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Abstract

One of the requirements of current Semantic Web applications is to deal with heterogeneous data. The
Resource Description Framework (RDF) is the W3C recommended standard for data representation, yet data
represented and stored using the Extensible Markup Language (XML) is almost ubiquitous and remains the
standard for data exchange. While RDF has a standard XML representation, XML Query languages are of
limited use for transformations between natively stored RDF data and XML. Being able to work with both XML
and RDF data using a common framework would be a great advantage and eliminate unnecessary intermediate
steps that are currently used when handling both formats.

1 XML and RDF transformations
In many application domains combining and converting between XML and RDF data is a useful but often not
trivial task, relying mostly on XSLT, or – more recently – XQuery. The importance of this issue is acknowledged
within the W3C, for instance the Gleaning Resource Descriptions from Dialects of Languages (GRDDL) [6]
and Semantic Annotations for WSDL (SAWSDL) [8] recommendations stress the problem of lifting arbitrary
XML formats to RDF and vice versa (lowering). The W3C GRDDL working group has the goal to complement
the concrete RDF/XML syntax with a mechanism to relate it to other XML dialects (especially XHTML or
“microformats”) [6]. GRDDL focuses on transformations to RDF from XML, typically XSLT is the language of
choice to describe such transformations. In SAWSDL there is also a strong need for translations from RDF to
arbitrary XML. The automatic communication between software agents or services requires transformations in
both directions. Transformations from XML to RDF are used to extract RDF from incoming response messages,
while transformations from RDF to XML are used to create the request XML messages from the RDF data
available to the client.

We acknowledge the efforts of these working groups, however, we argue that writing XSLT can be cumber-
some, since it is a general-purpose language for producing XML without special support for creating RDF. Also,
although the approach proposed by the SAWSDL Working Group provides a good starting point, we argue that it
can still be improved on several points: SAWSDL suggests a two-step approach, combining SPARQL queries
and XSLT on the SPARQL query results format when it comes to lowering from RDF to XML. To us, the detour
through the SPARQL query results XML format seems to be an unnecessary burden. Also, many use cases
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@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:b1 a foaf:Person; 
     foaf:name "Alice";
     foaf:knows _:b2;
     foaf:knows _:b3.
_:b2 a foaf:Person; foaf:name "Bob";
     foaf:knows _:b3.
_:b3 a foaf:Person; foaf:name "Charles".

  <relations>
    <person name="Alice">
      <knows>Bob</knows>
      <knows>Charles</knows>
    </person>
    <person name="Bob">
      <knows>Charles</knows>
    </person>
    <person name="Charles"/>
  </relations>

Lowering

Lifting

relations.xml

relations.rdf

Figure 1: From XML to RDF and back: “lifting” and “lowering”

require some form of workflow management over SPARQL, that typically requires an implementation using
an external programming/scripting framework. Moreover, features such as RDFS and OWL entailment which
reveal the the potential of query expressiveness on the RDF side are currently being defined for SPARQL’s next
version [9]. A unified approach that builds up directly on SPARQL makes such extensions directly amenable to
RDF/XML transformations. In contrast, incorporating such entailments in a pure XQuery/XSLT based approach,
would require the implementation of e.g. an RDFS inference engine based on RDF/XML within XSLT which
clearly looses the advantages of the declarative models of RDF, RDFS and OWL.

As an example for illustrating the need for a uniform language, we present the problem of mapping between
FOAF data and a customised XML format as shown in Figure 1. The task here in either direction is to extract
for all persons the names of people they know. Since data in RDF is on a higher level of abstraction than
semi-structured XML data, the translation from XML to RDF is often called lifting, while the opposite direction
is called lowering.

2 Lifting and Lowering
In the Semantic Web Services community, RDF-based client software needs to communicate with XML-based
Web services, thus it needs to perform transformations between its RDF data and the XML messages that are
exchanged with the Web services. In our example scenario, lifting transforms from the relations.xml format into
RDF, for example to merge the data with other existing FOAF data. We can implement a straightforward lifting
XSLT to generate the RDF/XML form in Figure 1. Lifting is analogous to the GRDDL situation – the client or
an intermediate mediation service receives XML and needs to extract RDF from it.

RDF/XML [3] is the recommended syntax for RDF, using XML as the underlying representation model.
This theoretically enables the use of XPath/XSLT/XQuery and other XML tools to translate between RDF/XML
and other XML formats. This, however, is greatly complicated by the flexibility which the RDF/XML format
allows RDF graphs to be serialised. Thus, tools that handle RDF/XML as XML data (and not as a set of triples)
need to take different possible representations into account. Let us consider the example in Figure 3. It shows
four versions of the same FOAF data.11 Version (a) uses Turtle [2], a simple and readable textual format for
RDF, inaccessible to pure XML processing tools though; the other three versions are all RDF/XML, ranging
from concise (b) to verbose (d). For the lowering example, we can assume a social network site with a Web
service for querying and updating the list of a users friends. The service accepts an XML format à la relations.xml
(Figure 1) as the message format for updating a users list of friends. Assuming the client stores its FOAF data

11In listings and figures we often abbreviate well-known namespace URIs (http://www.w3.org/1999/02/22-rdf-syntax-ns#,
http://xmlns.com/foaf/0.1/, etc.) with “. . . ”.
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<xsl:stylesheet version="1.0" xmlns:rdf="...rdf-syntax-ns#"
xmlns:foaf="...foaf/0.1/" xmlns:xsl="...XSL/Transform">

<xsl:template match="/rdf:RDF">
<relations><xsl:apply-templates select=".//foaf:Person"/></relations>

</xsl:template>
<xsl:template match="foaf:Person"><person name="{./@foaf:name}">
<xsl:apply-templates select="./foaf:knows"/>

</person></xsl:template>
<xsl:template match="foaf:knows[@rdf:nodeID]"><knows>
<xsl:value-of select="//foaf:Person[@rdf:nodeID=./@rdf:nodeID]/@foaf:name"/>

</knows></xsl:template>
<xsl:template match="foaf:knows[foaf:Person]">
<knows><xsl:value-of select="./foaf:Person/@foaf:name"/></knows>

</xsl:template>
</xsl:stylesheet>

Figure 2: Lowering attempt by XSLT (mylowering.xsl)

@prefix alice: <alice/> .
@prefix foaf: <...foaf/0.1/> .

alice:me a foaf:Person.
alice:me foaf:knows _:c.
_:c a foaf:Person.
_:c foaf:name "Charles".

<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">

<foaf:Person rdf:about="alice/me">
<foaf:knows>
<foaf:Person foaf:name="Charles"/>

</foaf:knows>
</foaf:Person>

</rdf:RDF>

(a) (b)
<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">
<rdf:Description rdf:nodeID="x">

<rdf:type
rdf:resource=".../Person"/>

<foaf:name>Charles</foaf:name>
</rdf:Description>
<rdf:Description

rdf:about="alice/me">
<rdf:type
rdf:resource=".../Person"/>

<foaf:knows rdf:nodeID="x"/>
</rdf:Description>

</rdf:RDF>

<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">

<rdf:Description rdf:about="alice/me">
<foaf:knows rdf:nodeID="x"/>

</rdf:Description>
<rdf:Description rdf:about="alice/me">
<rdf:type rdf:resource=".../Person"/>

</rdf:Description>
<rdf:Description rdf:nodeID="x">
<foaf:name>Charles</foaf:name>

</rdf:Description>
<rdf:Description rdf:nodeID="x">
<rdf:type rdf:resource=".../Person"/>

</rdf:Description>
</rdf:RDF>

(c) (d)

Figure 3: Different representations of the same RDF graph

(relations.rdf in Figure 1) in RDF/XML in the style of Figure 3(b), the simple XSLT stylesheet mylowering.xsl in
Figure 2 would perform the lowering task. However, this XSLT will break if the RDF input is in any of the other
variants shown in Figure 3. We could create a specific stylesheet for each of the presented variants, but creating
one that handles all the possible RDF/XML forms would be much more complicated. We thus argue that RDF
data should be handled through SPARQL’s graph patterns, rather than through XPath/XSLT/XQuery.

In recognition of this problem, SAWSDL contains a non-normative example which performs a lowering
transformation as a sequence of a SPARQL query followed by an XSLT transformation on the SPARQL query
results XML format [5]. The advantage of this approach is that since SPARQL works on the RDF data model, all
the input data from Figure 3 are considered to be equivalent.

3 XSPARQL
To address the problems of transforming between RDF and XML, and combining RDF data with XML data, we
have developed the language XSPARQL, a combination of XQuery for accessing, manipulating and returning
XML data, and SPARQL for accessing and returning RDF data. A more tightly coupled integration of SPARQL
and XSLT/XQuery promises to provide a more expressive language, beyond the capabilities of using SPARQL
and XSLT/XQuery sequentially. While both XQuery and SPARQL languages operate on different data models,
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respectively XML and RDF, we defend that the merge of both in a common query language has the potential to
finally bring XML and RDF closer together. XSPARQL provides concise and intuitive solutions for mapping
between XML and RDF in either direction. An additional use for SPARQL is the construction of new RDF
graphs by, for instance, converting RDF data between two different representations. XSPARQL also provides
extended expressiveness for such transformations by allowing to use XPath functions in the construction step and
providing the desired workflow/scripting facilities directly in the language. The XSPARQL language has been
published as a W3C Member Submission [10] in January of 2009.12

Both in XQuery and in SPARQL, the processing of a query begins with selecting data of interest. XQuery
uses XPath expressions to select XML nodes, and SPARQL uses graph patterns to select sets of variable bindings.
XSPARQL combines these data access capabilities: a single XSPARQL query can access any number of RDF
data sources using graph patters, and any number of XML data sources using XPath expressions; the results of
both are stored in variables.

A query in XQuery usually returns an XML document, building it from elements and variable values.
SPARQL can return an RDF graph by constructing it from triples that include variable values. In XSPARQL, a
query can either return an XML document or it can construct an RDF graph.

Like XQuery, XSPARQL supports nested expressions and sub-queries, and XPath/XQuery operators and
functions on all variable values. In effect, XSPARQL can even be used in an RDF-only environment as a more
powerful alternative to SPARQL, which does not normally allow query nesting or rich data manipulation.

In summary, XSPARQL enables combining XML and RDF data using their native access mechanisms, and
by returning either XML or RDF, it can support rich transformations between the two worlds. More details are
available in the W3C submission document [10].

4 Even more formats
More recently, the RDFa [1] working group has introduced another standard representation format for RDF
– embedded in X(HT)ML. We believe that a unified transformation language, along the lines of XSPARQL,
could serve not only for extracting RDF from RDFa, but also and in particular for merging RDFa into existing
X(HT)ML. Similarly, N3 and Turtle13, both W3C team submissions and de facto standards being part of SPARQL,
are widely used RDF representations not amenable to pure XML Transformation languages per se, but fit well
with approaches such as XSPARQL.

The inclusion of other input formats such as Relational Databases and JSON potentially increases the scope
and uses for the language to other items on W3C’s agenda, such as the recently started RDB2RDF working
group.14 There are several projects that enable exposing RDB data as RDF data, most of these assume a fixed
translation schema where, for instance, database tables are translated into RDFS classes and table columns are
represented as properties. We feel that a generic/unified query and transformation language, e.g. extending
XSPARQL, that allows access to relational data and allowing to expose the data in several other formats, can be a
more flexible method to represent data transformations for all relational, XML and native RDF data.

5 Conclusion
Currently standardised approaches for transforming between RDF and other formats, particularly XML, are
limited to pure XML transformation languages (such as XSLT/XQuery), which run into problems as RDF/XML
representations are ambiguous, losing the declarative nature of RDF. Alternatives for realising such transforma-
tions are:

• sequential combinations of SPARQL and XSLT/XQuery going through an intermediate format such as the
SPARQL query result XML format.

12The full submission, with documents on language semantics, implementation and test-cases, and use cases, can be found at http:
//www.w3.org/Submission/2009/01/.

13See http://www.w3.org/TeamSubmission/n3/ and http://www.w3.org/TeamSubmission/turtle/
14http://www.w3.org/2001/sw/rdb2rdf/

4



• using custom RDF and XML APIs on top of scripting languages.
• creating a unified query/transformation language that encompasses both the declarative nature of SPARQL

on the RDF side and the expressive power of XQuery/XSLT on the XML side, in order to realise arbitrary
transformations.

Possible next steps in W3C
As more RDF data becomes available it is not going to replace custom application formats be it in XML or other
formats (e.g., relational data or JSON). Thus, rather than touching RDF’s core, we see a general need to discuss
and address the problem of such transformations within W3C, particularly also how to exchange and process
such transformations in a scalable manner. Based on our experiences with the unified language XSPARQL [10] –
we argue for a unified approach to address this problem, potentially in an incubator or working group that spans
the XML and Semantic Web activity and several working groups within (XQuery, SPARQL, RDB2RDF – to
name the most prominent ones).
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