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Heterogeneity between ontologies is often 
handled by establishing correspondences 
between the ontologies’ entities and trans-
forming data according to these correspon-
dences, whether for integrating heteroge-
neous data sources or exchanging messages 
between services. Relations between aligned 
entities can be very complex, so we devel-
oped an alignment language for expressing 
such complexities.1 The language  
is independent of concrete knowledge- 
representation and processing languages, but 
transforming concrete data requires process-
ing the correspondences expressed in the 
alignment language. In particular, it requires 
translating the source ontology’s data in-
stances to instances of the target ontology.

   We expect this scenario to become 
more common as an increasing number 
of ontologies and data are developed and 
published on the Web using the Resource 
Description Framework (RDF). A query 
language is a natural choice for translating 
data because it allows both data extrac-
tion and data transformation. Hence, while 
RDF, RDF Schema, and the Web Ontology 
Language (OWL) are the standards for de-
scribing data and ontologies on the Web, the 
Simple Protocol and RDF Query Language 
(SPARQL) seems the natural candidate for 
expressing and processing ontological cor-
respondences.2 However, SPARQL in its 
current version isn’t yet powerful enough to 
cover the full expressivity of the alignment 
language we developed. We therefore pro-
pose combining two recent SPARQL exten-
sions to handle complex alignments:

SPARQL++ provides aggregates, value-
generating built-ins, and (possibly recur-
sive) processing of mappings expressed 
in SPARQL,3 and 
PSPARQL provides queries on path ex-
pressions by allowing regular expression 
patterns.4

We illustrate our proposal with a data-
translation problem between two com-
monly used ontologies: friend-of-a-friend 
(FOAF, http://xmlns.com/foaf/0.1) and 

•

•

vCard (www.w3.org/2006/vcard/ns). Both 
vocabularies describe information about 
persons and organizations, and both are 
used extensively on the Web. They cover 
complementary as well as overlapping as-
pects of personal information.

Alignment Representation
The alignment format is an extensible for-
mat for expressing alignments in XML/
RDF.5 It supports interchange between 
alignments created using ontology-match-
ing algorithms and native representation of 
simple correspondences between ontologi-
cal entities. The format is associated with 
an Alignment API,6 which is organized 
around a small set of constructs that let 
users describe alignments through sets 
of correspondences, together with related 
metadata such as the alignment’s purpose 
or the way it was built. Each set of cor-
respondences gives a description of the 
alignment entities. Figure 1 shows a sample 
correspondence, expressing the equivalence 
between a vCard and a FOAF person.

   The expressive alignment language we 
developed extends the alignment format so 
that it can represent more elaborate corre-
spondences.1 In particular, it offers

operators to relate an entity in one ontol-
ogy to a combination of entities in the 
other, 
conditions to restrict an entity’s scope, and 
transformations for property values such 
as aggregations, functions, and data-type 
conversions.

The language provides a high-level descrip-
tion of ontology alignments and a conve-
nient exchange format for matching algo-
rithms, GUIs, and mediation languages.

Grounding
Ontology mediation is a complex mediation 
process involving two main phases.7 

First, the alignment is constructed at de-
sign time. Typically, ontology engineers use 
matching algorithms to automatically dis-
cover correspondences between ontologies. 
Graphical mapping interfaces assist the 
process of refining these correspondences, 
which eventually involve correspondence 
patterns.8 An expressive exchange format 
must carry the precise meaning of the 
correspondences.

Second, at runtime, the previously built 
alignments are executed in a mediation task 

•

•
•

using a specific target formalism. Ground-
ing is the term we use for transforming the 
alignment expressed in an alignment-repre-
sentation formalism—such as our expres-
sive alignment language—into the concrete 
language or algorithm executable on the 
particular knowledge representation.

When translating instance data in RDF, 
SPARQL has advantages compared with 
upcoming rules language standards such 
as the Rule Interchange Format. SPARQL 
is declarative and already widely used 
for querying RDF Web data. This makes 
SPARQL-based data translation a more 
natural tool for Semantic Web users than 
rule-based languages or XML-based ex-
traction techniques at the moment.

We can illustrate the process of ground-
ing to concrete SPARQL expressions for 
data translations by using the example 
FOAF-vCard correspondences in Figure 1.

Data Translation Using SPARQL
SPARQL is the W3C recommendation for 
querying RDF.2 Typically, SPARQL queries 
are used to select bindings of RDF terms to 
variables from a set of source RDF graphs 
(also called the dataset) according to a 
graph pattern. In a slightly simplified view, 
such a query follows the general structure: 

   
CONSTRUCT { result pattern }
FROM dataset 
WHERE { graph pattern } 
   
Answers to a SPARQL query Q rely on 

computing the set of possible homomor-
phisms from Q’s basic graph pattern(s) into 
the RDF graph representing the knowl-
edge base (that is, the dataset). The result-
ing variable bindings for instantiating the 
pattern in the WHERE part are then used 
to construct a new graph by instantiating 
the result pattern. So, if we want to reuse 
instance data described in one ontology 
when our application has been designed 
for another one, we can use such SPARQL 
CONSTRUCT queries as a translation 
mechanism. This is a natural mechanism 
for writing mapping rules between RDF 
vocabularies. For instance, the query in 
Figure 2(a) illustrates a CONSTRUCT 
query translating a foaf:Person into a vc:VCard. 
However, this query only covers the simple 
concept correspondence. We must com-
plete this correspondence to additionally 
translate—possibly recursively—a person’s 
properties, such as name, address, or tele-
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phone number. CONSTRUCT queries can 
likewise be used for these subcorrespon-
dences. For example, Figure 2(b) shows 
how we can extend the Figure 2(a) query 
to also map names in vCard addresses to 
FOAF. Figure 2(c) shows a CONSTRUCT 
statement that models a more complex sub-
mapping of the correspondence in Figure 1.

We can then execute these queries on a 
set of instance data represented in RDF to 
yield the transformed ontology instances 
in the target ontology. However, in practi-
cal use cases, it turns out that the available 
constructs in SPARQL still aren’t sufficient 
for an expressive mapping language as re-
quired by complex applications.

SPARQL Extensions  
for Accurate Translation
Three features that SPARQL currently 
lacks would be particularly useful for pro-
cessing alignments—namely, aggregate 
computation, individual generation, and 
path expressions.

Aggregates. Definition of a Project (DOAP, 
http://trac.usefulinc.com/doap) is an open 
source project to create an XML/RDF vo-
cabulary to describe software projects. The 
DOAP vocabulary contains a revision prop-
erty—that is, version numbers of released 
project versions. With an aggregate function 
MAX, you could map DOAP information into 
the RDF Open Source Software Vocabu-
lary (http://xam.de/ns/os), which provides a 
latest-release property, as Figure 3a shows. 
Other aggregates, such as count, average, 
or sum, might be needed for complex and 
complete mappings.

Individual generation. Completing the 
mapping between vCard and FOAF, if we 
try mapping from vc:workTel to foaf:phone, 
we observe that the former is a data-type 
property and the latter an object property 
in OWL/RDF. Basically, a mapping needs 
a conversion function, generating a new 

URI from a literal. Figure 3b shows such a 
mapping.

SPARQL doesn’t allow such value gen-
erations at the moment, but they are defined 
and implemented in a recent extension 
called SPARQL++.3 SPARQL++ also pro-
vides aggregates. Therefore, we consider 
SPARQL++ to be a valid basis for such a 
mapping language, but it doesn’t yet address 
all the issues in complex relations. For exam-
ple, RDF’s blank nodes, which correspond to 
existential variables in CONSTRUCT que-
ries, involve additional complications, which 
are discussed in more detail elsewhere.3

Paths. Another missing part for expressing 
complex mappings is path expressions over 
RDF graph patterns, which aren’t express-
ible in SPARQL. This is fairly surprising for 
a language that claims to be a graph query 
language. Here, PSPARQL—another recent 
extension—SPARQL allows to replace the 
basic graph patterns—that is, RDF graphs 
with variables—by graphs with variables 
and regular path expressions in place of 
predicates.4 We can view path expressions 
as complementary to aggregations: where 
aggregations join pieces together, path ex-
pressions extract them individually.

The example PSPARQL query in Fig-
ure 3c exhibits two path expressions in the 
WHERE clause using the indefinite com-
position (+) operator, extending SPARQL’s 

existing simple bracketed path expressions. 
This query maps to the class of potential 
salespersons for Innsbruck,  by picking per-
sons that indirectly know someone working 
in for a company based in Innsbruck. 

We demonstrated that a query lan-
guage is an adequate means for transform-
ing RDF data according to some ontology 
alignment. However, the current SPARQL 
specification isn’t yet powerful enough 
for supporting this task with the complex 
mappings that are necessary for describing 
alignments between ontologies on the in-
stance level. The combination of SPARQL 
extensions—SPARQL++ and PSPARQL—
can serve as a basis to ground expressive 
ontology alignments in concrete executable 
mappings between data RDF graphs adher-
ing to different, overlapping ontologies.

To implement a complete align-
ment framework, we propose two things: 
first, an implementation of a SPARQL 
data transformation engine integrat-
ing PSPARQL and SPARQL++ and, 
second, a grounding of an abstract, ex-
pressive alignment language to this new 
PSPARQL++. We are currently working 

CONSTRUCT { ?x rdf:type foaf:Person } 
WHERE { ?x rdf:type vc:VCard } 
(a)

CONSTRUCT { ?X foaf:name ?FN . } 
WHERE { ?X vc:FN ?FN . 
    FILTER isLiteral(?FN) } 
(b)

CONSTRUCT { ?X rdf:type foaf:Person.
    ?X foaf:based_near “Grenoble”ˆˆxsd:string. } 
WHERE { ?X rdf:type v:VCard . 
           OPTIONAL {?X v:workTel ?PH.}
    OPTIONAL {?X v:workAdr [v:locality ?L]}
    FILTER ( startsWith(?PH, “+33476”)
           OR ?L = “Grenoble”) }
(c)

Figure 2. SPARQL data-translation 
examples: (a) simple mapping from vCard 
to the FOAF person concept, (b) simple 
mapping of  that concept’s related 
properties, and (c) combined mapping 
including combination of properties 
(Examples omit FROM clauses.)

CONSTRUCT { ?P os:latestRelease
    MAX(?V : ?P doap:release ?R.
                    ?R doap:revision ?V) }
WHERE { ?P rdf:type doap:Project . }
(a)

CONSTRUCT {?X a foaf:phone
    xsd:anyURI( 
        fn:concat(“tel:”,fn:encode-for-uri(?T))).}
WHERE { ?X vc:tel ?T . } 
(b)

CONSTRUCT { ?X rdf:type ex:PotentialSalesPerson }
WHERE {?X foaf:knows+ [ foaf:worksFor 
           [ vc:adr [ vc:city “Innsbruck”]]] }
(c)

Figure 3. Example SPARQL extensions 
for accurate translation: (a) using 
aggregates to map DOAP to the Open 
Source Software Vocabulary, (b) using 
value-generation in CONSTRUCTs 
to map vCard telephone numbers 
(represented as strings) to FOAF 
telephone numbers (represented as 
URIs), and (c) a complex mapping using 
regular path expressions. (Examples 
omit FROM clauses.)

<Cell>
  <entity1 rdf:resource=”&foaf;Person”/>
  <entity2 rdf:resource=”&vc;VCard”/>
  <measure  rdf:datatype=”&xsd;float”>1.0 
 </measure>
  <relation>equivalence</relation> 
</Cell>

Figure 1. A sample correspondence in 
the Alignment format. 
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on reconciling the different proposed ex-
tensions toward a common prototype.
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Ontology matching is a significant Se-
mantic Web research topic and a critical 
operation in many domains—for example, 
heterogeneous systems interoperability, 
data warehouse integration, e-commerce 
query mediation, and semantic-services 
discovery. The matching operation takes 
two (sometimes more) ontologies as input, 
each consisting of a set of discrete entities 
and axioms, and outputs the relationships 
between the entities, such as equivalence or 
subsumption. 

Researchers have proposed many solu-
tions to the ontology-matching problem.1,2 
Although it’s a different problem from 
schema matching, the techniques developed 
for each of them has benefitted the other. 
Most research has focused on specific cri-
teria for evaluating and distinguishing be-
tween matching approaches according to

algorithm input—for example, entity la-
bels, internal structures, attribute types, 
and relationships with other entities;
matching-process characteristics—for 
example, the approximate or exact nature 
of its computation or the way it interprets 
input data (syntactic, external, or seman-
tic); and
algorithm output—for example, a one-
to-one matching or a one-to-many or 
many-to-many correspondence.

Other significant distinctions in the output 
results include the confidence and probabil-
ity percentages of the mapping results and 
the kinds of relations provided (equiva-
lence, subsumption, incompatibility, and 
so on).

Human involvement during the ontology-
matching process is usually a trade-off with 
the results’ precision and recall percent-
ages. Fully automated tools are still looking 
for higher accuracy. International contests 
such as the Ontology Alignment Evaluation 
Initiative (http://oaei.ontologymatching.
org) provide a forum and benchmarks for 
this task.3 Still, both automated and semi-
automated tools need to improve their per-
formance. For instance, most of them can’t 
handle large real-domain ontologies such as 

•

•

•

those in medicine and biology, although the 
research community has developed more 
and more realistic testbeds to evaluate tool 
solutions to the scalability problem.

Beyond ontology-matching methods, tools, 
and evaluation initiatives, recent efforts have 
focused on design frameworks for ontology-
matching tools, such as AUTOMS-F.4 Such 
frameworks let developers use APIs to not 
only develop ontology-matching methods but 
also, and more important, synthesize these 
methods into robust tools for producing more 
accurate mappings. Beyond this, existing 
methods need more work to improve their 
matching quality.

Dilemmas and Critical Questions
The research community’s efforts to provide 
diverse solutions to the matching problem by 
developing a variety of tools haven’t yet gen-
erated a dominant set of methods that can 
serve as a benchmark for designing other 
matching tools. This might reflect the vari-
ety of domain-specific user or application 
needs. In fact, we conjecture that the com-
munity couldn’t nominate “the best tool” be-
cause so many critical questions arise within 
a specific problem-solving context.

For example, should the tool be fully or 
semiautomated? To answer this question 
satisfactorily requires knowing the extent 
of human involvement, if any, and how this 
influences the accuracy of mapping results. 
How much time must users spend validat-
ing mapping results? Can we ensure that 
mapping results are valid without users’ 
involvement? Ultimately, the questions 
resolve to what is most critical for their ap-
plication: investing in human involvement 
to validate resources or automating the 
ontology-matching tool? If user interaction 
is essential, you must provide the means to 
analyze the matching results and under-
stand the source ontologies’ characteristics.

Another important question is whether 
the tool should provide very high precision 
and indifferent recall or vice versa. What 
balance between these parameters does the 
user’s application require? What are the 
trade-offs? Is there an optimal trade-off, and 
can users tune the methods to achieve it?

Performance involves another set of 
questions. Does the application call for 
a tool that supports high computational 
complexity and rather slow execution time, 
or are rapid results more important? What 
percentage of precision and recall are users 
willing to sacrifice to speed up the ontol-
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