can include ontologies representing
organization knowledge that can be considered to be do-
main knowledge. Organization knowledge is made up of
knowledge about organization structure, activities carried
out by the organization, resources deployed, an organiza-
tion strategy, etc. This knowledge captured by the abstract
and operational contexts reports what part of organization
knowledge is useful in the context of a given problem. Ac-
cumulation of knowledge in the library allows
transforming tacit knowledge into explicit one through its
formalization.

126

The abstract context modeling the user’s problem can be
considered as a formalized model of the problem defined
by a certain role. From the information demand perspective
an abstract context states information demand as need for
integrated information to solve the user problem.

Consequently, the operational context being an
instantiation of the problem model describes information
demand as constantly changing need for current and
accurate information.

The user requests along with the set of problem
solutions are considered as a step towards derivation of
reoccurring patterns of information demand. The user
request formulates the problem at hand under certain
settings and conditions. The solution set contains problem
solutions for the given problem situation. An analysis of
the requests and respective solution sets is supposed to
allow deriving common problems and a general solution
for a particular problem or problem type. Furthermore, the
analysis is thought to be helpful in the identification of
types of problems intrinsic to the particular role.

By accepting Enterprise Models as a source for capture
of information demand and contextual information
derivation, such models is considered to provide with
beneficial ideas and knowledge for the decision support in
a business application.

Within the decision support approach users are modeled
by user profiles. The structure of a profile provides
structure elements for storage and accumulation of
information characterizing the user and his/her activities.
Some of these elements, e.g. organizational belonging,
activity, etc. can be adopted from the Enterprise Models.

Knowledge in the Enterprise Models is based on is be-
lieved to serve as domain knowledge to be included in the
ontology library. Different Enterprise Models can provide
different viewpoints on the enterprise knowledge; addi-
tionally, they can supplement knowledge of each other.

Conclusions
In order to simplify and shorten the process of developing
Information Logistical- and context-based decision support
applications as well as ensuring the quality and usefulness
of such applications the underlying information demands
of the users need to be known. It has been suggested that
such demands can be identified and realized through the
understanding of the setting in which they exist, i.e. the
context in which a user has a particular problem. It has also
been shown that one possible source for deriving
information demands are Enterprise Models that
externalize existing knowledge about an enterprise and
thereby shorten and simplify the process of identifying
such demands.

The study of context models used within the information
demand analysis and decision support approaches facilitate
the identification and representation of information
demand dimensions intended to be used in the
identification of information demand patterns.

The context model used in the decision support
approach reflects the needs for integrated information to
solve the user problem and for up-to-date and accurate
information. The context model of the approach to
information demand analysis is believed to be beneficial to
the decision support approach in the way it takes into
account information that is sensitive to the user role, not
only relevant to the user problem.

The two approaches are mutually beneficial in
information and knowledge formalization. The decision
support approach relying on formalized information and
knowledge is a step toward formalization of personal and
tacit knowledge taking place while informal information
exchange. This formalized knowledge can enrich the
ontology library with new knowledge. The explicit
formalization of the user’s problem within the decision
support approach is supposed to enable the identification
of problem types intrinsic to the particular role as well as
facilitate the derivation of information demand patterns.

Acknowledgement
Parts of the research were done within the projects
“Knowledge Supply for Regional and Inter-Regional
SME-Networks” funded by the Swedish Foundation for
International Cooperation in Research (STINT), 2003-
2005; # 16.2.35 and # 1.9 of research programs of RAS;
and grant # 05-01-00151 of RFBR.

References
Bowen, J. 2003. Constraint Processing Offers Improved
Expressiveness and Inference for Interactive Expert Systems. In
International Workshop on Constraint Solving and Constraint
Logic Programming, LNCS, 2627:93–108, Springer, 2003.
Deiters, W.; Löffeler, T.; Pfenningschmidt, S. 2003. The
Information Logistical Approach Toward a User Demand-driven
Information Supply. In D. Spinellis, ed., Cross-Media Service
Delivery, 37—48. Kluwer Academic Publisher.
Lundqvist, M. and Sandkuhl, K. 2004. Modeling Information
Demand for Collaborative Engineering. In Proc. 2nd Intl.
Workshop on Challenges in Collaborative Engineering, 111-120.
VEDA, Slovak Academy of Sciences.
Simon, H. A. 1987. Making management decisions: The role of
intuition and emotion. Academy of Management Executive,
1:57—64.
Smirnov, A.; Pashkin, M.; Chilov, N.; Levashova, T. 2005.
Ontology–Based Knowledge Repository Support for Healthgrids.
In From Grid to Healthgrid, Proceedings Healthgrid 2005,
Solomonides T.et al.(eds.), 47—56. IOS Press.
Smirnov, A.; Pashkin, M.; Chilov, N.; Levashova, T. 2003.
KSNet-Approach to Knowledge Fusion from Distributed Sources.
Computing and Informatics, 22:105—142.
Verndat, F. B. 2002. Enterprise Modeling and Integration (EMI):
Current Status and Research Perspectives. Annual Reviews in
Control 26:15—25.

127

Legal Ontology of Contract Formation:

Application to eCommerce

John W. Bagby and Tracy Mullen

School of Information Sciences and Technology
 The Pennsylvania State University, University Park PA U.S.A.

{jbagby, tmullen}@ist.psu.edu

Abstract
Artificial intelligence (AI) has diffused slowly into law,
regulation and public policy. The development of complex,
reasoning-based applications may be impeded by the
structure of legal knowledge that is unlike many other
learned professions and scientific domains, law is
completely dependant on natural language for the
identification of salient factors and determining principles
making it difficult to construct necessary or sufficient
conditions to produce definite outcomes. Further AI
developments in law, regulation and public policy may
require much more concentrated effort in representing legal
rules, case interpretations and practitioner insights into
ontologies. This paper describes our ongoing conversion of
previously existing expert systems governing contract
formation derived from the Uniform Commercial Code,
while integrating electronic contract formation under the
Uniform Electronic Transactions Act, into a knowledge-
based system using the Web Ontology Language OWL.

Introduction
Artificial intelligence (AI) has diffused slowly into law,
regulation and public policy. This research recognizes that
AI is inherently interdisciplinary in the law domain
requiring domain expertise in both AI and law. Useful
expertise in law may come from legal experts and from
process observation.

Statutes are legislation embodied in codes, such as the
Uniform Commercial Code (UCC) discussed here. Codes
may be ideal AI and ontology focci because adapting them
to relationship linking and rules-based encoding is
transparent. AI cannot rely solely on encoding formal code
structure because such efforts are incomplete. They miss
practitioner expertise dependant on key relationships and
decision heuristics of practitioners and process experts
from sociology, political economics, logistics and
operations research. The UCC is modeled here because it
represents a useful middle ground that overcomes the
limitations of reliance on formal code. The UCC is
essentially a composite of experience and formalism. The
UCC has a unique heritage, derived from the Law
Merchant and Lex Mercatoria, essentially codifications of

actual practice. The UCC is not primarily a normative
codes drafted by inexperienced legislators. AI work on
real-world statutory codes like the UCC has both the
coding advantages of statutes but is enlightened by realistic
experience from development in real-world settings.

This paper describes conversion of an expert system on
law from the UCC that covering contract formation,
specifically the “Battle of the Forms” problem that
resolves the mismatches between contract terms in written
offers, acceptances and confirmation. The expert system is
being represented in a knowledge-based system using the
Web Ontology Language OWL with Jess as inference
engine.

Successful Legal Ontology Development

Despite difficulties there have been several interesting
experiments in legal AI including some notable functional
systems. Consider the complex but deterministic, rules-
based systems in commercial tax preparation. Good
progress has been made in user assistance from proprietary
legal research databases such as Lexis and Westlaw in
leveraging traditional legal ontologies. There are numerous
electronic transaction processing systems in government
found all over the world that assist citizens and regulated
entities using AI technologies in areas such as licensing
and intellectual property (IP) rights.

New services developed by legal research databases are
good predictors of successful AI and ontology work in law
because such profit-seeking information services likely
invest in AI innovation where a reliable cash flow is
predicted. Proprietary databases automate and enhance
traditional strategies using key word in context search and
retrieval, natural language queries, relevance prioritization
with reliability measures, and easy resumption of prior
query direction. Recent AI advances permit users easy
access to context and subject-sensitive information.

AI Challenges in the Law Domain

The structure of legal knowledge inhibits more complex,
reasoning-based AI applications. Many learned professions

128

and scientific domains differ from law, which is not
generally derived from empirical research. Law is an open
textured domain requiring AI techniques to classify, link
and automate reasoning. Further developments in legal AI
may require concentrated effort that starts with the formal
statutory structure of legal rules, then modifies with case
interpretations and practitioner insights into ontologies.

As in some other professional domains, AI in law runs a
malpractice liability risk. AI inference holds promise to
improve practitioner reasoning, particularly from the
exhaustive search capability. AI in law will likely remain
imperfect as sufficient and complete substitute for
experienced professional practitioners [Hassett]. Lamkin
hypothesizes that legal liability may befall owners or
operators of expert systems in medicine if there are
misdiagnosis or treatment errors [Lamkin]. There is no
good reason to distinguish law from the medical context if
a liability shield for AI systems is necessary. Judge and
Professor Posner suggests the difficulties of any AI system
in predicting legal outcomes beyond the role as assistants
useful in organizing and seeking information. Posner notes
there are many sources for expertise needed for the
inference process. [Posner]

Existing legal AI experiments recognize that legal
knowledge is first derived from formal law in
constitutions, statutes and regulations. Next it must be
interpreted in actual cases as precedents. Finally, this
doctrinal legal research must be interpreted through
experience of various domain experts. Complexity is
increased because law differs between states and among
nations. Legal advice based on legal research draws upon
huge collections of statutes, legislative history, regulations
and cases issued by thousands of discrete authorities. All
these sources are raw data that require expert interpretation
before constituting reliable advice. With law broken down
into manageable-sized sub-domains it becomes more
susceptible to internal consistency and coherence and less
effected by external domains. Consider Groothuis
postulate that expert systems in law should provide advice
and decision support for more manageable sub-domains
such as government-administered social insurance in the
Netherlands [Groothuis]. Also consider the decision
support expert system in New York that assists
prosecutorial choice of cases to investigate and prosecute
[Hassett]. Another example is the assessment of evidence
in litigation by Levitt [Levitt, et. al.] .

Legal Ontologies Reflecting both Formal
Rules and Actual Practice

AI and ontologies in law hold the strongest promise
assisting in legal research and inform legal reasoning with
quality control as the major objective. Rissland argues that
“AI focuses a spotlight on issues of knowledge and
process to a degree not found in non-computational
approaches.” [Rissland] Aikenhead argues that “It is
obviously a prerequisite to know what the nature of law is

and what the process of legal reasoning involved before
incorporating legal knowledge in a computer and making
the computer manipulate that knowledge to emulate the
legal reasoning process, i.e., the results achieved by
lawyers.” [Aikenhead] It follows that ontologies are robust
when they enrich the deterministic structure of statutory
law. Governing statutory codes are the starting places for
much AI work. The enhancement of formal law requires
two additional levels of domain knowledge. First, case law
interpretations add detail and require expert interpretation.
Second, heuristics of seasoned practitioners, regulators,
litigators, judges, legislators, sociologists, political
economists and others are usually relevant heuristics.
Consider how Aoki et. al. enhanced an existing general
ontology with a case ontology automatically constructed
from precedents using international law governed by the
Vienna Convention on the International Sales of Goods
(CISG) [Aoki, et. al.].

Commercial Law Blending Formal Specificity

with Compilations of Reliable Experience

It is unfortunate that very few codes statutes are drafted to
facilitate search, analysis or modification by computer.
There are clear design benefits for domain with modular
organization.. Nevertheless, Blackwel believes there are
benefits in object-oriented analysis and design in AI when
the domain involves “complex relationships among distinct
concepts. [This] structure will allow close consistency with
both the real-world situations addressed, and the legal
principles applied, by the statute.” [Blackwel] Still, there
are some better organized codes that transcend a hodge-
podge, historical accumulation of political compromises.
For example, the Law Merchant and the UCC are models
that improve the potential for adaptation through
ontologies into AI. First, the UCC is a well-organized code
derived from best practice experience accumulated over
centuries of commercial conduct making it a codification
of practice. The UCC bridges the gap between legislatively
prescribed conduct and actual behavior. Ontology based on
the UCC are inherently more robust because many details
from experience are included. Second, the UCC is
organized in modular form enabling analysis and
ontological representation. The CISG is derived from the
UCC so it promises similar benefits. This research
addresses the “battle of the forms” problem in which
commercial contract counter-parties construct self-serving
documents that usually diverge with at least some terms in
disagreement. The UCC §2-207 provides a regime for
resolving these disparities reflecting common practice
codified as formal law and is adjusted by practitioner
heuristics.

UCC Domain Ontology

Ontologies provide an explicit representation of and
semantics for domain concepts and properties. This allows
for more natural collaboration between humans and
computer, and for intelligent automation by software

129

agents [Berners-Lee]. In the legal domain, there are two
different, but complimentary, ontology modeling
approaches. The first approach can be characterized as
building a “lawyer’s ontology”. Kabilan and
Johannesson’s ontology [Kabilan et. al.] draws from
international contract law, and represents its conceptual
model using the Unified Modeling Language (UML)
[UML]. This UML representation can be transformed into
various semantic web ontology languages. The second
approach follows a “law in practice” or process-based
approach based on actual practice for representing legal
contracts. The MIT Process Handbook provides the actual
business process knowledge used by SweetDeal [Grosof
et. al.] encoded in semantic web languages such as
DAML+OIL [DAML+OIL] and RuleML [RuleML]. One
of their goals is to allow intelligent software agents to play
a larger role in automating, creating, assessing, negotiating
and performing such contracts.

The day to day practice of law combines existing law,
practical experience, and various cultural, political, and
economic factors. When new situations arise, such as
electronic commerce, the law must be updated both by
extending it in a coherent manner and through a case-by-
case learning of new practices. The U.S.’s UCC is just
such a hybrid model that we hope will allow us to build a
composite “lawyer’s ontology” that has been refined with
law from actual practice.

An existing expert system on contract formation under
UCC [Bagby], see Figure 1, provides us with our initial
framework for ontology. Our focus area is the “Battle of
the Forms” (UCC 2-207), which defines when mismatches
between contract terms still allow for a legal contract to
exist. Since the original expert system was intended to be
used by lawyers who understand basic domain concepts,
our first step in transforming this system into a knowledge-
based system requires incorporating de jure formal terms
and rules from UCC Article II into the legal ontology. Our
eventual goal is to explore how it can be useful for
electronic agents to navigate.

The ontology is being built in Protégé [Noy et. al.] using
the OWL Web Ontology Language [OWL]. For each
domain concept, we attach a definition from either UCC
Article II code, standard textbook or other authority. Thus
for Merchant, we have a description paraphrased from
UCC 2-104. In the future, we would like to link to a Legal
Dictionary such as the European Legal RDF Dictionary
[LEXML]. Currently we are defining necessary property
relationships, such as the “hasSpecialDuties” property of
merchants, shown in Figure 2. This property helps capture
that UCC Battle of the Forms assumes that merchants can
assume additional duties to make contract formation more
flexible that non-Merchants should not have to assume.
Figure 3 shows our current prototype UCC ontology. Our
next steps are 1) to further define properties and property
restrictions, and 2) to incorporate Jess (via JessTab in
Protégé [Eriksson]) to reason over individual contracts. In

step 2, we will start by essentially recreating the existing
expert system as an information retrieval system, but
defining the rules based on the underlying ontology terms
rather than on human understanding.

Conclusion and Future Research
In this paper, we describe our rationale for selecting the
UCC commercial laws as the basis for developing a
contract formation legal ontology. We describe our initial
work on creating a legal ontology for this domain. The
authors plan on extending this work to consider several
sources of electronic commerce laws that have been
implemented in the European Union and the United States.
For example, the EU Directive in Electronic Commerce
(Dir 2000/31/EC) and the Uniform Electronic Transactions
Act (UETA) in the United States are developing sufficient
rigor to deserve attention, particularly given their focus on
automated transactions, concluded by electronic means
including electronic agent activities. Follow-on work will
address the impact of deploying intelligent software agents
as full-fledged legal persons engaged in these types of
transactions. This future work will perform exploratory
modeling of additional parts of UETA that acknowledge
the validity of electronic agent usage and thereby address
some of the barriers to e-commerce presented by
traditional rules.

References
Aikenhead, Michael, The Uses And Abuses Of Neural Networks

In Law12 Santa Clara Computer & High Tech. L.J. 31,
February 1996.

Aoki, Chizuru, Masaki Kurematsu & Takahira Yamaguchi,
LODE : A Legal Ontology Development Environment (1998).

Bagby, John, Artificial Intelligence in Sales Law: A Decision
Analysis Approach To Commercial Transactions, Working
paper in Center for Research, College of Business, The
Pennsylvania State University, 87-1, March 1987.

Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web,
Scientific American, May 2001.

Blackwel, Thomas F., Finally Adding Method To Madness: N1
Applying Principles Of Object-Oriented Analysis And Design
To Legislative Drafting 3 N.Y.U. J. Legis. & Pub. Pol'y 227
(1999 / 2000

DAML+OIL, http://www.w3.org/TR/daml+oil-reference/.
Eriksson, Henrik, Using JessTab to Integrate Protégé and Jess,

IEEE Intelligent Systems, March/April 2003, pp 43-50.
Grosof, B. N., and T. Poon, SweetDeal: Representing Agent

Contracts with Exceptions using XML Rules, Ontologies, and
Process Descriptions, WWW 2003, Budapest, Hungary, May
20-24, 2003.

Groothuis, Marga M. Expert Systems In The Field Of General
Assistance: An Investigation Into Juridical Quality, 52
Syracuse L. Rev. 1269 (2002).

Hassett, Patricia, Essay: Technology Time Capsule: What Does
The Future Hold? 50 Syracuse L. Rev. 1223, 2000.

130

Kabilan, V., and P. Johannesson, Semantic Representation of
Contract Knowledge using Multi tier Ontology, SWDB 2003,
pp 395-414.

Lamkin, Brian H., Comments: Medical Expert Systems And
Publisher Liability: A Cross-Contextual Analysis, 43 Emory
L.J. 731, Spring, 1994.

Levitt, Tod S. & Kathryn Blackmond Laskey, Symposium: From
Theory To Practice: "Intelligent" Procedures For Drawing
Inferences In Static And Dynamic Legal Environments:
Computational Inference For Evidential Reasoning In Support
Of Judicial Proof, 22 Cardozo L. Rev. 1691(July, 2001).

LEXML, http://www.lexml.de/rdf.htm.
Noy, Natalya F., Michael Sintek, Stefan Decker, Monica

Crubezy, Ray W. Fergerson, and Mark A. Musen, Creating
Semantic Web Contents with Protégé-2000, IEEE Intelligence
Systems, March/April 2001, pp 60-71.

OWL, http://www.w3/2001/sw/webont.
Posner, Richard A. The Jurisprudence Of Skepticism, 86 Mich. L.

Rev. 827, April, 1988.
Rissland, Edwina L. COMMENT: Artificial Intelligence and

Law: Stepping Stones to a Model of Legal Reasoning, 99 Yale
L.J. 1957 (June, 1990).

RuleML, http://www.ruleml.org.
UML, http://www.uml.org.

Figure 3: Prototype UCC-based Contract Formation

Ontology

Does Acceptance or
Confirmation contain

extra and/or unmatched
terms?

A Contract Exists based
upon the Agreed Terms

(Mutual Assent)

Was Acceptance made
conditional upon Assent

to these terms?

Are Both Parties
Merchants?

Was there Conduct by
both parties Recognizing

a Contract?

No Contract Exists:
Acceptance is a counter-

offer.

A Contract Exists on Agreed
upon terms in the Writings

A Contract Exists: Additional
terms are not included in the

contract but are mere Proposals
to Modify

Did offer expressly
limit Acceptance to
the offered terms?

Do the New Terms
MATERIALLY Alter

the Contract?

Has a Reasonable
NOTICE of Objection to

these terms been
given?

The New Terms in the
Acceptance Become Part of the

Contract

No

Yes

Yes No

Yes
No

Yes

No

No

No

Yes

Yes

Yes

Yes

Merchant Special Duties

Figure 1: Original Battle of the Forms expert system

Figure 2: Merchant property of “having special duties”

131

Context and Ontologies:
Contextual Indexing of Ontological Expressions

Leo Obrst, Deborah Nichols
The MITRE Corporation

7515 Colshire Drive, M/S H305, McLean, VA 2210
{lobrst, dlnichols}@mitre.org

Abstract

This paper discusses aspects of context as applied to
ontologies. In particular, we note some formalizations of
context that have been applied to ontologies such as Menzel
(1999) and Akman & Surov (1996, 1997), that have largely
been framed in terms of theories such as Situation Theory
(Barwise & Perry, 1983) which originated in natural
language semantics. We also mention the notion of labeled
deduction (Gabbay, 1996) and speculate on its prospective
use in the contextualizing of ontologies. The latter can be
viewed as a mechanism for annotating ontological assertions
and proofs with contextual information about provenance,
security, strength/confidence of assertion, and aspects of
policy. Labeled deduction correlates one or more logics,
with one logic addressing the primary assertion or inference
step and another logic addressing the label or annotation of
that assertion or inference step.

The Need for Contexts for Ontologies

In recent years, ontologies have been proposed as models
which represent the common, shared semantics of domains
or subject areas (see Guarino (1998), Guarino, Welty,
Smith (2001), Guarino, Varzi, Vieu (2004)). Domain-
spanning middle and upper ontologies (Semy et al, 2004;
IEEE SUO) have also been proposed, the better to situate
and align domain ontologies by axiomatizing common
semantics shared by nearly every domain, and allowing
those domains to inherit the common semantics. The
emerging Semantic Web (Daconta, Obrst, Smith, 2003;
Berners-Lee et al, 2001) has more recently defined
knowledge representation language standards such as
RDF/S, OWL, and extensions of these including Semantic
Web Rule Language (SWRL) and OWL-FOL, a first-order
logic extension of OWL.

An increasingly important issue in the use of ontologies and
the Semantic Web is that of context, i.e., 1) how should an
ontology be interpreted in specific, changing contexts, and
2) how can ontologies incorporate the notion of context?
Contexts here can be considered specific views of domains,
dependent on the user, organization, etc., and their needs
and intents.

Increasingly, the notion of context with respect to ontology
needs to be addressed. Is a context embedded within a
given ontology (where the ontology is viewed as a theory

or set of logical theories about a domain)? Is a context with
respect to an ontology, i.e., with respect to a particular
interpretation of a theory or set of theories, and thus outside
the ontology as theory, leading us to view a context as
encapsulating ontologies and changing the interpretations
of those ontologies in this context as opposed to that
context? Is a context a first-class citizen of the logic of the
ontology? Is it a microtheory ala Cyc (Blair et al, 1992),
meaning a portion of the (monolithic) ontology that is
separable from other microtheories, and thus with respect
to those possibly containing contradictory assertions?
Should hybrid logics and reasoning methods, as for
example discussed in Audemard et al (2002) and
Giunchiglia et al (2000), be used?

In the Semantic Web, ontologies expressed in OWL,
possibly using SWRL and other extensions, have
annotations – annotations on the classes, properties, and
instances, but also on the ontologies. These annotations can
carry information about the construct, possibly its security,
version, provenance, strength or confidence of belief, etc.
Currently, these annotations are non-symbolic and
uninterpreted, in fact, uninterpretable under the current
semantics of OWL. Inference engines that work on OWL
ontologies can provide whatever interpretation they desire
to these annotations. Similarly, reification in RDF is a
statement S2 about a statement S1: a triple along the lines
of S2: <john, states, S1>. The truth of S2 cannot be
determined; there is no semantics for reification in RDF,
only a syntax which a given inference engine is free to
semantically interpret as it will. This is problematic, insofar
as reification in RDF is used to capture belief information,
in particular.

The general problem is therefore: if you make statements
about statements or annotate statements with statements in
ontology languages, should these be semantically
interpreted, and if so, how? In general, statements about
statements are formally representable only in second-order
logic (however, reification in RDF is first-order). Can these
annotations also act as context determiners, and if so how?
Because these annotations begin to look like indices in a
context structure, i.e., guiding the interpretation of the
assertion (or inference step) so annotated, how do we deal
with them? How might we formalize context and its
interaction with the logical assertions of ontologies? We
assert in this paper that these annotations indeed create a
context for the interpretation of ontologies. Is this the only

132

notion of context? No, but it may be that the mechanisms
for the multiple notions of context are similar or, in fact,
the same.

Furthermore, there is overlap here with the evolving notion
of policy, especially with respect to Semantic Web
ontologies. Policy we take as really an aspect of formal
pragmatics, as opposed to just the base formal semantics,
i.e., policy involves how the semantics should be
interpreted in a given context, with the policy theory
(ontology) ensuring the correct intent of the policy for a
given semantic interpretation, and thereby ensuring the
correct usage of the given semantics as expressed in the
ontology/ies of the site or enterprise that has propounded
the policy.

Formalization of Context for Ontologies

Traditional formalizations of context such as McCarthy
(1987, 1991, 1993), Guha (1991), McCarthy & Buva�
(1997) and the related notion of microtheory in Cyc (Blair,
et al, 1992; Lenat & Guha, 1990; Lenat, 1998) introduced
the notion of ist(c, p), i.e., a proposition p is true (ist) in a
given context c, a so-called lifting axiom (of a proposition’s
truth value from one context to another). As Menzel (1999)
points out, these formalizations, including that of Akman &
Surav (1996, 1998), propose a so-called “subjective
conception” of context, meaning one which defines
contexts as sets of propositions, i.e., as theories related via
an entailment relation, and typically as a set of beliefs of
aperson or agent – hence, subjective. Menzel (1999),
however, proposes an “objective conception” of context, a
shared context among agents that views the truth of a
proposition not as a logical relation (such as entailment)
between the proposition of a context and other propositions,
but instead as a correspondence relation between the
proposition and the world – hence, objective.

This “correspondence” relation is interesting in a number of
ways, including its apparent correlation to the notion of
compatibility of contexts developed in the local model
semantics of Giunchiglia & Ghidini (1998), Giunchiglia &
Bouquet (1997, 1998), and related to Obrst et al (1999a-b).
In addition, of course, it acts as a refinement of the
accessibility relation between worlds in possible worlds
semantics (and which, however, is usually taken to be an
entailment relation), which is why Menzel (1999) proposes
the use of Situation Theory (Barwise & Perry, 1983), which
explicitly intends to establish more granular formal
contexts in natural language semantics than the usual
notion of possible worlds, i.e., situations. Situation theory
and a similar theory, Discourse Representation Theory
(Kamp & Reyle, 1993), attempt to extend the original focus
of natural language semantics from the sentence to the
discourse level, including the formal pragmatics of
language. Stalnaker (1998) is also relevant here.

Recently, there has been research addressing ontologies and
contexts with respect to Semantic Web ontology languages
such as OWL. In particular, Bouquet et al (2004) build on
Giunchiglia & Ghidini (1998), and extend OWL to include
contexts, as Context-OWL or C-OWL, in which mappings
among ontologies are first class citizens in their own right,
represented independently of the ontologies they link.

Contextual Indexing of Ontological
Expressions

One prospective accommodation of contexts to ontologies
involves the notion of labeled deduction (Gabbay, 1996;
Basin et al, 2000). In labeled deduction, multiple logics are
correlated. In some natural language processing usage of
labeled deduction, the formal syntax of an expression is
correlated with its formal semantics (Finger et al, 1997;
Kempson, 1996; Moortgat, 1999).

Some examples from formal linguistics may help illustrate
how labeled deductive systems (LDS) work. In Figure 1
(from Gabbay & Kempson, 1992; adapted from Kempson,
1996, p. 569), the Modus Ponens (MP) proof structure
contains units of the form label-plus-formula, e.g., αααα:P,
with αααα labeling the formula P (with P, Q ranging over
logical types e, t, e→→→→t – roughly, type entity, type truth
value, and functional type entity to truth value,
respectively). In this example, the conclusion ββββ(αααα):Q
signifies the function application of ββββ on αααα in the label of
the formula Q. In this natural language parsing application
(using the Curry-Howard isomorphism of types as
formulae), words are labels on their types, and successive
Modus Ponens applications build up a semantic
interpretation of a sentence via simultaneous function
applications on the labels.

αααα:P
ββββ:P →→→→ Q

ββββ(αααα):Q

Figure 1. Labelled Deductive System: Modus Ponens

In Figure 2 (Kempson, 1996, p. 574), a rule of
→Introduction is given, where the label builds a

Assume:

αααα:P
…
ββββ(αααα):Q

λλλλx ββββ(x): P →→→→ Q

Figure 2. Labelled Deductive System: →→→→Introduction

133

λ-abstraction which records where the assumption has been
retracted. Such a representation might be used for ellipsis
in natural language discourse, where the resulting lambda
term can be then be bound to another premise.

In other more typical logical usages, an assertion or
inference step is annotated with other logical information,
so that multiple logics exist and act over the same
expression. For each primary logical assertion or deductive
step, annotations exist. These annotations (labels) are
themselves symbolically interpreted according to the logic
they are expressions of, at each step in the primary
assertion or deductive step. Typically, the annotations are
expressed in simpler logics than the primary
assertion/deductive step. Consider a very simple example,
where the label of each formula in the MP proof above is
just t1, designating a specific time at which the formula is
true. From t1:P, t1:P →→→→ Q, one concludes t1:Q. The effect
is therefore that the most computationally resource-
intensive deduction using the logical assertions drives the
inference, with the annotations (expressing security,
strength of belief, provenance information) represented in
less expressive and therefore more efficiently executed
logics (typically propositional logics, some of which can be
implemented in bit-vector operations). The result is that a
Modus Ponens proof can simultaneously cause the
composition of security and/or belief-confidence
annotations according to simpler logics, and propagate the
annotations through the ontological space.

Labeled deduction, therefore, may be a mechanism by
which contexts expressed as indices representing security,
belief, provenance, and other policy (formal pragmatic)
determinants may influence the interpretation of
ontological (semantic) expressions. For example, Rasga et
al (2002) with regard to modal logic, discusses using a
labeled formula x:ϕϕϕϕ which means that ϕϕϕϕ holds at world x in
the underlying Kripke structure (model), and then defining
rules which separately and simultaneously work on the
labels and the formulae. Blackburn (1999, 2000)
internalizes labeled deduction by moving its methods from
the (external) metalanguage to the object language
(propositional modal logic) by introducing as labels i
nominals, each of which is true at exactly one state in the
model. So a formula with a nominal label “i: ϕϕϕϕ will be true
at any state in a model iff ϕϕϕϕ is true at the state that i labels”
(Blackburn, 2000, p. 137-138). The resulting logic is a
hybrid logic with two sorts: propositions and nominals.

In this short paper, we can only suggest the possible use of
labeled deduction for contextual indexing of ontological
expressions. For example, one might consider a very simple
system for a security context, where individual propositions
(facts or assertions in an ontology) and ontology rules are
labeled with their respective security classifications. The
resulting system (using MP) might look as in Figure 3.

αααα:P
ββββ:P →→→→ Q

(αααα ∗∗∗∗ ββββ):Q

where (αααα ∗∗∗∗ ββββ) is defined as (αααα, ββββ
elements of a poset and ≥≥≥≥ is a partial
ordering):
i. (αααα ∗∗∗∗ ββββ) = αααα if αααα ≥≥≥≥ ββββ
ii. (αααα ∗∗∗∗ ββββ) = ββββ if ββββ >>>> αααα

Figure 3. LDS MP: Security Labels + Ontology Expressions

Acknowledgments

The views expressed in this paper are those of the authors
alone and do not reflect the official policy or position of
The MITRE Corporation or any other company or
individual.

References
Akman, Varol and Mehmet Surav. 1997. The Use of Situation

Theory in Context Modeling, Computational Intelligence 13(3),
pp. 427-438, August, 1997.

Akman, Varol and Surav, Mehmet. 1996. Steps toward
Formalizing Context. AI Magazine 17(3), pp. 55-72, 1996.

Audemard, Gilles; Piergiorgio Bertoli; Alessandro Cimatti; Artur
Kornilowicz; Roberto Sebastiani. 2002. Integrating Boolean
and Mathematical Solving: Foundations, Basic Algorithms and
Requirements". In "Artificial Intelligence, Automated
Reasoning, and Symbolic Computation. Proc. of Joint AISC
2002 and Calculemus 2002." Marseille, France, 2002. LNAI
N.2385 © Springer.

Barwise, Jon, and John Perry. 1983. Situations and Attitudes.
Cambridge: MIT Press.

Basin, D., M. D'Agostino, D. Gabbay, S. Matthews, and
L. Viganò, editors. 2000. Labelled Deduction, pages 107-134,
Kluwer Academic Publishers, 2000.

Berners-Lee, T; J. Hendler; and O. Lassila. 2001. The Semantic
Web. In The Scientific American, May, 2001.
http://www.scientificamerican.com/2001/0501issue/0501berner
s-lee.html.

Blackburn, Patrick. 1999. Internalizing Labelled Deduction. In
Proceedings of Hylo’99, First International Workshop on
Hybrid Logics. July 13th, 1999, Saarbrücken, Germany.
Published in Journal of Logic and Computation, 2000
10(1):137-168.

Blair, Paul; Guha, R.V.; Pratt, Wanda. 1992. Microtheories: An
Ontological Engineer's Guide. Technical report Cyc-050-92,
March 5, 1992, Cycorps, Austin, TX.
http://www.cyc.com/tech-reports/cyc-050-92/cyc-050-92.html

Bouquet, Paolo; Fausto Giunchiglia; Frank Van Harmelen;
Luciano Serafini; Heiner Stuckenschmidt. 2003. C-OWL:
contextualizing ontologies. "2nd international semantic web
conference (ISWC 2003)", edited by Dieter Fensel and Katia p.
Sycara and John Mylopoulos, Sanibel Island (Fla.), 20-23
October 2003, pp. 164-179.

134

Daconta, M., L. Obrst, K. Smith. 2003. The Semantic Web: The
Future of XML, Web Services, and Knowledge Management.
John Wiley, Inc., June, 2003.

Davey, B.A.; Priestley, H.A. 1991. Introduction to Lattices and
Order. Cambridge University Press, Cambridge, UK.

Finger, Marcelo; Rodger Kibble; Dov Gabbay; Ruth Kempson.
1997. Parsing Natural Language Using LDS: a Prototype.
http://semantics.phil.kcl.ac.uk/ldsnl/papers/fkkg97pnlul.pdf.

Gabbay, Dov. 1996. Labelled Deductive Systems; Principles and
Applications. Vol 1: Introduction. Oxford University Press.

Gabbay, Dov; Ruth Kempson. 1992. Natural-language content: a
truth-theoretic perspective. In Proceedings of the 8th Amsterdam
Formal Semantics Colloquium. Amsterdam: University of
Amsterdam.

Giunchiglia, Fausto; Roberto Sebastiani; Paolo Traverso. 2000.
Integrating SAT solvers with domain-specific reasoners.
Symbolic Computation and Automated Reasoning, St.
Andrews, Scotland, UK, August 2000. A.K. Peters Eds.

Giunchiglia, Fausto; Bouquet, Paolo. 1997. Introduction to
Contextual Reasoning: An Artificial Intelligence Perspective.
Istituto per la Ricerca Scientifica e Tecnologica (IRST), Trento,
Italy, Technical report 9705-19, May, 1997.

Giunchiglia, Fausto; Bouquet, Paolo. 1998. A Context-Based
Framework for Mental Representation. Istituto per la Ricerca
Scientifica e Tecnologica (IRST), Trento, Italy, Technical
report 9807-02, July, 1998.

Giunchiglia, Fausto; Ghidini, Chiara. 1998. Local Models
Semantics, or Contextual Reasoning = Locality +
Compatibility. Principles of Knowledge Representation and
Reasoning (KR'98), Proceedings of the Sixth International
Conference, Trento, Italy, June 2-5, 1998, Anthony Cohn,
Lenhart Schubert, Stuart Shapiro, eds., pp. 282-289.

Guarino, N, ed. 1998. Formal Ontology in Information Systems.
Amsterdam.: IOS Press. Proceedings of the First International
Conference (FOIS’98), June 6-8, Trento, Italy.

Guarino, N.; Achille Varzi; Laure Vieu. 2004. The Proceedings of
the 3rd International Conference on Formal Ontology in
Information Systems (FOIS-04), November 4-6, 2004.
http://fois2004.di.unito.it/.

Guarino, N.; C. Welty; B. Smith, ed. 2001. The Proceedings of
the 2nd International Conference on Formal Ontology in
Information Systems (FOIS-01), October 16-19, 2001,
Ogunquit, Maine. ACM Press Book Series, Sheridan
Publishing, Inc. http://www.fois.org/fois-2001/index.html.

Guha R. V.. Contexts: A Formalization and Some Applications.
1991. PhD thesis, Stanford University, 1991. Also technical
report STAN-CS-91-1399-Thesis, and MCC Technical Report
Number ACT-CYC-423-91.

IEEE SUO. IEEE Standard Upper Ontology Working Group.
http://suo.ieee.org/.

Kamp, Hans; Reyle, Uwe. 1993. From Discourse to Logic:
Introduction to Modeltheoretic Semantics of Natural Language,
Formal Logic and Representation Theory, Part 1 and 2, Kluwer
Academic Publishers, The Netherlands.

Kempson, Ruth. 1996. Semantics, Pragmatics, and Natural-
Language Interpretation. In the Handbook of Contemporary
Semantic Theory. Shalom Lappin, ed., pp. 561-598. Blackwell.

Lenat, Doug. 1998. The Dimensions of Context-Space. Cycorp,
Austin, TX, Technical Report, October 28, 1998.

Lenat, D. and R. Guha. 1990. Building Large Knowledge Based
Systems.Reading, Massachusetts: Addison Wesley.

�������	
���������
����������������������������� ��
(Expanded Notes). In Computing Natural Langauge, A.

Aliseda, R. van Glabbeek, & D. Westerståhl, eds., Stanford
University. http://www-formal.stanford.edu.

McCarthy, John. 1987. Generality in Artificial Intelligence,
Communications of the ACM 30(12), pp. 1030-1035.

McCarthy, John. 1990. Formalizing Common Sense: Papers by
John McCarthy. Ablex Publishing Corporation, 355 Chestnut
Street, Norwood, NJ 07648, 1990.

McCarthy, John.. 1993. Notes On Formalizing Context. In
Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, 1993.

Menzel, Chris. 1999. The Objective Conception of Context and
Its Logic, 1999. Minds and Machines 9(1): 29-56 (Feb 1999).

Moortgat, Michael. 1999. Labelled Deduction in the Composition
of Form and Meaning. In Logic, Language and Reasoning.
Essays in Honor of Dov Gabbay. U. Reyle and H.J. Ohlbach,
eds. Kluwer, 1999.

Obrst, L., G. Whittaker, A. Meng. 1999a. Semantic Context for
Object Exchange, AAAI Workshop on Context in AI
Applications, Orlando, FL, July 19, 1999.

Obrst, L., G. Whittaker, A. Meng. 1999b. Semantic
Interoperability via Context Interpretation, submission,
Context-99, Trento, Italy, April, 1999, invited poster session.

Rasga, João; Amílcar Sernadas; Cristina Sernadas; Luca Viganò.
2002. Labelled Deduction over Algebras of Truth Values. In
Proceedings of FroCoS’2002, the 4th Workshop on Frontiers of
Combining Systems. Springer-Verlag.

Semy, S., M. Pulvermacher, L. Obrst. 2004. Toward the Use of an
Upper Ontology for U.S. Government and Military Domains:
An Evaluation. MITRE Technical Report 04B0000063,
September, 2004.

Stalnaker, Robert. 1998. On the Representation of Context.
Journal of Logic Language and Information.

135

Explaining Question Answering Systems with Contexts

Deborah L. McGuinness

Knowledge Systems, Artificial Intelligence Lab, Stanford University, dlm@ksl.stanford.edu

Abstract
One central issue in the usability of answers is in their
understandability. We have focused a line of research on
explaining answers from heterogeneous distributed systems
with the goal of improving usability and trustability in
answers by increasing answer understandability and
trustability. We explore ways of providing an interoperable
distributed infrastructure that supports explanations
containing provenance concerning answers – where
information came from, how reliable it is -- along with
information about assumptions relied on, information
manipulation techniques, etc. The infrastructure utilizes the
Proof Markup Language, encoded in the OWL Web
Ontology Language so as to be compatible with web
standards and also so as to be able to leverage existing web
ontologies. In this paper, we expose and explore some
issues related to context as it is used in some of our question
answering systems.

Introduction
 As question answering systems utilize more varied data
sources and reasoning methods, it is becoming increasingly
important to provide not only answers, but also
information about the answers so users (humans and
agents), can evaluate and understand the answers. The
information may provide details concerning the raw data
sources, how recent they are, who authored them, whether
they are considered authoritative, etc. The explanations
may further contain information about any manipulations
that were done to the raw sources – were text extraction
techniques used to generate knowledge bases? How
accurate are those extraction routines? What reasoning
methods and reasoners were used to deduce conclusions?
Were the methods heuristic, sound and complete, etc.?
Further, were assumptions relied on in the reasoning
process? If so, which ones? When this kind of
information is available in a machine operational format,
for example by being encoded in the Proof Markup
Language, then this information can be made available to
agents and end users. When explanations contain this kind
of meta information about the answer and the answer
process, users become empowered to make informed
decisions about when to use the answer. The user can
access information that can allow them to check how

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

reliable the sources were, how accurate the information
manipulation techniques might have been, if assumptions
were used that either they agree with or can tolerate, etc.
Our approach enables this information to be packaged
together in a structured object, sometimes called a “proof
object” or “justification object” that can accompany any
statement.

Explanation in Context
 We propose the use of a portable, distributed
infrastructure – Inference Web [McGuinness and Pinheiro
da Silva, 2004]— that provides:
• support for registering meta information about objects

used in justifications;
• a web compatible, interoperable proof markup language

for encoding formal and information justifications
[Pinheiro da Silva, McGuinness, & Fikes, 2005];

• services for manipulating proof objects to provide
capabilities for browsing, abstracting, checking, and
interacting with justifications.

We have used Inference Web to explain answers from
applications that use standard first order logic reasoning
systems such as Stanford’s JTP system, used in
applications for example in the KSL Wine Agent Demo
[Hsu & McGuinness, 2003] and in DARPA programs such
as the Personalized Assistant that Learns program’s
Cognitive Assistant that Organizes project. It has also
been used in a number of other settings that include
question answerers that may rely on knowledge bases that
use text extraction, such as those from IBM’s UIMA effort
[Ferrucci & Lally, 2004]. Inference Web has been
integrated with UIMA to support the ARDA Novel
Intelligence for Massive Data program in a system called
KANI so that it can explain answers derived using
reasoning over knowledge bases partially generated by text
extraction [Welty et. al., 2005].
 The KANI system does more than typical theorem
proving- it also addresses issues related to typicality and
temporal reasoning. It makes decisions using typicality
assumptions, such as “People who own businesses
typically have offices at the businesses” or “People who
have access to a particular telephone line at a particular
time may make a call on that line”. It needs to then
provide explanations of its answers that include
information such as which typicality assumptions were

136

used in the reasoning path. Further, if there is any
information about the trust a user may have in the
assumptions (or the raw sources or the question answerers,
etc., this should also be exposed).
 Our explanation infrastructure provides an extensible
format that has been adequate for encoding assumptions
required for the contextual reasoning required to date. It
has also been adequate for encoding the information
manipulation steps required to date. It can be viewed as a
prototype implementation of a design that supports
explanations of hybrid question answering systems that
require some support for context. The implementation
today in the KANI system does not integrate the trust
component [Zaihrayeu et. al., 2005] however a future
implementation will include this so that trust levels can be
included with explanations. Our interest in this workshop
is to gather input both on the existing explanation support
for our initial forms of limited context reasoning and to
gather additional requirements for explanation support for
future, more expansive applications.

Conclusion
 Our thesis is that question answering systems may have
limited value if they can only answer questions but can not
provide explanations along with the answers. We have
provided an explanation infrastructure that supports
explanations in distributed heterogeneous question
answering environments, such as the web, where data
sources may have a wide diversity of quality, recency, and
reliability. Further, it supports explanations of question
answering environments that must take context into
account and provide forms on reasoning with context. Our
Inference Web framework is being used to support
question answering systems in a number of research
programs funded by DARPA and ARDA and has been
integrated with question answering systems that range
from theorem provers, to text analysis engines, to expert
systems, to special purpose temporal and context
reasoners.

References
David Ferrucci, 2004. Text Analysis as Formal Inference
for the Purposes of Uniform Tracing and Explanation
Generation. IBM Research Report RC23372.
David Ferrucci and Adam Lally, 2004. UIMA by Example.
IBM Systems Journal 43, No. 3, 455-475.
Eric Hsu, and Deborah L. McGuinness. KSL Wine Agent:
Semantic Web Testbed Application, Proceedings of the
2003 International Workshop on Description Logics
(DL2003). Rome, Italy, September 5-7, 2003.
www.ksl.stanford.edu/people/dlm/webont/wineAgent/
Deborah L. McGuinness, 1996. Explaining Reasoning in
Description Logics. Ph.D. Thesis, Rutgers University.
Technical Report LCSR-TR-277.

Deborah L. McGuinness and Paulo Pinheiro da Silva,
2004. Explaining Answers from the Semantic Web: The
Inference Web Approach. Journal of Web Semantics
1(4):397-413.
Paulo Pinheiro da Silva, Deborah L. McGuinness, and
Richard Fikes. A Proof Markup Language for Semantic
Web Services. Information Systems (to appear)
Paulo Pinheiro da Silva, Deborah L. McGuinness, and Rob
McCool, 2003. Knowledge Provenance Infrastructure. In
IEEE Data Engineering Bulletin 26(4), 26-32.
Ilya Zaihrayeu, Paulo Pinheiro da Silva, and Deborah L.
McGuinness, 2005. IWTrust: Improving User Trust in
Answers from the Web. Technical Report DIT-04-086,
Informatica e Telecomunicazione, University of Trento,
Italy
Christopher Welty, J. William Murdock, Paulo Pinheiro da
Silva, Deborah L. McGuinness, David Ferrucci, Richard
Fikes. Tracking Information Extraction from Intelligence
Documents. In Proceedings of the 2005 International
Conference on Intelligence Analysis (IA 2005), McLean,
VA, USA, 2-6 May, 2005.

137

Statement of Interest for AAAI-2005 Workshop on Contexts and
Ontologies

Nestor Rychtyckyj

Manufacturing Engineering Systems

Ford Motor Company
Dearborn, MI

nrychtyc@ford.com

Statement of Interest

Since the early 1990s Ford Motor Company Vehicle
Operations has utilized a knowledge-based system
utilizing description logics to manage the vehicle
assembly process planning at Ford's assembly plants. The
heart of this system is a knowledge base that contains all
of the manufacturing knowledge that is needed to build
vehicles at our assembly plants. The following type of
knowledge is contained within the system: information
about the assembly work, time required to perform an
assembly operation, required tooling, part information, a
lexicon of terminology that is used by the engineers to
describe the assembly build instructions, ergonomic
constraints [1] and associated manufacturing information.
This knowledge is utilized by Ford engineers and
assembly plant operators throughout the world using a
global enterprise system known as the Global Process
Allocation Study System (GSPAS) [2].
 The GSPAS knowledge base is a description logic-
based implementation containing knowledge about Ford's
vehicle manufacturing domain, including information
about tools, parts, assembly instructions, ergonomics
issues and lexical information about Standard Language.
Standard Language is a controlled language developed at
Ford that is used to describe manufacturing instructions in
a restricted syntax that is processed by GSPAS. The
knowledge within GSPAS is being constantly being
updated due to the dynamic nature of the automotive
industry [3].
 Our current focus is to expand the capability of our
systems by tapping into the relevant knowledge that is
available throughout the corporation but cannot be easily
found or integrated into our existing systems. This type
of knowledge includes information about manufacturing
best practices, "lessons learned", safety and local plant
issues and other related information. All these other
knowledge sources cannot be easily integrated due to
many factors including missing or incorrect context
information, different structure of knowledge bases,
mismatched terminology, missing terminology and other
related reasons. In many cases we need to deal with

unstructured data and text that resides in internal web
sites, documents, spreadsheets, existing databases and
other knowledge sources.
 Figure 1 depicts our current approach to build a
structured knowledge representation scheme for
manufacturing. The list of knowledge sources that needs
to be integrated is listed on the left-hand side under the
title of "VOME Knowledge". This contains various
sources of knowledge that are relevant for manufacturing.
Some of these are already contained in knowledge bases,
others may be in databases, spreadsheets or in other
formats. Our goal is to develop a structured ontology that
will be able to access this knowledge from various
sources and make it available for our users at the
appropriate time.
 Therefore, I am very interested in this workshop to see
how different context and ontologies can be combined in
terms of integrating information and sharing knowledge
across a broad spectrum of application areas.

References

1. Rychtyckyj, Nestor (2004), "Ergonomics
Analysis for Vehicle Assembly Using Artificial
Intelligence", Proceedings of the 16th Conference
on Innovative Applications of Artificial
Intelligence, July 25-29, 2004, San Jose, CA, pp.
793-798.

2. Rychtyckyj, N., (1999), “DLMS: Ten Years of
AI for Vehicle Assembly Process Planning”,
AAAI-99/IAAI-99 Proceedings, Orlando, FL,
July 18-22, 1999, pp. 821-828, AAAI Press.

3. Rychtyckyj, N., and Reynolds, R., (2000),
“Long-Term Maintenance of Deployed
Knowledge Representation Systems”,
Proceedings of the Seventh International
Conference on the Principles of Knowledge
Representation and Reasoning, April 12-17,
2000, Breckenridge, CO, pp. 494-504, Morgan
Kaufmann Publishers.

138

Manufacturing Knowledge Description

Build a structured Vehicle Operations
Manufacturing Engineering (VOME)
knowledgebase

VOME
Process

Knowledge
Database

VOME Process
Knowledge

• Musts / Wants
• eBPR
• BCF
• Mfg Ref. Sys.

.

.

.

Prioritize,
Review,
Structure

���
���
���
���
���
���
���
���
���
���
���
���
���
���

• Mfg Issues
• Virtual Builds
• Quality
• Lessons Learned
• Best Practices
• Must / Wants
• Guidelines
• Ergonomics
• Safety Concerns

.

.

VOME
Knowledge

Maintain

One Process
One Format
One Master

Figure 1: Knowledge Sharing Environment in Manufacturing

139

Context-aware Policy Matching in Event-driven Architecture

Shao-you Cheng Wan-rong Jih Jane Yung-jen Hsu
r93070@csie.ntu.edu.tw jih@agents.csie.ntu.edu.tw yjhsu@csie.ntu.edu.tw

Computer Science and Information Engineering,
National Taiwan University, Taiwan

Motivation
Applications for supporting pervasive computing and agility
are the current trend in software development. The service-
oriented architecture (SOA) enables connection between
consumers and service providers in a loosely-coupled way
to improve flexibility and extensibility. This architecture is
static, which utilizes predefined sequences of actions and
fixed policies. Ongoing processes cannot adapt to dynamic
changes in the environmental conditions or context.

Imagine the situation where a real estate broker shows her
client a house for sale, matching the preference profile pro-
vided by the potential buyer. While the buyer likes the gen-
eral location of the house, he considers it unacceptable due
to the unexpected traffic noise from a nearby street. Instead
of proceeding with the original plan to show another house
on the same street, an experienced broker should adjust the
plan in light of this additional constraint. The broker con-
nects to the multiple listing service with her mobile device
and downloads a newly listed house within minutes of the
current location that better satisfies the client’s requirements.

Such a scenario can facilitate the introduction of events
into SOA (He 2003). Real-time changes are modeled as
events, which in turn trigger changes of states for the work-
flow to meet the business needs. In this scenario, events can
be ”shows client a house”, ”add client’s requirements”, etc.

Introduction
This research explores the role of context-aware policy
matching in an event-driven architecture (EDA). In partic-
ular, a context-aware rule engine is adopted to derive con-
clusions based on the current contexts and business policies.
Figure 1 shows the functional modules of the prototype de-
signed to demonstrate the advantages of the proposed ap-
proach. In the Underlying Architecture layer, standard SOA
is combined with EDA. The Context-Aware Rule Engine
layer consists of three distinct agents for collecting prefer-
ence profiles, ambient or context information, and dynamic
events. All information collected will be forwarded to the
Rule Engine, augmented with the Rule Repository and Con-
text Ontology. Results from the Rule Engine will be given
to the Action Agent that performs the desired sequence of

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

actions. The following sections contain detailed description
of each module.

Action Agent

Rule Repository Rule Engine Context Ontology

Profile Agent Context Agent Event Agent

SOA EDA

Context-Aware

Rule Engine

Underlying

Architecture

Figure 1: Context-aware policy matching framework

Event-driven Architecture
The SOA use a simple and clear interface to bind all par-
ticipating software components and provides service reuse.
However, it lacks proactive ability. Event notification is the
core of EDA, it can tightly bind services, events, and con-
sumers in a dynamic environment. Events are more likely
to complement, not replace, services in SOA. Since EDA
has been touted as the “the next big thing” on the horizon
of software development methodology (Schulte 2004). It
is generally believed that event-driven services under SOA
gain benefits from the features of both architectures (Hanson
2005).

Conventional event-driven design is also referred to as
message-based systems, where a message here is a form of
an event. Specifications of WS-Notification family and WS-
Eventing define the standard Web services approaches for
event handling. When events occur, as shown in Figure 2,
service producers publish the messages which will be deliv-
ered, e.g. via publish-and-subscribe, to the event consumers.

Context-Aware Rule Engine
The proposed framework utilizes the Jess rule en-
gine (Friedman-Hill 2005) to provide inference results. Jess
processes the rules and facts using the Rete algorithm (Forgy
1982). User preferences are represented as policy rules that
are matched in the reasoning process.

Contexts refer to the various dynamic aspects of the en-
vironment, for example, location, time, and people (Dey

140

Providers

Consumers

User
Profiles

Sink Sink Sink Sink…

Service

Message Channel
and

Content Matching

Publish

Subscribe

Content
Matching

Content
Matching

… …

Send

Receive Receive

PublishSend

Subscribe

Service Service Service
Service
Policies

Sink Sink

…

Events
Product announcement Top news

New arrival Special offer Season discount

Stock price

… …

Figure 2: Message-based event-driven architecture

2001). Static rules cannot react to the dynamically chang-
ing contexts. As a result, context-aware rules are defined to
use dynamic facts in the knowledge base, which may result
in different conclusions depending on the current context.
In our previous work, we successfully implemented context-
aware rule-based reasoning on Java-enabled mobile devices,
such as the iPAQ, to perform access control of sensitive in-
formation (Jih, Cheng, & Hsu 2005).

A context agent monitors and perceives any environmen-
tal changes. Figure 3 shows that context information may
be captured by various multi-modal sensors, such as GPS or
RFID. The context agent filters the contexts that have been
detected, passing the selected contexts to the rule engine.
Similarly, the event agent perceives and filters the relevant
events of its surrounding area, and the profile agent keeps
track of the user’s preferences.

Context-Aware

Policy Matching

Context-Aware Rule Engine

Rules

Policies
Rule Engine

Fact KB

Context KB

Context Agent

Contexts
location people

time
target activity

Contexts
place person

time target action

Inference

Services

Processes
Events

Plans

…

… Context

Ontology

Figure 3: Context-aware rule engine

Now, let’s examine the scenario of the real estate broker
again. The buyer’s rejection of the current house generates
two events. First, the buyer is not satisfied with the choice,
so he needs additional recommendations. Second, the buyer

preference profile is incomplete, and should be modified to
reflect his preference for a quiet location. The former event
triggers the broker’s mobile device to request for additional
listing from the server, subject to successful matching be-
tween the updated preference profile and updated new list-
ing.

When contexts are encoded in the rule sets, inconsistency
in the terminology is not only confusing, but also leads to
incorrect reasoning outcomes. Given that most useful con-
texts are tightly related to the problem domain (e.g. real
estate), ontology can be used to bridge the semantic gap
among different vocabularies. For example, while location
is a common component of context defined in many appli-
cations, sometimes it is referred to as place, space, or area,
and so on. A context ontology helps generate a complete
model of the different contexts (H.Wang et al. 2004) for a
given domain. A specific context might directly derive from
a more generic one, aggregate to a complex context, or up
to an abstract context. Moreover, the context ontology will
support hierarchical views of contexts (Gu et al. 2004) to
improve the reasoning power of the rule engine.

Conclusion
This paper describes the design of a proposed framework for
deploying a context-aware rule engine to the event-driven
services platform in order to provide agile and real-time ser-
vices. The design uses an agent architecture and a rule en-
gine for flexibility and scalability in software development.
A context ontology is utilized to resolve inconsistent vocab-
ularies in knowledge sharing and rule merging.

References
Dey, A. K. 2001. Understanding and using context. Per-
sonal Ubiquitous Computing 5(1):4–7.
Forgy, C. 1982. Rete: A fast algorithm for the many pat-
terns/many objects match problem. Artificial Intelligence
19(1):17–37.
Friedman-Hill, E. 2005. Jess, the rule engine for the java
platform. Sandia National Laboratories.
Gu, T.; Wang, X. H.; Pung, H. K.; and Zhang, D. Q. 2004.
An ontology-based context model in intelligent environ-
ments. In Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference,
270–275.
Hanson, J. 2005. Event-driven services in soa. JavaWorld.
He, H. 2003. What is service-oriented architecture?
O’Reilly Web services.XML.com.
H.Wang, X.; Gu, T.; Zhang, D. Q.; and Pung, H. K. 2004.
Ontology based context modeling and reasoning using owl.
In Proceedings of Workshop on Context Modeling and Rea-
soning(CoMoRea’04), 18–22.
Jih, W. R.; Cheng, S. Y.; and Hsu, J. Y. J. 2005. Context-
aware access control on pervasive healthcare. In EEE’05
Workshop: Mobility, Agents, and Mobile Services (MAM).
Schulte, R. 2004. Event-driven architecture: The next big
thing. Application Integration and Web Services Summit.
Gartner, Inc.

141

Application of Semantic Web Technologies to UML based Air Force

DoDAF Efforts

Dru McCandless, MITRE, mccandless@mitre.org

Introduction

The Department of Defense (DoD) Architecture

Framework[1] (DoDAF) “defines a common approach for

architecture description, development, presentation, and

integration for both operational and business processes. It

is intended to ensure that architecture descriptions can be

compared and related across organizational and mission

area boundaries, including Joint multi-national boundaries

and DoD warfighting and business domains.”[2] As such,

it guides the Air Force’s architecture development efforts

to describe system(s) performance, interoperability, and

processes. A typical architecture consists of several views

showing such things as node connectivity, information

exchanges, and organizational models. Several UML

diagrams, particularly Class, Activity, and Sequence

diagrams, are used extensively in DoDAF efforts.

However, the end products are intended for a human

audience and are not easily machine reasonable.

A natural set of questions are: how can the information

contained within these UML models be used to support

automated reasoning and other processing to achieve

better, more integrated architectures? How does context

come into play when comparing these diagrams, both

within an architecture, and especially, across architectures?

What techniques and methods exist to capture and relate

the semantics contained in these UML diagrams? Is an

ontology (or some other formal knowledge representation)

a prerequisite to establish context?

Background

The relationship between UML and ontologies has been of

interest to the knowledge engineering community for some

time. Many of these efforts have focused on using UML as

a means for developing ontologies, with less emphasis on

extracting semantic data from existing UML diagrams [3-

6]. There are also efforts aimed at transformation [7], and

efforts to develop tools to support closer interaction

between UML and ontologies [8,9]. One project has

developed code to convert Rational Rose petal files into

RDF [10].

On the DoDAF side, TopQuadrant is developing a set of

ontologies specifically for the DoDAF [11], although they

are not (yet?) available for public release. These appear to

be built using Protégé; no mention is made of UML.

What may be the most comprehensive effort is being led

by the Object Management Group (OMG), which is

sponsoring a Model Driven Architecture (MDA) based

initiative to represent the semantics of ontologies

(including, but not limited to OWL) in a MOF2 compliant

metamodel, called the Ontology Definition Metamodel

(ODM). Also included in this initiative is a requirement for

a UML Profile that extends the UML2 metamodel to

support ontology definition. The ODM will therefore act as

a bridge between UML models and ontologies. This effort

holds forth the prospect that automated conversion

between the two may be available in the near future, at

least as far as the fundamental differences between the two

will allow. The OMG has issued an RFP for the ODM,

which industry has responded to [12].

Discussion

If extracting the semantic data from UML diagrams were

sufficient to provide all of the information needed for

architecture integration, then a purely mechanical

conversion process would be all that was needed.

However, context plays an important role in determining

which semantic interpretations are valid and under what

circumstances. For example, in the simple activity diagram

below, operational activity 1.1 requires information item 1

in order to be completed, and produces information item 2.

Figure 1 – UML Activity Diagram Fragment

The semantics of this diagram can be extracted, but does it

follow that the behavior applies in all situations where

operational activity 1.1 occurs? If not, where and how is it

defined? Also, at what level of detail does an architect

need to represent operational activity 1.1 (and information

items 1 and 2) in order to make such analysis feasible? It is

1.1 Operational
 Activity

: Information
Item 1

: Information
Item 2

142

very possible that the same activity may occur in another

architecture under a different name.

To support the DoDAF objective of relating architectures

across organizational and mission area boundaries it is

clear that:

- comparison and integration of architectures must

be done in context and with some level of

formalism

- ontologies (or some other KR representation) are

needed to express context and formalism

- architecture integration will require the merger

(and reconciliation) of each architecture’s formal

representation

Obstacles preventing the integration of architectures

include the lack of formalism and context in UML

diagrams, effects of different architecting style (subtle

variations of style among architects and the existence of

legacy diagrams), and organizational barriers that prevent

architects from working together. Recently, the DoD has

seen the formation of a number of Communities of Interest

(COIs) to encourage the development of common

vocabularies and shared services. Perhaps these will be

convenient vehicles for defining the semantics necessary

for architecture integration.

The DoD has made a substantial investment in architecture

efforts. In order to achieve its objective it is necessary for

these efforts to work together synergistically. This

represents a wide open area of research and application for

semantic web technologies.

References

1. See http://www.defenselink.mil/nii/doc/ for

resources concerning the DoDAF

2. from

http://www.defenselink.mil/nii/doc/DoDAF_v1_

Memo.pdf

3. K. Baclawski, M. Kokar, et al, “Extending UML

to Support Ontology Engineering for the

Semantic Web”, 2001 available at

http://ubot.lockheedmartin.com/ubot/papers/publi

cation/UMLOntology.pdf
4. P. Kogut, S. Cranefield, et al, “UML for Ontology

Development”, 2001, available at

http://ubot.lockheedmartin.com/ubot/papers/publi

cation/KER4.doc
5. S. Cranefield, “UML and the Semantic Web”,

2001, available at

http://www.semanticweb.org/SWWS/program/ful

l/paper1.pdf

6. D. Gasevic, D. Djuric, V. Devedzic, “Converting

UML to OWL Ontologies”, 2004, available at

http://www.www2004.org/proceedings/docs/2p48

8.pdf

7. K. Falkovych, M. Sabou, H. Stuckenschmidt,

“UML for the Semantic Web: Transformation-

Based Approaches”, 2002, available at

http://homepages.cwi.nl/~media/publications/UM

L_for_SW.pdf
8. Components for Ontology Driven Information

Push (CODIP) project – creators of the DAML-

UML Enhanced Tool (DUET), see

http://projects.semwebcentral.org/docman/view.p

hp/50/8/DUET_Guides_V0.5.2.doc

9. Protégé UML Backend – available at

http://protege.stanford.edu/plugins/uml/

10. Xpetal – part of the Xmodel XML/RDF modeling

Tools, available from SourceForge at

http://sourceforge.net/projects/xmodel/ [the

author is actually pursuing a similar approach

using python to parse petal files for import into an

ontology]

11. Beta screenshots available at
http://www.topquadrant.com/tq_ea_solutions.htm

12. The response to the RFP is available at
http://codip.grci.com/odm/draft/submission_text/

ODMPrelimSubAug04R1.pdf

143

