Towards Design Patterns for Ontology Alignment’

Francois Scharffe
University of Innsbruck
Austria

francois.scharffe
@uibk.ac.at

ABSTRACT

Aligning ontologies is a crucial and tedious task. Matching
algorithms and tools provide support to facilitate the task
of the user in defining correspondences between ontologies
entities. However, automatic matching is actually limited
to the detection of simple one to one correspondences to be
further refined by the user. We propose in this paper the
use of correspondence patterns as a tool to assist the de-
sign of ontology alignments. Based on existing research on
patterns in the fields of software and ontology engineering,
we propose a pattern template as an helper to develop a
correspondence patterns library. We give ways towards the
representation of patterns using an appropriate correspon-
dence representation formalism: the Alignment Ontology.

1. INTRODUCTION

Far from the ideal world envisioned in early ontology re-
search the semantic web contains many ontologies, and is
expected to contain more and more as it will develop. When
two ontologies overlaps, they can be linked together in or-
der to enable exchange of their underlying knowledge. An
alignment between two ontologies specifies a set of corre-
spondences, and each correspondence models a bridge be-
tween a set of ontologies entities. Designing ontology align-
ments is a tedious task. There are many ongoing efforts to
develop tools such as graphical user interfaces and matching
algorithms, in order to make it easier.

Most ontology matching systems are limited to detect
simple equivalence or subsumption correspondences between
single entities, and research concentrates on improving their
quality on various datasets more than on finding more com-
plex matches{ﬂ This can be explained as the problem of

*The work presented in this paper has been supported by
the European Commission under the projects SUPER (FP6-
026850), Knowledge Web (FP6-507482) and SEKT (IST-
2003-506826)

'See the Ontology Alignment Evaluation Initiative 2007
evaluation criteria: http://oaei.ontologymatching.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’08 March 16-20, 2008, Fortaleza, Ceara, Brazil

Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Jérbme Euzenat
INRIA
Grenoble, France

jerome.euzenat@inrialpes.fr

Dieter Fensel
University of Innsbruck
Austria

dieter.fensel
@uibk.ac.at

detecting complex matches is not a trivial one, maybe also
because there is no standard rule language on the semantic
web.

However, simple correspondences are often not sufficient
to correctly represent the relationship between the aligned
entities. The two ontologies in the following example deal
with wines. In the “Wine Ontology’ﬂ which main class is
Wine, the class BordeauzWine represents instances of a
popular french wine made in the region around Bordeaux.
In the “Ontologie du Vin”E] a similar wine is expressed as
an instance of Vin with an attribute terroiTE] indicating the
wine provenance. Matching systems are able to detect the
two correspondences Wine = Vin stating equivalence be-
tween two wines and BordeauzWine T Vin stating that
BordeauzWine is a narrower concept than Vin. In this
case, a more precise correspondence would be
BordeauzWine = Vin M 3terroir.{ Bordeaux}, restricting
the scope of Vin to only those instances having “Bordeauz’’
as value of the terroir attribute.

Going from the initial two basic correspondences to the
refined one involving a condition would be easier using a
pattern showing the structure of the correspondence.

Inspired from design patterns in software engineering, this
paper introduces correspondence patterns as helpers that
facilitate the ontology alignment process. They improve
graphical tools by assisting the user when creating complex
correspondences, and we believe they are a first step towards
matching algorithms able to detect complex matches. We
base the pattern representation on a correspondence rep-
resentation formalism modeling correspondences at an ab-
stract level. This allows to later on retrieve and use the
correspondence according to the needs.

1.1 Knowledge Level

We consider three possible levels of abstraction when rep-
resenting correspondences between ontologies. We find at
the bottom of the stack grounded correspondences, as rep-
resented in a mediation system executing them. Classical
representations of correspondences at this level are the logi-
cal formalism of the reasoner, or the programming language
of the mediator system. For example a transformations of
instances from the class source of an source ontology os to

2The Wine Ontology is available at:
http://www.w3.org/TR/2003/CR-owl-guide-20030818/
wine.

“The Ontologie du Vin is available at:
http://www.scharffe.fr/ontologies/OntologyDuVin.
wsml.

*Terroir is a French word for a particular agricultural region

http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
http://www.scharffe.fr/ontologies/OntologyDuVin.wsml
http://www.scharffe.fr/ontologies/OntologyDuVin.wsml

the class target of a target ontology o is represented in the
following SPARQL query:

CONSTRUCTY{ ?X rdf:type os:source }
WHERE{ ?X rdf:type o,:target. }

The query above constitutes an example of grounded cor-
respondence for the specific task of instance transformation.
Other mediation tasks such as query rewriting or ontology
merging require different systems to be performed. How-
ever, the correspondence between related entities remains
the same at more abstract level.

We therefore introduce the correspondence level where

correspondences are represented in a way they can be grounded

to the language of the mediator system associated to the me-
diation task to be realized. This allows to specify correspon-
dences independently from the expressiveness of the under-
lying knowledge representation formalism of the ontologies.
Correspondences at this level can be conveniently exchanged
between graphical tools, matchers and mediators. Corre-
spondences are typically expressed using a specific ontology
alignment representation formalism such as the Alignment
Ontology presented Section [1.2

A correspondence pattern is at the top level of abstraction
of the ontology alignment representation stack. Correspon-
dence patterns are essentially correspondences and sets of
correspondences with unspecified entities. They act as tem-
plates to help finding more precise correspondences than
simply relating one entity to another. Correspondence pat-
terns are meant to be used in graphical user interfaces, in
order to refine simple correspondences discovered by match-
ing algorithms.

Previous and ongoing works in ontology mediation focus
on the development of tools and representation formalisms
for ontology alignment. Grounded correspondences are of-
ten expressed as logical axioms, like in C-OWL [5] or Dis-
tributed Description Logics [4]. These works however do not
differentiate the ontology specification from the alignment,
making more difficult to maintain alignments as the ontol-
ogy evolve. They also propose rules in a particular reason-
ing scheme that is not necessarily reusable for other tasks.
For example, it is not possible to merge ontologies based
on C-OWL bridge rules. Abstraction from the ontology lan-
guage appear in ontology alignment specific formalisms. The
Bridge Ontology in the mapping framework MAFRA [14],
the Alignment Ontology and its serializations [10] are such
formalisms allowing to specify correspondences between on-
tologies at an abstract level. We will in the following present
the Alignment Ontology as it will later be used as the basis
to develop the pattern library presented Section

1.2 Representing Correspondences

The Alignment Ontology is an OWL-DL ontology that
models ontology alignments as sets of correspondences be-
tween ontological entities. It results from efforts [9} |19] to
create an ontology alignment format, abstract from the on-
tology language, that could serve as an interchange format
between matching algorithms, mediators and graphical user
interfaces.

Main classes of the ontology are Alignment which repre-
sents a set of correspondences between ontologies, and Cell
which represents a single correspondence. Four ontologi-
cal entities are considered: Class, Attribute, Relation,

and Instance. Simple correspondences can be specified be-
tween single entities, more elaborated correspondences can
be constructed between multiple entities using set opera-
tors. Conditions restrict entities scope by regarding the
type, occurrence or value of an attribute, but also by re-
garding the domain or range of relations. Transformations
of attributes values can also be specified using XPath func-
tionsEI. A measure property indicates a confidence measure
in the correspondence. A relation indicates the relation
standing between the related entities: equivalence or sub-
sumption. A model-theoretic semantics for the alignment
representation formalism modeled by the Alignment Ontol-
ogy is given in [10]. The ontology is available at [18].

This paper is organized as follows: in Section 2] we present
a pattern template to model correspondences, based on the
related work on design patterns. In Section [3] we propose
to use this template to develop a correspondence patterns
library in a semantic web setting.

2. A PATTERN TEMPLATE

We develop in this section a pattern template [8| [20] pro-
viding a standard way to represent patterns. The template
is divided in two parts, the core part of the pattern template
contains common pattern elements found in the literature.
It follows the high level classification of the GoF [11]. Pat-
terns modeled using this template represent the information
needed to guide a user trying to find the relevant pattern for
the matching problem to be solved.

The second part presents a grounding for that pattern in
a knowledge representation formalism. This separation in
two parts allows the definition of many groundings given a
pattern such as suggested in [21].

We give in the following a detailed presentation of the
template elements.

A Correspondence Pattern represents a correspondence
between two ontologies.

¢ NAME

— Name: A meaningful name to refer to the pat-
tern. The name is used to refer to the pattern in
the system it is developed. In a semantic web set-
ting, the name is usually a fragment of the URI
identifying the pattern.

— Alias: Nicknames and synonyms of the pattern
name. When different versions of a pattern exist,
the name my as well change and the old name
still referred by the Alias.

¢ PROBLEM

— Problem: A statement describing the intent, goals
and objectives of the pattern. This element de-
scribe how a certain correspondence, is modeled
using this pattern and what are the entities in-
volved by the pattern.

— Context: The conditions under which the pattern
happens to be useful. This element refer to spe-
cific domains where the pattern is relevant if any.

e SOLUTION

5XPath functions specification, W3C recommendation avail-
able at http://www.w3.org/TR/xpath-functions/

http://www.w3.org/TR/xpath-functions/

— Solution: A descriptions in natural language of
the pattern, which entities are related to which
entities, conditions and transformations used if
any. A description as an example instance of the
Alignment Ontology.

— Examples: A sample application of the pattern.
The example is meant to give a clearer idea of
when and how the pattern can be applied.

e CONSEQUENCES

— Related Patterns: Relationships between this pat-
tern and others described using this template.
This element refer to similar patterns with one
varying parameter, as well as refined or more gen-
eral versions of the pattern.

— Known Uses: Known occurrence of pattern in-
stances and lessons learned. This is where the
community aspect of patterns comes into play.
Each time the pattern is successfully used to de-
sign a correspondence between two ontologies, this
element should refer to the created correspon-
dence.

Built on this template, the following pattern shown Ta-
ble [2] can be used to model the correspondence presented in
Section [1

As we can see in this example, ontological entities in the
patterns are given generic names (Class WithCondition, Re-
strictionInstance, TargetClass, €&omwg;nil). The patterns
library defined Section [3] should provides such generic enti-
ties.

With regards to the correspondence representation stack
introduced Section the second part of the pattern is
used to obtain a grounded correspondence from a pattern
instance. This part represents the grounding of the pattern
into a knowledge representation formalism used by a medi-
ator executing pattern instances. The main purpose of the
grounding part of the pattern is to give an indication to
the user of the possibility to apply the pattern in the sys-
tem he is working with. For example, a pattern involving
a condition or a data transformation cannot be used in a
system based on a DL-reasoner as the expressiveness of this
language is not sufficient.

We will see next in Section [B|how correspondence patterns
can be encoded in a machine readable format in order to
facilitate their use in semantic web applications and we give
a first set of generic patterns we have identified.

3. CORRESPONDENCE PATTERNS
FOR THE SEMANTIC WEB

Based on the template given in the previous section, we
developed a number of generic patterns answering common
mismatches appearing when trying to relate ontologies, ac-
cording to the description of ontology mismatches in [13].
The pattern library is organized in an OWL class hierarchy,
extending the Alignment Ontology [18]. In fact, patterns
are represented as specific kind of correspondences whose
possible instantiations are restricted using OWL axioms.

The class hierarchy automatically organizes patterns ac-
cording to their specificity, and the degenerated version of

Name: Class By Attribute Correspondence
Alias: classByAttributeCorrespondence
classByAttributeMapping

Problem:

A class in one ontology is related to a class
in the other ontology. The scope of the class
of the first ontology is restricted to only
those instances having a particular value

for a a given attribute.

Context:

This pattern is used in case two classes

have a similar but not completely overlapping
extension and the intent of the first class

is expressed by a particular attribute value

in the target class.

This pattern can be applied to any domain.

Solution:

Solution description:

This pattern establishes a correspondence between
a class/attribute/attribute value combination

in one ontology and a class in another.

Two classes are related with the scope

of one class restricted using an attribute

value condition.

Syntaz: <ClassByAttributeValue
rdf:about="ClassByAttributeValueCorrespondence">
<entityl>
<Class rdf:about="ClassWithCondition">
<condition>
<AttributeCondition>
<restriction>
<Restriction
rdf :about="RestrictionInstance">
<comparator rdf:datatype="&xsd;string">
any xsd comparator</omwg:comparator>
<value rdf:datatype="&xsd;string">
any value</omwg:value>
<onProperty rdf:resource="&omwg;nil"/>
</Restriction>
</restriction>
</AttributeCondition>
</condition>
</Class>
</entityl>
<entity2>
<Class rdf:about="TargetClass">
</entity2>
<measure rdf:datatype=’&xsd;float’>1.</measure>
<relation>equivalence</relation>
</ClassByAttributeValue>

Example:

A BordeauxWine in the Wine Ontology corresponds
to a Vin (wine) having for terroir (origin)

the Bordeaux region.

Corresponds to the example given in

textitSection m

Related Patterns: Equivalent Class Correspondence,
Subclass Correspondence, Class By Attribute Type
Correspondence,

Class By Attribute Occurrence Correspondence

Degenerated Pattern:
Class By Attribute Correspondence

Table 1: The Class By Attribute Correspondence
Pattern

a pattern is thus obtained by taking its parent in the class
hierarchy.

The patterns library extends the Alignment Ontology un-
der the Cell class. Properties corresponding to the pattern
template elements are modeled as OWL annotation proper-
ties: patternAlias, patternProblem, patternContext, pattern-
KnownUses, patternResultingContext and patternSolution-
Description. An rdf:comment can be added to give a rough
description of the pattern. A pattern in the library is mod-
eled as a class with restrictions on its possible instantiations
and an example instance is given for each pattern. The deep-
est one goes into the pattern hierarchy, the more specific are
the patterns, making retrieval of patterns easier as suggested
in [17]. Patterns at the root of the hierarchy are classified
on the type of the entities they are to be applied (Attribute,
Class and Relation). FEquivalent correspondence patterns
model the most frequent kind of correspondence usually used
to solve a terminological mismatc Subsumption corre-
spondence patterns also model very common correspondence
arising when relating entities, they typically solve a granu-
larity mismatc These two patterns are in the scope of
most matching discovery algorithms. They often need to be
refined in order to obtain correspondences reflecting more
precisely the relation standing between the related entities.
Restriction and transformation patterns can be used to re-
fine these correspondences. Union and intersection patterns
solve granularity mismatches. Patterns relating heteroge-
neous entities are used when the structural choices made by
the ontology engineer differ to model a similar domain. For
example, a relation in one ontology is represented as a class
in the other ontology. This patterns are solving structural
mismatches.

The library is developped as an extension of the Alignment
Ontology using the ontology editor Protegeﬂ and is available
on the web at [18].

Besides patterns themselves, the library provides a set of
generic ontological entities used to compose patterns. These
entities serve as placeholders to be filled with concrete entity
names when using the pattern to build a concrete correspon-
dence. These generic entities provide a reference structure
for modeling concrete entities in the same way patterns pro-
vide a reference structure for modeling concrete correspon-
dences. For example, the ClassConditionInstance models
a class with a condition restricting its scope.

A pattern library is said to be complete if all possible in-
stances of a design problem are covered by a pattern in the
library |1] . In the case of ontology alignment this means
that each possible alignment can be created by instantiating
a (number of) pattern(s) and every ontology mismatch can
be solved by using one or a combination of patterns. As
pointed out in the literature, it is not feasible in general to
cover all the possible designs, and moreover impossible to
guarantee that no new design problem will arise that is not
covered by the pattern library. In our special case of ontol-
ogy alignment, we have further restrictions on the kind of
patterns that can be represented as we are limited by the ex-
pressiveness of the alignment representation formalism. We

STerminological mismatches involve all mismatches due to
differences of naming between ontological entities.
"Granularity mismatch happen when a part of the domain
is more refine in one ontology than in the the other
Shttp://protege.stanford.edu

can therefore only define completeness of the library with re-
spect to the expressiveness of this formalism. Also, it is not
possible at this stage to say wether the elementary patterns
defined in the library will be sufficient to construct complex
patterns solving complex alignment problems. Practical ex-
tensions of the library for domain specific alignments will
help validating and extending this set of elementary pat-
terns.

We ground correspondences using transformations of the
Alignment Ontology instances into the target formalism.
The Alignment API [9] and the Mapping API [19] propose
groundings into various semantic-web languages.

e A grounding to OWL |2| provide the possibility to in-
terpret alignments as OWL ontologies, and thus to ex-
ecute them using an OWL reasoner. The counterpart
is that this ontology language is not expressive enough
to model rules and functions necessary to build com-
plex correspondences.

e A grounding to WSML in its rule variant [6] is also
provided, allowing to define alignments for mediation
between semantic web services descriptions.

e A SKOS |15] grounding using skos:narrower and
skos:braoder to relate entities from thesauri.

e We are currently working on a SPARQL extension
[16] able to represent ontology alignments for instance
transformation.

4. RELATED WORK

Design patterns were first mentioned in architecture by
Alexander in 1977 [1|. They are meant to create a culture
to document and support architecture and design. They are
reusable when similar problems arise and can be extended as
solutions to new problems. They were transposed to com-
puter science in the mid-nineties of the 20th century [11].
Recent works [21} 3} |12] propose the use of patterns for on-
tology engineering.

Organization of software patterns was studied in [17]. The
ontological organization of patterns provide better retrieval
functionalities, particularly fitting in the semantic web en-
vironment as we will see later Section [3

In (7], Clark et al. propose the use of Knowledge Pat-
terns for engineering knowledge bases, using morphisms to
instantiate the patterns. They particularly distinguished
between the pattern, and implementation in a particular
programming language. Staab et al. [21] propose the use
of Semantic Patterns to engineer ontologies while remaining
independent from the underlying ontology language. This
concept is similar to the separation between correspondence
patterns and grounded correspondences we introduced Sec-
tion Gangemi [12] proposes the use of patterns based
on experience. He also introduces a pattern template and a
library of common patterns for ontology engineering.

S. CONCLUSION

We introduced in this paper ontology correspondences
patterns as helper to model ontology alignments. We de-
fined a template based on the literature on design patterns
and gave a library of elementary correspondence patterns.
Patterns instances are described using the Alignment Ontol-
ogy, a formalism to represent ontology alignments abstract
from the underlying knowledge representation formalism. In
order to be executed, pattern instances are grounded to the
desired formalism. We are constantly refining the library
given experience in research projects. There are two ap-
plication domains where specific patterns could enrich the
library: relational database to ontology, and ontology ver-
sionning. Relating databases to ontologies becomes an im-
portant topic as a considerably large amount of data is al-
ready available in relational databases. Publishing this data
on the semantic web ask to either convert it to RDF stores or
to maintain it in the relational database but provide a map-
ping to an ontology. This second solution is often preferd as
it is more flexible. Providing specific database to ontology
patterns will help the task of the specialist designing these
mappings. Another application of ontology alignment con-
sists in maintaining consistent versions of evolving ontolo-
gies. Changes in one version of an ontology are forwarded to
its previous versions via the use of correspondences. Provid-
ing specific patterns for change management could help the
ontology engineer realizing the alignment between these dif-
ferent versions. We currently investigate on these two topics
as possible extensions of the pattern library.

6. ACKNOWLEDGEMENTS

The authors would like to thanks Jos de Bruijn for useful
discussions about correspondence patterns.

7. REFERENCES

[1] Christopher Alexander, S. Ishikawa, and
M. Silverstein. A Pattern Language, volume 2 of
Center for Environmental Structure Series. Oxford
University Press, New York, New York, USA, 1977.

[2] Sean Bechhofer, Frank van Harmelen, Jim Hendler,
Tan Horrocks, Deborah L. McGuinness, Peter F.
Patel-Schneider, and Lynn Andrea Stein. OWL web
ontology language reference. Technical report, W3C,
2004. W3C Recommendation 10 February 2004.

[3] Eva Blomqgvist and Kurt Sandkuhl. Patterns in
ontology engineering: Classification of ontology
patterns. In ICEIS (8), pages 413-416, 2005.

[4] A. Borgida and L. Serafini. Distributed description
logics: Assimilating information from peer sources.
Journal of Data Semantics, 1:153—-184, 2003.

[5] Paolo Bouquet, Fausto Giunchiglia, Frank van
Harmelen, Luciano Serafini, and Heiner
Stuckenschmidt. Cowl: Contextualizing ontologies. In
Second International Semantic Web Conference
(ISWC-2008), LNCS wol. 2870, pp. 164-179, Springer
Verlag, 2003., 2003.

[6] Jos de Bruijn, Holger Lausen, Axel Polleres, and
Dieter Fensel. The web service modeling language: An
overview. In Proceedings of the 3rd European Semantic
Web Conference (ESWC2006), number 4011 in
Lecture Notes in Computer Science, pages 590-604,
Budva, Montenegro, June 2006. Springer-Verlag.

[7] Peter Clark, John Thompson, and Bruce Porter.
Knowledge patterns. In Anthony G. Cohn, Fausto
Giunchiglia, and Bart Selman, editors, KR2000:
Principles of Knowledge Representation and
Reasoning, pages 591-600, San Francisco, 2000.
Morgan Kaufmann.

[8] Jos de Bruijn, Douglas Foxvog, and Kerstin
Zimmermann. Ontology mediation patterns library v1.
Deliverable D4.3.1, SEKT project (IST-2003-506826),
2004.

[9] Jéréme Euzenat. An API for ontology alignment. In
Proc. 3rd international semantic web conference,
Hiroshima (JP), pages 698-712, 2004.

[10] Jérome Euzenat, Frangois Scharffe, and Antoine
Zimmerman. D2.2.10: Expressive alignment language
and implementation. Project deliverable 2.2.10,
Knowledge Web NoE (FP6-507482), 2007.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Addison-Wesley
Pub., 1995.

[12] Aldo Gangemi. Ontology design patterns for semantic
web content. In International Semantic Web
Conference, pages 262276, 2005.

[13] Michael Klein. Combining and relating ontologies: an
analysis of problems and solutions. In Workshop on
Ontologies and Information Sharing, 2001.

[14] Alexander Médche, Boris Motik, Nuno Silva, and
Raphael Volz. MAFRA — a mapping framework for
distributed ontologies. In Proceedings of the
International Conference on Knowledge Engineering
and Knowledge Management (EKAW), pages 235-250,
2002.

[15] Alistair Miles and Ban Brickley. Skos core vocabulary.
Technical report, World Wide Web Consortium
(W3C), 2005.

[16] Axel Polleres, Frangois Scharffe, and Roman
Schindlauer. Sparql++ for mapping between rdf
vocabularies. In ODBASE, On the Move Federated
Conferences (to appear), 2007.

[17] J.-M. Rosengard and M. F. Ursu. Ontological
representations of software patterns. Lecture Notes in
Computer Science (Proceedings of the of KES04),
3215, 2004.

[18] Frangois Scharffe. Omwg d7: Ontology mapping
language.
http://www.omwg.org/TR/d7/, 2007.

[19] Frangois Scharffe and Jos de Bruijn. A language to
specify mappings between ontologies. In Proc. of the
Internet Based Systems IEEE Conference (SITIS05),
2005.

[20] Frangois Scharffe, Jos de Bruijn, and Douglas Foxvog.
Ontology mediation patterns library v2. Deliverable
D4.3.2, SEKT project (IST-2003-506826), 2005.

[21] Steffen Staab, Michael Erdmann, and Alexander
Maedche. Engineering ontologies using semantic
patterns. In A. Preece & D. O’Leary, editor,
Proceedings of the IJCAI-01 Workshop on E-Business
& the Intelligent Web, Seattle, WA, USA, August 5,
2001, 2001.

http://www.omwg.org/TR/d7/

	Introduction
	Knowledge Level
	Representing Correspondences

	A Pattern Template
	Correspondence Patterns for the Semantic Web
	Related Work
	Conclusion
	Acknowledgements
	References

