
Decidability of SHI with Transitive Closure of
Roles

Chan Le Duc

INRIA Grenoble Rhône-Alpes - LIG
Chan.Leduc@inrialpes.fr

Abstract. This paper investigates a Description Logic, namely SHI+,
which extends SHI by adding transitive closure of roles. The resulting
logic SHI+ allows transitive closure of roles to occur not only in concept
inclusion axioms but also in role inclusion axioms. We show that SHI+

is decidable by devising a terminating, sound and complete algorithm
for deciding satisfiability of concepts in SHI+ with respect to a set of
concept and role inclusion axioms.

Key words: OWL, Description Logics, Tableaux, Decidability

1 Introduction

The ontology language OWL-DL [10] is widely used for formalizing resources on
Semantic Web. This language is mainly based on the description logic SHOIN
which is known to be decidable [12]. Although SHOIN is expressive and pro-
vides transitive roles to model transitivity of relations, we can find several ap-
plications in which the transitive closure of roles, that is more expressive than
transitive roles, is necessary. An example in [11] describes two categories of
devices as follows: (1) Devices have as their direct part a battery: Device u
∃hasPart.Battery, (2) Devices have at some level of decomposition a battery:
Device u ∃hasPart+.Battery. However, if we now define hasPart a transitive role,
the concept Deviceu∃hasPart.Battery does not represent the devices as described
above since it does not allow one to distinguish these two categories of devices.
We now consider a more specific example in which we need the transitive closure
of roles to occur in role inclusion axioms.

Example 1. Let us consider a LOTOS description [9] (producer/consumer):

P[put, get] := put; ((get; stop) ||| P[put, get])

Signs “;” and “|||” represent sequential and parallel operators respectively. An
execution trace of P can be generated by executing an action put, and then the
parallel block (get; stop) ||| P[put, get]. This block can be started by executing
either action get or a recursive call P. The special action stop will be performed
if no action of the description can be executed, which is never the case in this
example because, according to the semantics of parallel operator, following a

2 Chan Le Duc

get a recursive call P can be invoked. This means that execution traces of P
are infinite and their prefixes verify the following property: if n1 and n2 are
the number of put and get in a given prefix, n1 ≥ n2 always holds i.e. the
intersection of the execution traces with the language put∗.get∗ is the irregular
language {putn1 .getn2 | n1 ≥ n2}.

If one uses a DL to describe these execution traces then roles put, get and
disjoint concepts put,put′,get would be needed. A role next subsuming put, get
would be used to impose general properties on both of them. In addition, an
artificial concept gstart and role −−→gstart subsumed by next can be added for the sake
of axiom construction.

An expected model of concept gstart w.r.t. a set of DL axioms is depicted in
Fig. 1. The essential point is that each execution of the parallel block leads

Fig. 1. A model of gstart to represent an execution trace

to two executions corresponding to blocks (get; stop) and P[put, get]. Since only
one action can be executed at one moment, the non-consumed execution must be
memorized and will be performed in the future. This characteristic of execution
traces is expressed by a role inclusion axiom ε v next+: relation ε memorizes
the non-consumed execution which is initialized by the execution of the parallel
block. A sequence of next, i.e. next+, starts from this point of execution and
joints to the memorized non-consumed execution at some moment in the future.
For instance, the following axioms:

(1) ε v next+; gstart v ∃−−→gstart.put; next, next−, ε, ε−: functional
(2) put v (∃put.put′ u ∃ε.get) t (∃put.get u ∃ε.put′);
(3) put′ v (∃put.put u ∃ε.get) t (∃put.get u ∃ε.put);
(4) ...

describe a trace as a model of gstart. Since individuals are distinct it holds that
the number of instances put from put to put′ equals to the number of instances
ε from put to get. Note that if we replace the term ∃ε.get in (2) by ∃next+.get
then this property no longer holds.

Decidability of SHI with Transitive Closure of Roles 3

Such examples motivate the study of the logic SHI+ which is obtained by
allowing the transitive closure of roles to occur in both concept and role inclu-
sion axioms in SHI. To the best of our knowledge, the decidability of SHI+

is unknown. In the literature, many decidability results in Description Logics
(DL) can be obtained from their counterparts in modal logics (see [4], [5], [6]).
However, these counterparts do not take into account expressive role inclusion
axioms. In particular, [5] has shown decidability of a very expressive DL, so-called
CAT S, including SHIQ with the transitive closure of roles but not allowing it
to occur in role hierarchies.

In addition, tableaux-based algorithms for expressive DLs like SHIQ [8] and
SHOIQ [7] result in efficient implementations. This kind of algorithms relies
on two structures, so-called tableau and completion graph. Roughly speaking,
a tableau for a concept represents a model for the concept and it is possibly
infinite. A tableau translates satisfiability of all given concept and role inclusion
axioms into local satisfiability of semantic constraints imposed on each individual
of the tableau. This characteristic of tableaux will be called local satisfiability
property. In turn, a completion graph for a concept is a finite representation
from which a tableau can be built. To check satisfiability of a concept, tableaux-
based algorithms try to build a completion graph whose finiteness is ensured by
a technique, so-called blocking technique. It provides a termination condition by
guaranteeing soundness and completeness. The underlying idea of the blocking
mechanism is to detect “loops” which are repeated pieces of a completion graph.
The algorithm in [2] for satisfiability in ALCreg (including the transitive closure
of roles and other role operators) introduced a method to deal with loops which
can hide unsatisfiable nodes.

The contribution of the present paper is to propose an algorithm for concept
satisfiability in SHI+. Reasoning in SHI+ is harder than in SHI because of
the two following reasons: (i) adding to a logic transitive closure brings this logic
beyond first order logic. This is so because [1] has shown that the transitive
closure of roles cannot be expressed in first-order predicate logic, (ii) the presence
of the transitive closure of roles in role inclusion axioms, such as ε v a+, leads
to the loss of the tree model property.

2 The Logic SHI+

In this section, we present the syntax and semantics of the logic SHI+. This
includes the definitions of inference problems and how they are interrelated. The
definitions reuse notation introduced in [8].

Definition 1. Let C and R be sets of concept and role names, respectively.
∗ The set of SHI+-roles is R′ ∪ {R− | R ∈ R′} with R′ = R ∪ {P+ | P ∈ R}.
A role inclusion axiom is of the form R v S for two SHI+-roles R and S. A
role hierarchy R is a finite set of role inclusion axioms. A role R ∈ R is called
transitive if R+ v R ∈ R.
∗ Function Inv returns the inverse of a role as follows:

4 Chan Le Duc

Inv(R):=
{

R− if R ∈ R ∪ {P+ | P ∈ R}
S if R = S− where S ∈ R ∪ {P+ | P ∈ R}

∗ A relation ∗v is defined as the transitive-reflexive closure of v on
R∪ {Inv(R) v Inv(S) | R v S ∈ R} ∪ {P v P+ | P ∈ R}. We denote S ≡ R iff
R∗vS and S ∗vR.
∗ Function Trans is defined as follows:

Trans(R):=

 true if there is some S such that S ≡ R and
{S, Inv(S)} ∩ {{R | R+ v R ∈ R} ∪ {P+ | P ∈ R}} 6= ∅

false , otherwise

∗ The set of SHI+-concepts is inductively defined as the smallest set containing
all C in C, >, C uD, C tD, ¬C, ∃R.C and ∀R.C where C and D are SHI+-
concepts and R is an SHI+-role. We denote ⊥ for ¬>.
∗ An interpretation I = (∆I , ·I) consists of a non empty set ∆I (domain) and
a function ·I which maps each role R to a subset of ∆I × ∆I such that, for
R,P ∈ R′,

R−I = {〈x, y〉 ∈ (∆I)2 | 〈y, x〉 ∈ RI},
P+I =

⋃
n>0

(Pn)I with (P 1)I = P I , (Pn)I = (Pn−1)I ◦ P I and

(Pn−1)I ◦ P I = {〈x, y〉 ∈ (∆I)2 | ∃z ∈ ∆I , (〈x, z〉 ∈ (Pn−1)I , 〈z, y〉 ∈ P I)}

∗ The function ·I maps also each concept to a subset of ∆I such that
>I = ∆I , (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I\CI ,
(∃R.C)I = {x ∈ ∆I | ∃y ∈ ∆I , (〈x, y〉 ∈ RI ∧ y ∈ CI)},
(∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I , (〈x, y〉 ∈ RI ⇒ y ∈ CI)}
∗ An interpretation I satisfies a role hierarchy R iff RI ⊆ SI for each R v S ∈
R. Such an interpretation is called a model of R, denoted by I |= R.
∗ C v D is called a general concept inclusion (GCI) where C,D are SHI+-
concepts (possibly complex), and a finite set of GCIs is called a terminology
T . An interpretation I satisfies a GCI C v D if CI ⊆ DI and I satisfies a
terminology T if I satisfies each GCI in T . Such an interpretation is called a
model of T , denoted by I |= T .
∗ A concept C is called satisfiable w.r.t. a role hierarchy R and a terminology
T iff there is some interpretation I such that I |= R, I |= T and CI 6= ∅. Such
an interpretation is called a model of C w.r.t. R and T . A pair (T ,R) is called
an SHI+ ontology and said to be consistent if there is a model of (T ,R).
∗ A concept D subsumes a concept C w.r.t. R and T , denoted by C v D, if
CI ⊆ DI holds in each model I of (T ,R).

Since negation is allowed in the logic SHI+, unsatisfiability and subsumption
w.r.t. (T ,R) can be reduced each other: C v D iff C u ¬D is unsatisfiable. In
addition, we can reduce ontology consistency to concept satisfiability w.r.t. an

Decidability of SHI with Transitive Closure of Roles 5

ontology: (T ,R) is consistent if A t ¬A is satisfiable w.r.t. (T ,R) for some
concept name A.

For the ease of construction, we assume all concepts to be in negation normal
form (NNF) i.e. negation occurs only in front of concept names. Any SHI+-
concept can be transformed to an equivalent one in NNF by using DeMorgan’s
laws and some equivalences as presented in [8]. For a concept C, we denote the
nnf of C by nnf(C) and the nnf of ¬C by .¬C.

Let D be an SHI+-concept in NNF w.r.t. an ontology (T ,R). We define
sub(D) to be the smallest set that contains all sub-concepts of D including D.
For an ontology (T ,R), we define the set of all sub-concepts sub(T ,R) as follows:

sub(T , R) :=
⋃

CvD∈T

sub(nnf(¬C tD),R)

sub(E, R) := sub(E) ∪ { .¬C | ¬C ∈ sub(E)} ∪
{∀S.C | (∀R.C ∈ sub(E), S ∗vR) ∨ (.¬∀R.C ∈ sub(E), S ∗vR)

and S occurs in T or R}

For the sake of simplicity, for each concept D w.r.t. (T ,R) we denote sub(T ,R, D)
for sub(T ,R) ∪ sub(D), and R(T ,R,D) for the set of roles occurring in T ,R, D
with their inverse and transitive closure. If it is clear from the context we use R
instead of R(T ,R,D).

3 Deciding satisfiability in SHI+

In this section, we establish decidability of SHI+ by devising an algorithm for
checking satisfiability of SHI+ concepts w.r.t. a terminology and role hierarchy.

In our approach, we first extend the tableau definition presented in [8] by
adding a global property for expressing the transitive closure of roles. This causes
the tableaux to lose the local satisfiability property. Next, we define a sub-
structure of graphs, called neighborhood, which consists of a node together with
its neighbors. Such a neighborhood captures all semantic constraints imposed
by the logic constructors of SHI. A tree-like structure obtained by “tiling”
neighborhoods together allows us to represent in some way a model for a concept
in SHI+. In fact, we embed in this tree-like structure another structure, called
cyclic path, to express the transitive closure of roles. Since all expansion rules for
SHI can be translated into building neighborhoods, the algorithm presented in
this paper focuses on defining cyclic paths over such a tree-like structure. By this
way, the non-determinism resulting from satisfying the transitive closure of roles
can be translated into the search in a space of all possible tree-like structures
obtained from tiling neighborhoods.

3.1 SHI+-tableau

Tableau structure is introduced to describe a model of a concept w.r.t. a termi-
nology and role hierarchy. Properties in the tableau definition express semantic
constraints resulting directly from the logic constructors in SHI+.

6 Chan Le Duc

Considering the tableau definition for SHIQ presented in [8], the follow-
ing definition adopts an additional property, namely P9, that imposes a global
constraint on a set of individuals of a tableau.

Definition 2. Let (T ,R) be an SHI+ ontology. A tableau T for a concept D
w.r.t (T ,R) is defined to be a triplet (S,L, E) such that S is a set of individuals,
L: S → 2sub(T ,R,D) and E: R → 2S×S, and there is some individual s ∈ S such
that D ∈ L(s). For all s ∈ S, C,C1, C2 ∈ sub(T ,R, D), and R,S, P+ ∈ R, T
satisfies the following properties:
P1 if C1 v C2 ∈ T and s ∈ S then nnf(¬C1 t C2) ∈ L(s)
P2 if C ∈ L(s), then ¬C /∈ L(s)
P3 if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s)
P4 if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s)
P5 if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S), then C ∈ L(t)
P6 if ∃S.C ∈ L(s), there is t ∈ S such that 〈s, t〉 ∈ E(S) and C ∈ L(t)
P7 if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for R∗vS and Trans(R), then ∀R.C ∈ L(t)
P8 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R))
P9 if 〈s, t〉 ∈ E(P+) then either 〈s, t〉 ∈ E(P), or

there exist t1, · · · , tn ∈ S such that 〈s, t1〉, · · · , 〈tn, t〉 ∈ E(P)
P10 if 〈s, t〉 ∈ E(R), R∗vS then 〈s, t〉 ∈ E(S)

Note that when only transitive roles are added without transitive closure,
the local satisfiability property of tableaux can be preserved by the property
P7 which was already introduced in [8]. The property P9 in Def. 2 expresses
explicitly a cycle for each transitive closure occurring in the label of an edge
〈s, t〉. A tableau for a concept represents exactly a model for the concept, that
is affirmed by the following lemma.

Lemma 1. An SHI+-concept D is satisfiable w.r.t. (T ,R) iff D has a tableau.

Lemma 1 is obvious since the properties of tableaux represent directly se-
mantic constraints imposed by the logic constructors in SHI+.

3.2 Neighborhood

Tableau-based algorithms, as presented in [8], use expansion rules to build a
completion tree. Applying expansion rules makes all nodes of a completion tree
satisfy semantic constraints imposed by concept definitions in the label associ-
ated with each node. This means that local satisfiability in such completion trees
is sufficient to ensure global satisfiability. The notion of neighborhood introduced
in Def. 3 expresses exactly the expansion rules for SHI, consequently, guaran-
tees local satisfiability. Therefore, a completion tree built by a tableau-based
algorithm can be considered as set of neighborhoods which are tiled together. In
other terms, building a completion tree by applying expansion rules is equivalent
to the search of a tiling of neighborhoods.

Decidability of SHI with Transitive Closure of Roles 7

Definition 3 (Neighborhood). Let D be an SHI+ concept w.r.t. (T ,R). Let
R be the set of roles occurring in D and T ,R together with their inverse and
transitive closure. A neighborhood, denoted (vB , NB , l), for D w.r.t. (T ,R) is
formed from a core node vB, a set of neighbor nodes NB, edges 〈vB , v〉 with
v ∈ NB and a labelling function l such that l(u) ∈ 2sub(T ,R,D) with u ∈ {vB}∪NB

and l(〈vB , v〉) ∈ 2R with v ∈ NB.

1. A node v is valid w.r.t. D and (T ,R) iff
(a) tbox-rule: If C v D ∈ T then nnf(¬C tD) ∈ l(v), and
(b) clash-rule: {A,¬A} 6⊆ l(v) with any concept name A, and
(c) u-rule: If C1 u C2 ∈ l(v) then {C1, C2} ⊆ l(v), and
(d) t-rule: If C1 t C2 ∈ l(v) then {C1, C2} ∩ l(v) 6= ∅.

2. A neighborhood B = (vB , NB , l) is valid iff all nodes {vB} ∪ NB are valid
and the following conditions are satisfied:

(a) ∃-rule: If ∃R.C ∈ l(vB) then there is a neighbor v ∈ NB such that
C ∈ lB(v) and R ∈ l(〈vB , v〉);

(b) rbox-rule: For each v ∈ NB, if R ∈ l(〈vB , v〉) and R∗vS then S ∈
l(〈vB , v〉);

(c) ∀-rule: For each v ∈ NB, if R ∈ l(〈vB , v〉) (resp. R ∈ Inv(l(〈vB , v〉)))
and ∀R.C ∈ l(vB) (resp. ∀R.C ∈ l(v)) then C ∈ l(v) (resp. C ∈ l(vB));

(d) ∀+-rule: For each v ∈ NB, if R ∈ l(〈vB , v〉) (resp. R ∈ Inv(lB(〈vB , v〉))),
S ∗vR, Trans(S), ∀R.D ∈ l(vB) (resp. ∀Inv(R).D ∈ l(vB)) then ∀S.D ∈
lB(v) (resp. ∀Inv(S).D ∈ l(vB));

(e) There are at most two nodes v, v′ ∈ NB such that l(v) = l(v′) and
l(〈vB , v〉) = l(〈vB , v′〉).

We denote B(T ,R,D) for a set of all valid neighborhoods for D w.r.t. (T ,R).

The condition 2e in Def. 3 ensures that any neighborhood has a finite number
of neighbors. Moreover, we could replace “at most two nodes” by “at most one
node” since SHI+ does not allow for qualifying number restrictions but the
former can simplify some constructions later on (Def. 5 and Rem. 1).

A valid neighborhood as presented in Def. 3 captures all necessary informa-
tion related to an individual of a tableau. When a global property like P9 is
added to tableaux, it imposes just a relationship on a set of individuals of the
tableau but each individual is still characterized by a neighborhood which is built
from its neighbors and itself. For this reason, neighborhoods can be still used to
tile a completion tree for SHI+ without taking care of expansion rules for SHI.
In other terms, the neighbourhood notion expresses the local satisfiability in a
sufficient way for being used in a global context.

Lemma 2. Let D be an SHI+ concept w.r.t. (T ,R). Let (vB , NB , l), (vB′ , NB′ , l)
be two valid neighborhoods with l(vB) = l(vB′). If there is v ∈ NB such that
there does not exist any v′ ∈ NB′ satisfying l(v′) = l(v) and l(〈vB , v〉) =
l(〈vB′ , v′〉) then the neighborhood (vB′ , NB′ ∪ {u}, l) is valid where l(u) = l(v)
and l(〈vB , u〉) = l(〈vB , v〉).

8 Chan Le Duc

This lemma holds due to the facts that (i) a valid neighbor in a valid neighbor-
hood B is also a valid neighbor in another valid neighborhood B′ if the labels
of two core nodes of B and B′ are identical, (ii) since SHI+ does not allow for
qualifying number restrictions hence Def. 3 has no restriction on the number of
neighbors of a core node.

3.3 Completion Tree with Cyclic Paths

As discussed in [3], the blocking technique fails in treating DLs with the transitive
closure of roles. It works correctly only if satisfiability of a node in completion
tree can be decided from its neighbors and itself i.e. local satisfiability must be
sufficient for such completion graphs. However, the presence of the transitive
closure of roles makes satisfiability of a node depend on further nodes which can
be arbitrarily far from it.

More precisely, satisfying the transitive closure P+ in an edge 〈x, y〉 (i.e.
P+ ∈ L(〈x, y〉)) is related to a set of nodes on a path rather than a node with its
neighbors i.e. it imposes a semantic constraint on a set of nodes x, x1, · · · , xn, y
such that they are connected together by P -edges. In general, satisfying the
transitive closure is quite non-deterministic since the semantic constraint can
lead to apply to an arbitrary number of nodes. In addition, the presence of the
transitive closure of roles in a role hierarchy makes this difficulty worse. For
instance, if P v Q+, Q v S+ are axioms in a role hierarchy then each Q-edge
generated for satisfying Q+ may lead to generate an arbitrary number of S-edges
for satisfying S+.

The most common way for dealing with a new logic constructor is to add a
new expansion rule for satisfying the semantic constraint imposed by the new
constructor. Such an expansion rule for the transitive closure of roles must:

1. find or create a set of P -edges forming a path for each occurrence of P+ in
the label of edges,

2. deal with non-deterministic behaviours of the expansion rule resulting from
the semantics of the transitive closure of roles,

3. enable to control the expansion of completion trees by a new blocking tech-
nique which has to take into account the fact that satisfying the transitive
closure of a role may add an arbitrary number of new transitive closures to
be satisfied.

To avoid these difficulties, our approach does not aim to directly extend the
construction of completion trees by using a new expansion rule, but to translate
this construction into selecting a “good” normalization tree, namely completion
tree with cyclic paths, from a finite set of completion trees without taking into
account the semantic constraint imposed by the transitive closure of roles. The
process of selecting a “good” normalization tree is guided by finding in this tree
a cyclic path for each occurrence of the transitive closure of a role.

Summing up, a completion tree with cyclic paths will be built in two stages.
The first one consists of tiling valid neighborhoods together such that two neigh-

Decidability of SHI with Transitive Closure of Roles 9

borhoods are tiled if they have compatible neighbors. This stage yields a normal-
ization tree as described in Def. 4. The second stage given in Def. 5 deals with
the transitive closure of roles by defining cyclic paths over normalization trees.

Definition 4 (Normalization tree). Let D be an SHI+ concept w.r.t. (T ,R).
Let B(T ,R,D) be the set of all valid neighborhoods for D w.r.t. (T ,R). A nor-
malization tree T = (V,E, L) for D w.r.t. (T ,R) is built from B(T ,R,D) as
follows:

– A root node x0 of T is built from a valid neighborhood (v0, N0, l) ∈ B(T ,R,D)

such that L(x0) = l(v0) with D ∈ l(v0). Additionally, for each v ∈ N0 a
successor x of x0 is added to V with L(x) = l(v) and L(〈x0, x〉) = l(〈v0, v〉),

– For each node x ∈ V with its predecessor x′,
• If there are ancestors y, y′ of x′ such that y′ is the predecessor of y and

L(y) = L(x), L(y′) = L(x′), L(〈y′, y〉) = L(〈x′, x〉), then x is blocked by
y. In this case, x is a leaf node;

• Otherwise, we find a neighborhood Bx = (vBx
, NBx

, l) from B(T ,R,D)

such that l(vBx) = L(x), l(v) = L(x′), Inv(l(〈vBx , v〉)) = L(〈x′, x〉) for
some v ∈ NBx , and build a successor y for each u ∈ NBx \ {v} such that
L(y) = l(u) and L(〈x, y〉) = l(〈vBx , u〉).

We say a node x is a R-successor of x′ ∈ V if R ∈ L(〈x′, x〉). A node x is called
a R-neighbor of x′ if x is a R-successor of x′ or x′ is a Inv(R)-successor of x.

Note that the construction of normalization trees uses the blocking technique
for termination condition. The following definition embeds cyclic paths into nor-
malization trees for satisfying the semantic constraint imposed by the transitive
closure of roles.

Definition 5 (Completion tree with cyclic paths). Let D be an SHI+

concept w.r.t. (T ,R). Let T = (V,E, L) be a normalization tree for D w.r.t.
(T ,R).

– A path, denoted ϕ = 〈x0, · · · , xk, · · · , xn+1〉, is formed from nodes xi ∈ V if
• xi is not blocked for all i ∈ {0, · · · , n + 1};
• xi+1 is a successor of xi or blocks a successor of xi for all k ≤ i ≤ n;
• xi−1 is a successor of xi or blocks a successor of xi for all 1 ≤ i ≤ k.

– A path 〈x0, · · · , xn+1〉 is called non-duplicated if there do not exist i, j ∈
{0, · · · , n} with j > i such that L′(〈xi, xi+1〉) = L′(〈xj , xj+1〉) and L(xi) =
L(xj), L(xi+1) = L(xj+1);

– A path 〈x0, · · · , xk, · · · , xn+1〉 is cyclic if L(〈x1, x0〉) = Inv(L(〈xn, xn+1〉))
and L(x0) = L(xn), L(x1) = L(xn+1).

T = (V,E, L) is called a completion tree with cyclic paths if for each 〈u, v〉 ∈ E
such that Q+ ∈ L(〈u, v〉) and Q /∈ L(〈u, v〉) with Q ∈ R∪{Inv(P) | P ∈ R} there
exists a cyclic non-duplicated path ϕ = 〈x0, · · · , xk, · · · , xn+1〉 which satisfies:

– u = xk, and xk−1 = v if v is not blocked or xk−1 = z if z blocks v;
– Inv(Q) ∈ L′(〈xk−i, xk−i−1〉) for all 1 ≤ i ≤ k − 1;

10 Chan Le Duc

– Q ∈ L′(〈xi, xi+1〉) for all k ≤ i ≤ n.

where L′(〈x, y〉) = L(〈x, y〉) if y is a successor of x, L′(〈x, y〉) = Inv(L(〈y, x〉))
if x is a successor of y, and L′(〈x, y〉) = L(〈x, z〉) if y blocks a successor z of x.
In this case, ϕ is called a cyclic Q-path and denoted by ϕQ〈u,v〉.

By its name, we mean that each cyclic path 〈x0, · · · , xn+1〉 becomes a cycle
if x1 and x0 are respectively pasted to xn+1 and xn.

Remark 1. From Def. 5, each node xi of a cyclic non-duplicated path ϕQ〈u,v〉 =
〈x0, · · · , xk, · · · , xn+1〉 with xk = u can be reached through a path which only
goes down either from u to a blocked node, or from a blocking to blocked node.
This ensures that for any occurrence of 〈u, v〉 with Q+ ∈ L(〈u, v〉) in a possibly
infinite path crossing blocked, blocking nodes, we can define a cyclic Q-path in a
tableau for satisfying this occurrence. This property guarantees the soundness of
Alg. 1. For the completeness, when building a cyclic Q-path as down-going one
from a Q-path in a tableau, we need to add a successor which is identical to the
predecessor of a node. This is allowed by Def. 3 which accepts a neighborhood
with two identical neighbors.

A completion tree with cyclic paths encapsulates the following notions: neigh-
borhood, blocking condition and cyclic path. The first one captures the semantics
of all logic constructors except for the transitive closure of roles. The second one
which was introduced in [8] is crucial for obtaining a finite representation of a
possibly infinite model. The third one represents the transitive closure of roles.

Lemma 3 (Soundness and completeness). Let D be an SHI+-concept. Let
T and R be a terminology and role hierarchy.

1. If there exists a completion tree with cyclic paths for D w.r.t. (T ,R) then D
has a tableau.

2. If D has a tableau w.r.t. (T ,R) then there exists a completion tree with cyclic
paths.

To prove the soundness (1.), we define a “quasi-tableau” for D from a set of
Paths in a given completion tree with cyclic paths. This technique is already used
in [8]. Next, in order to introduce cycles to the quasi-tableau from cyclic paths of
the completion tree, we use a function which performs a contraction of the set of
paths by unifying the ending points of cyclic paths Paths. Since qualifying num-
ber restrictions are not allowed in SHI+, such a contraction function preserves
all properties of the quasi-tableau. For the completeness (2.), we define directly
neighborhoods from individuals of a given tableau and build a normalization
tree from them. Next, cyclic paths are embedded into the normalization tree by
devising non-duplicated paths from finite cycles for the transitive closure of roles
in the tableau. A more complete proof of Lem. 3 can be found in Appendix.

From the construction of completion trees with cyclic paths according to
Def. 5 and Lem. 3 we can devise immediately Alg. 1 for concept satisfiability in
SHI+.

Decidability of SHI with Transitive Closure of Roles 11

Input : Concept D, terminology T and role hierarchy R
Output: IsSatisfiable(D)

foreach Normalization tree T = (V, E, L) do1

if For each 〈x, y〉 ∈ E with Q+ ∈ L(〈x, y〉), Q /∈ L(〈x, y〉), T has a ϕQ〈x,y〉2

then
return true;3

return false;4

Algorithm 1: Deciding concept satisfiability in SHI+

Lemma 4 (Termination). Algorithm 1 terminates.

Termination of Alg. 1 is a consequence of the following facts: (i) the number
of neighborhoods is bounded, (ii) the size of normalization trees which are tiled
from neighbourhoods is bounded.

Alg. 1 is highly complex since it is not a goal-directed decision procedure at
all. Such an exhaustive behaviour is very different from that of tableaux-based
algorithms in which the construction of a completion tree is inherited from step
to step. In Alg. 1, when a normalization tree cannot satisfy an occurrence of the
transitive closure of a role (after satisfying others), a new normalization tree will
be picked and embedding cyclic paths into this one has to restart. The following
theorem is a direct consequence of Lem. 3 and 4.

Theorem 1. Algorithm 1 decides the satisfiability of SHI+-concepts w.r.t. a
terminology and role hierarchy.

4 Conclusion

We have proved decidability of the concept satisfiability in SHI+ by providing a
sound and complete algorithm. The establishment of the algorithm relies on the
neighborhood notion which is an abstraction of the local satisfiability property
of tableaux. This abstraction enables us to encapsulate all semantic constraints
imposed by the logic constructors in SHI, and thus to deal with the transitive
closure of roles independently from the other constructors.

This work is a first step toward an empirical algorithm whose behaviour is
more goal-directed i.e. the construction of a completion tree would be refined
along with satisfying the transitive closure of roles, e.g., the non-impacted parts
of the tree when rebuilding it would be reused.

Acknowledgements. This work has been partially supported by the European
integrated project NeOn (IST-2005-027595). Thanks to Sophie Coudert and Lu-
dovic Apvrille for the motivating example, to Jérôme Euzenat, Marie-Christine
Rousset and the anonymous reviewers for their comments.

12 Chan Le Duc

References

1. Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval languages. In
Proceedings of the 6th of ACM on Principles of Programming Language, 1979.

2. Franz Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence, 1991.

3. Franz Baader and Ulrike Sattler. Tableau algorithms for description logics. In
Proceedings of the International Conference on Automated Reasoning with Tableaux
and Related Methods, volume 1847 of Lecture Notes in Artificial Intelligence, page
118, St Andrews, Scotland, UK, 2000. Springer-Verlag.

4. Giuseppe de Giacomo and Maurizio Lenzerini. Boosting the correspondence be-
tween description logics and propositional dynamic logics. In Proceedings of the
12th National conference on Artificial Intelligence, pages 205–212, 1994.

5. Giuseppe de Giacomo and Maurizio Lenzerini. What’s in an aggregate: Founda-
tions for description logics with tuples and sets. In Proceedings of the Fourteenth
International Joint Conference On Intelligence Artificial 1995 (IJCAI95), 1995.

6. Giuseppe de Giacomo and Fabio Massacci. Combining deduction and model check-
ing into tableaux and algorithms for converse-PDL. Information and Computation,
(1), 1998.

7. Ian Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ. Journal
Of Automated Reasoning, 39(3):249–276, 2007.

8. Ian Horrocks, Ulrike Sattler, and S. Tobies. Practical reasoning for expressive
description logics. In Proceedings of the International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 1999). Springer, 1999.

9. ISO. Standard ISO 8807: LOTOS, a formal description technique based on temporal
ordering of observational behaviour. 1988.

10. Peter Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language
semantics and abstract syntax. W3C Recommendation, 2004.

11. Ulrike Sattler. A concept language extended with different kinds of transitive
roles. In Proceedings of the 20th German Annual Conf. on Artificial Intelligence
(KI 2001), volume 1137, pages 199–204. Springer Verlag, 2001.

12. Stephan Tobies. The complexity of reasoning with cardinality restrictions and nom-
inals in expressive description logics. Journal of Artificial Intelligence Research,
12:199–217, 2000.

Appendix

Proof of soundness (Lem. 3). Let T = (V, E, L) be a completion tree with cyclic
paths for D w.r.t. T and R. A path is of the form p = [(x0, x

′
0), · · · , (xn, x′n)] where

xi, x
′
i ∈ V . For such a path we define Tail(p) = xn, Tail′(p) = x′n. We denote [p|(xn+1, x

′
n+1)]

for the path [(x0, x
′
0), · · · , (xn, x′n), (xn+1, x

′
n+1)]. The set Paths(T) is defined as fol-

lows:

1. For the root v0 we define [(v0, v0)] ∈ Paths(T), and

2. For a path p ∈ Paths(T) and a node v′ ∈ V ,

(a) If 〈Tail(p), v′〉 ∈ E, v′ is not a blocked node then [p|(v′, v′)] ∈ Paths(T),

(b) If 〈Tail(p), v′〉 ∈ E and v′ is blocked by z then [p|(z, v′)] ∈ Paths(T).

Decidability of SHI with Transitive Closure of Roles 13

From the definition of Paths, for p ∈ Paths(T) and p = [q|(v, v′)] we have L(v) = L(v′),
and v 6= v′ iff v′ is blocked by v.

We define a quasi-tableau T ′ = (S′,L′, E ′) as follows:
S′ = Paths(T)

L′(p) = L′(Tail(p))
E ′(R) = {〈p, q〉 ∈ Paths2(T) |

1. q = [p|(v, v′)], R ∈ L(〈Tail(p), v′〉), or
2. p = [q|(v, v′)] and Inv(R) ∈ L(〈Tail(q), v′〉) }

From T ′ = (S′,L′, E ′), we denote L′(〈s, t〉) = {R | 〈s, t〉 ∈ E(R)}. We now build a
tableau T = (S,L, E) from this quasi-tableau T ′ = (S′,L′, E ′) with help of function
π : S′ → S that is inductively defined on the length of paths from the root v0. For
p0, · · · , pn+1 ∈ S′ such that there is a cyclic path 〈x0, · · · , xn+1〉 with Tail(pi) = xi,
the function π merges pn+1 with p1, and pn with p0.

1. [(v0, v0)] ∈ S′ and π([(v0, v0)]) = [(v0, v0)] where v0 is the root of T. Assume that
π(p) are define for all p ∈ S′ such that |p| ≤ K with |[(v0, v0)]| = 0 and |p| = |q|+1,
p = [q|(v, v′)].

2. For each p ∈ S′ with π(p) = q, |p| = K and for each p′ = [p|(v, v′)] ∈ S′,
(a) If there is a cyclic Q-path 〈x0, · · · , xk, · · · , xn+1〉 where p0, · · · , pk, · · · , pn+1 ∈

S′, Tail(pk) = xk and pi−1 = [pi|(xi, x
′
i)] for all 1 ≤ i ≤ k, pj+1 = [pj |(xj , x

′
j)]

for all k ≤ j ≤ n, such that p = p1, p
′ = p0 or p = pn, p′ = pn+1 then

– If p = p1, p
′ = p0 we define π(pn+1) = π(p1) = q, π(p′) = π(pn) and

L(〈q, π(p′)〉) = L′(〈p, p0〉), L(〈π(pn), π(pn+1)〉) = L′(〈pn, pn+1〉),
– If p = pn, p′ = pn+1 we define π(p0) = π(pn) = q, π(p′) = π(p1) and
L(〈q, π(pn+1)〉) = L′(〈p, pn+1〉), L(〈π(p1), π(p0)〉) = L′(〈p1, p0〉).

(b) Otherwise, we define q′ ∈ S such that π(p′) = q′, L(q′) = L′(p′), L(〈q, q′〉) =
L′(〈p, p′〉).

We can define E from L as follows: E(R) = {〈s, t〉 ∈ S×S | R ∈ L(〈s, t〉)} for all R ∈ R.
The function π is well defined since (i) L′(p0) = L′(pn) = L(π(p0)) = L(π(pn)),

L′(p1) = L′(pn+1) = L(π(p1)) = L(π(pn+1)) by the definition of cyclic Q-paths, and
(ii) L(〈π(p1), π(p0)〉) = L′(〈p1, p0〉) with p0 = [p1|(x, x′)] and L(〈π(pn), π(pn+1)〉) =
L′(〈pn, pn+1〉) with pn+1 = [pn|(y, y′)] i.e. the construction of π never changes the label
of nodes and edges defined previously. However, it may merge some nodes.

Claim. 4. For all p, q ∈ S′ with q = [p|(x, x′)] it holds that L(π(p)) = L′(p),L(π(q)) =
L′(q) and L(〈π(p), π(q)〉) = L′(〈p, q〉).

Claim 4. asserts that π preserves all label of nodes and edges.
Proof of Claim 4. We prove the claim by induction on the length of p ∈ S′. If |p| = 0
then Claim 4. is verified. Assume that Claim 4. is verified for all p with |p| ≤ m. Let
q = [p|(x, x′)] with 〈Tail(p), x〉 ∈ E. By the induction hypothesis, we have L(π(p)) =
L′(p).

According to the definition of π, we consider the two following cases:

– There does not exist any cyclic Q-path ϕ = 〈x0, · · · , xk, · · · , xn+1〉 such that p =
p1, q = p0 with Tail(p1) = x1, Tail(q) = x0 or p = pn, q = pn+1 with Tail(pn) =
xn, Tail(pn+1) = xn+1. From the definition of π, we have L(π(q)) = L′(q) and
L(〈π(p), π(q)〉) = L′(〈p, q〉).

– Otherwise, assume that p = p1, q = p0 with Tail(p1) = x1, Tail(q) = x0 (if p =
pn, q = pn+1 with Tail(pn) = xn, Tail(pn+1) = xn+1 it will be similarly treated).
By the definition of π, we have π(q) = π(pn), L(〈π(p), π(q)〉) = L′(〈p, q〉), and
thus, L(π(q)) = L′(π(pn)) and L(〈π(p), π(q)〉) = L′(〈p, q〉). �

14 Chan Le Duc

Claim. 5. 1. For all cyclic Q-path ϕ = 〈x0, · · · , xk, · · · , xn+1〉, there are pi ∈ S′ with
Tail(pi) = xi for all i ∈ {0, · · · , n + 1} such that L(〈π(pi), π(pi+1)〉) = L′(〈pi, pi+1〉)
for all i ∈ {0, · · · , n}, and π(p0) = π(pn), π(pn+1) = π(p1).

2. For all π(p), π(q) with p, q ∈ S′ such that Q+ ∈ L(〈π(p), π(q)〉) and Q /∈
L(〈π(p), π(q)〉), there are p0, · · · , pk, · · · , pn+1 ∈ S′ with π(p0) = π(pn), π(pn+1) =
π(p1) such that pk = p, pk−1 = q and Inv(Q) ∈ L(〈π(pi), π(pi−1)〉) for all i ∈ {k −
1, · · · , 1}, Q ∈ L(〈π(pi), π(pi+1)〉) for all j ∈ {k, · · · , n}.

Item (1.) asserts that π transforms all cyclic paths in S′ into cycles in π(S′). Item
(2.) asserts that each occurrence Q+ in the label of an edge has a cycle formed of
Q-edges.
Proof of Claim 5.

1. This is directly implied from the definition of π and Claim 4.
2. Let π(p), π(q) ∈ π(S) such that Q+ ∈ L(〈π(p), π(q)〉) and Q /∈ L(〈π(p), π(q)〉).

From Claim 4. we have Q+ ∈ L(〈p, q〉) and Q /∈ L(〈p, q〉), and thus, Q+ ∈
L(〈Tail(p), Tail(q)〉) and Q /∈ L(〈Tail(p), Tail(q)〉).
By the definition of cyclic Q-paths, there is a cyclic Q-path 〈x0, · · · , xk, · · · , xn+1〉
such that Tail(p) = xk, Tail(q) = xk−1. In addition, by the definition of cyclic paths
in Def. 5 we have xk−1, xk+1 are successors of xk or blocking nodes of a successor of
of xk. Thus, from the definition of the quasi-tableau we have p0, · · · , pn+1 ∈ S′ with
p = pk, q = pk−1, Tail(pi) = xi for all i ∈ {0, · · · , n+1} and Inv(Q) ∈ L′(〈pi, pi−1〉)
for all i ∈ {1, · · · , k − 1}, and Q ∈ L′(〈pj , pj+1〉) for all j ∈ {k + 1, · · · , n}.
From the item .1 it holds that π(x0) = π(xn), π(xn+1) = π(x1). Moreover, by
Claim 4. we obtain Inv(Q) ∈ L(〈π(pi), π(pi−1)〉) for all i ∈ {1, · · · , k − 1}, Q ∈
L(〈π(pi), π(pi+1)〉) for all i ∈ {k, · · · , n}. �

To show that T is a tableau, we have to prove that T satisfies all the properties from
Def. 2. The property P9 is a direct consequence of the claims. For instance, we check
the property P6.

Assume ∃R.C ∈ L(π(p)) and v = Tail(p). We show that there exists π(q) ∈ S such
that C ∈ L(π(q)) and 〈π(p), π(q)〉 ∈ E(R). According to Claim 4. it suffices to show
that there exists q ∈ S′ such that C ∈ L′(q) and 〈p, q〉 ∈ E(R). By the construction
of neighborhoods and Def. 3 there exists some neighbor v′ ∈ N in the corresponding
neighborhood (v, N, l) such that C ∈ l(v′) and R ∈ l(〈v, v′〉). The definition of E ′
implies R ∈ L(〈v, v′〉) = l(〈v, v′〉) or Inv(R) ∈ L(〈v′, v〉) = l(〈v, v′〉) i.e. v′ can be a
R-successor of v or v is a R-successor of v′ in the completion tree. We consider the
following cases.

(i) Assume that R ∈ L(〈v, v′〉). If v′ is not blocked, this is trivial since there is
q = [p|(v′, v′)], 〈p, q〉 ∈ E(R) and C ∈ L(q). Assume that q = [p|(z, v′)] ∈ S and v′ is
blocked by z. Since v′ is a R-successor of v, by the definition of E , we have 〈p, q〉 ∈ E(R).
Furthermore, we have C ∈ L(q) = L(z) = L(v′).

(ii) Assume Inv(R) ∈ L(〈v′, v〉). If p = [q|(v, v)] ∈ S i.e. v is not blocked, this is
trivial since 〈q, p〉 ∈ E(R) and C ∈ L(q) = L(v′). Note that v is never blocked since
v = Tail(p). Therefore, assume that p = [q|(v, x)] ∈ S such that v blocks x. By the
blocking condition we have L(v′) = L(Tail(q)) and L(〈Tail(q), x〉) = L(〈v′, v〉). This
implies that Inv(R) ∈ L(〈Tail(q), x〉). By the definition of E , we have 〈q, p〉 ∈ E(R) and
C ∈ L(q) = L(v′).
Proof of completeness(Lem. 3). Assume that SHI+-concept D has a tableau T =
(S,L, E). A normalization tree T = (V, E, L) can be inductively built from T together
with a function π from V to S. This construction is quite intuitive since we can define
a valid neighborhood from each individual s ∈ S as follows:

Decidability of SHI with Transitive Closure of Roles 15

– We define l(v) := L(s). v is valid since any node whose label is included in the
label of a node in the tableau T is always valid.

– Let S′(s) ⊆ S such that s′ ∈ S′(s) iff L(〈s, s′〉) 6= ∅ where
L(〈s, s′〉) := {R | 〈s, s′〉 ∈ E(R) for some R ∈ R(T ,R,D)}.
Let S(s) ⊆ S′(s) such that for each C ∈ 2sub(T ,R,D) and R ∈ 2R if there is a
t ∈ S′(s) with L(t) = C and L(〈s, t〉) = R then there is a unique node t′ ∈ S(s)
with L(t′) = L(t) and L(〈s, t〉) = L(〈s, t′〉). This implies that S(s) is finite.

– For each t ∈ S(s) we define a node u ∈ N0 such that l(u) = L(t) and l(〈v, u〉) =
L(〈s, s′〉). From the construction, (v, N0, l) is valid.

A normalization tree T = (V, E, L) will be obtained by tiling neighborhoods built from
connected individuals started at s0 ∈ S with D ∈ L(s0) and a function π from V to
S. Note that if u, v are neighbors in T then π(u), π(v) are also neighbors in T . The
blocking condition ensures this construction terminates.

We now build cyclic paths for the transitive closure of roles. By the construction
of T, for each x, y ∈ V such that Q+ ∈ L(〈x, y〉), Q /∈ L(〈x, y〉) with Q ∈ R∪{Inv(P) |
P ∈ R} we have 〈π(x), π(y)〉 ∈ E(Q+).

According to T9 there are t1, · · · , tn ∈ S such that 〈s, t1〉, · · · , 〈tn, t〉 ∈ E(Q) and
π(x) = s, π(y) = t. From this set of edges, we can pick 〈s, t1〉, · · · , 〈tk, tk+1〉 and
〈tl, tl+1〉, · · · , 〈tn, t〉 ∈ E(Q) such that

1. L(tk) = L(tl),L(tk+1) = L(tl+1), L(〈tk, tk+1〉) = L(〈tl, tl+1〉),
2. there are not i, j ∈ {0, · · · , k, l + 1, · · · , n}, i < j with t0 = s, tn+1 = t such that

L(ti) = L(tj),L(ti+1) = L(tj+1), L(〈ti, ti+1〉) = L(〈tj , tj+1〉).

We now build a cyclic non-duplicated Q-path from {s, t1, · · · , tk, tk+1, tl, tl+1, · · · , tn, t}.
Since x is not blocked (x has a successor y), by the construction of T with π(x) = s,
〈s, t1〉 ∈ E(Q), L(x) = L(s), there exists a neighbor w of x such that L(w) = L(t1)
and L′(〈x, w〉) = L(〈s, t1〉) where L′(〈x, w〉) = L(〈x, w〉). If w is a not successor of
x, by Lem.2, we can add a new successor w′ of x (and the subtree whose root is w′

can be built as above) such that L(w) = L(t1) and L(〈x, w〉) = L(〈s, t1〉). Thus, we
can assume that w is a Q-successor of x since 〈s, t1〉 ∈ E(Q), and define x1 = w and
π(w) = t1.

Assume that there is xk ∈ V (xk is not blocked by construction) with π(xk) =
tk such that L(xk) = L(tk), L(xk−1) = L(tk−1), L(〈xk−1, xk〉) = L(〈tk−1, tk〉). We
consider the following cases:

1. xk has a successor w′ such that L(w′) = L(tk+1) and L′(〈xk, w′〉) = L(〈tk, tk+1〉). If
w′ is not blocked then define xk+1 = w′. If w′ is blocked by z then define xk+1 = z.
Since 〈tk, tk+1〉 ∈ E(Q) hence w′ is a Q-successor of xk.

2. xk has no successor w′ such that L(w′) = L(tk+1) and L′(〈xk, w′〉) = L(〈tk, tk+1〉).
Since L(xk) = L(tk), by Lem.2, we can add a successor w′ of xk such that L(w′) =
L(tk+1) and L′(〈xk, w′〉) = L(〈tk, tk+1〉). If w′ is not blocked then define xk+1 = w′.
If w′ is blocked by z then define xk+1 = z. In addition, we define π(w′) = tk+1.
Since 〈tk, tk+1〉 ∈ E(Q) hence w′ is a Q-successor of xk.

Consequently, we obtain x1, · · · , xk+1 such that L(xi) = L(ti) for all i ∈ {1, · · · , k +1}
and Q ∈ L(〈xi, xi+1) = L(〈ti, ti+1), for all i ∈ {1, · · · , k} with x0 = x and t0 = t.

By the same way, we can obtain xl, · · · , xn such that L(xi) = L(ti) and Inv(Q) ∈
L(〈xi, xi+1) = L(〈ti, ti+1) for all i ∈ {l, · · · , n} where tn+1 = t and xn+1 = y if y is not
blocked or xn+1 = z if z blocks y.

According to Def. 5, 〈xl+1, xl, · · · , xn+1, x, x1, · · · , xk+1〉 form a cyclic non-duplicated

Q-path. Thus, T is a completion tree with cyclic paths for D. �

