
82 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

SPARQL Extensions for
Processing Alignments
Jérôme Euzenat, INRIA and Laboratoire
d’Informatique de Grenoble
Axel Polleres, National University
of Ireland, Galway
François Scharffe, University of Innsbruck

Heterogeneity between ontologies is often
handled by establishing correspondences
between the ontologies’ entities and trans-
forming data according to these correspon-
dences, whether for integrating heteroge-
neous data sources or exchanging messages
between services. Relations between aligned
entities can be very complex, so we devel-
oped an alignment language for expressing
such complexities.1 The language
is independent of concrete knowledge-
representation and processing languages, but
transforming concrete data requires process-
ing the correspondences expressed in the
alignment language. In particular, it requires
translating the source ontology’s data in-
stances to instances of the target ontology.

 We expect this scenario to become
more common as an increasing number
of ontologies and data are developed and
published on the Web using the Resource
Description Framework (RDF). A query
language is a natural choice for translating
data because it allows both data extrac-
tion and data transformation. Hence, while
RDF, RDF Schema, and the Web Ontology
Language (OWL) are the standards for de-
scribing data and ontologies on the Web, the
Simple Protocol and RDF Query Language
(SPARQL) seems the natural candidate for
expressing and processing ontological cor-
respondences.2 However, SPARQL in its
current version isn’t yet powerful enough to
cover the full expressivity of the alignment
language we developed. We therefore pro-
pose combining two recent SPARQL exten-
sions to handle complex alignments:

SPARQL++ provides aggregates, value-
generating built-ins, and (possibly recur-
sive) processing of mappings expressed
in SPARQL,3 and
PSPARQL provides queries on path ex-
pressions by allowing regular expression
patterns.4

We illustrate our proposal with a data-
translation problem between two com-
monly used ontologies: friend-of-a-friend
(FOAF, http://xmlns.com/foaf/0.1) and

•

•

vCard (www.w3.org/2006/vcard/ns). Both
vocabularies describe information about
persons and organizations, and both are
used extensively on the Web. They cover
complementary as well as overlapping as-
pects of personal information.

Alignment Representation
The alignment format is an extensible for-
mat for expressing alignments in XML/
RDF.5 It supports interchange between
alignments created using ontology-match-
ing algorithms and native representation of
simple correspondences between ontologi-
cal entities. The format is associated with
an Alignment API,6 which is organized
around a small set of constructs that let
users describe alignments through sets
of correspondences, together with related
metadata such as the alignment’s purpose
or the way it was built. Each set of cor-
respondences gives a description of the
alignment entities. Figure 1 shows a sample
correspondence, expressing the equivalence
between a vCard and a FOAF person.

 The expressive alignment language we
developed extends the alignment format so
that it can represent more elaborate corre-
spondences.1 In particular, it offers

operators to relate an entity in one ontol-
ogy to a combination of entities in the
other,
conditions to restrict an entity’s scope, and
transformations for property values such
as aggregations, functions, and data-type
conversions.

The language provides a high-level descrip-
tion of ontology alignments and a conve-
nient exchange format for matching algo-
rithms, GUIs, and mediation languages.

Grounding
Ontology mediation is a complex mediation
process involving two main phases.7

First, the alignment is constructed at de-
sign time. Typically, ontology engineers use
matching algorithms to automatically dis-
cover correspondences between ontologies.
Graphical mapping interfaces assist the
process of refining these correspondences,
which eventually involve correspondence
patterns.8 An expressive exchange format
must carry the precise meaning of the
correspondences.

Second, at runtime, the previously built
alignments are executed in a mediation task

•

•
•

using a specific target formalism. Ground-
ing is the term we use for transforming the
alignment expressed in an alignment-repre-
sentation formalism—such as our expres-
sive alignment language—into the concrete
language or algorithm executable on the
particular knowledge representation.

When translating instance data in RDF,
SPARQL has advantages compared with
upcoming rules language standards such
as the Rule Interchange Format. SPARQL
is declarative and already widely used
for querying RDF Web data. This makes
SPARQL-based data translation a more
natural tool for Semantic Web users than
rule-based languages or XML-based ex-
traction techniques at the moment.

We can illustrate the process of ground-
ing to concrete SPARQL expressions for
data translations by using the example
FOAF-vCard correspondences in Figure 1.

Data Translation Using SPARQL
SPARQL is the W3C recommendation for
querying RDF.2 Typically, SPARQL queries
are used to select bindings of RDF terms to
variables from a set of source RDF graphs
(also called the dataset) according to a
graph pattern. In a slightly simplified view,
such a query follows the general structure:

CONSTRUCT { result pattern }
FROM dataset
WHERE { graph pattern }

Answers to a SPARQL query Q rely on

computing the set of possible homomor-
phisms from Q’s basic graph pattern(s) into
the RDF graph representing the knowl-
edge base (that is, the dataset). The result-
ing variable bindings for instantiating the
pattern in the WHERE part are then used
to construct a new graph by instantiating
the result pattern. So, if we want to reuse
instance data described in one ontology
when our application has been designed
for another one, we can use such SPARQL
CONSTRUCT queries as a translation
mechanism. This is a natural mechanism
for writing mapping rules between RDF
vocabularies. For instance, the query in
Figure 2(a) illustrates a CONSTRUCT
query translating a foaf:Person into a vc:VCard.
However, this query only covers the simple
concept correspondence. We must com-
plete this correspondence to additionally
translate—possibly recursively—a person’s
properties, such as name, address, or tele-

NOVEMBER/DECEMBER 2008 www.computer.org/intelligent 83

phone number. CONSTRUCT queries can
likewise be used for these subcorrespon-
dences. For example, Figure 2(b) shows
how we can extend the Figure 2(a) query
to also map names in vCard addresses to
FOAF. Figure 2(c) shows a CONSTRUCT
statement that models a more complex sub-
mapping of the correspondence in Figure 1.

We can then execute these queries on a
set of instance data represented in RDF to
yield the transformed ontology instances
in the target ontology. However, in practi-
cal use cases, it turns out that the available
constructs in SPARQL still aren’t sufficient
for an expressive mapping language as re-
quired by complex applications.

SPARQL Extensions
for Accurate Translation
Three features that SPARQL currently
lacks would be particularly useful for pro-
cessing alignments—namely, aggregate
computation, individual generation, and
path expressions.

Aggregates. Definition of a Project (DOAP,
http://trac.usefulinc.com/doap) is an open
source project to create an XML/RDF vo-
cabulary to describe software projects. The
DOAP vocabulary contains a revision prop-
erty—that is, version numbers of released
project versions. With an aggregate function
MAX, you could map DOAP information into
the RDF Open Source Software Vocabu-
lary (http://xam.de/ns/os), which provides a
latest-release property, as Figure 3a shows.
Other aggregates, such as count, average,
or sum, might be needed for complex and
complete mappings.

Individual generation. Completing the
mapping between vCard and FOAF, if we
try mapping from vc:workTel to foaf:phone,
we observe that the former is a data-type
property and the latter an object property
in OWL/RDF. Basically, a mapping needs
a conversion function, generating a new

URI from a literal. Figure 3b shows such a
mapping.

SPARQL doesn’t allow such value gen-
erations at the moment, but they are defined
and implemented in a recent extension
called SPARQL++.3 SPARQL++ also pro-
vides aggregates. Therefore, we consider
SPARQL++ to be a valid basis for such a
mapping language, but it doesn’t yet address
all the issues in complex relations. For exam-
ple, RDF’s blank nodes, which correspond to
existential variables in CONSTRUCT que-
ries, involve additional complications, which
are discussed in more detail elsewhere.3

Paths. Another missing part for expressing
complex mappings is path expressions over
RDF graph patterns, which aren’t express-
ible in SPARQL. This is fairly surprising for
a language that claims to be a graph query
language. Here, PSPARQL—another recent
extension—SPARQL allows to replace the
basic graph patterns—that is, RDF graphs
with variables—by graphs with variables
and regular path expressions in place of
predicates.4 We can view path expressions
as complementary to aggregations: where
aggregations join pieces together, path ex-
pressions extract them individually.

The example PSPARQL query in Fig-
ure 3c exhibits two path expressions in the
WHERE clause using the indefinite com-
position (+) operator, extending SPARQL’s

existing simple bracketed path expressions.
This query maps to the class of potential
salespersons for Innsbruck, by picking per-
sons that indirectly know someone working
in for a company based in Innsbruck.

We demonstrated that a query lan-
guage is an adequate means for transform-
ing RDF data according to some ontology
alignment. However, the current SPARQL
specification isn’t yet powerful enough
for supporting this task with the complex
mappings that are necessary for describing
alignments between ontologies on the in-
stance level. The combination of SPARQL
extensions—SPARQL++ and PSPARQL—
can serve as a basis to ground expressive
ontology alignments in concrete executable
mappings between data RDF graphs adher-
ing to different, overlapping ontologies.

To implement a complete align-
ment framework, we propose two things:
first, an implementation of a SPARQL
data transformation engine integrat-
ing PSPARQL and SPARQL++ and,
second, a grounding of an abstract, ex-
pressive alignment language to this new
PSPARQL++. We are currently working

CONSTRUCT { ?x rdf:type foaf:Person }
WHERE { ?x rdf:type vc:VCard }
(a)

CONSTRUCT { ?X foaf:name ?FN . }
WHERE { ?X vc:FN ?FN .
 FILTER isLiteral(?FN) }
(b)

CONSTRUCT { ?X rdf:type foaf:Person.
 ?X foaf:based_near “Grenoble”ˆˆxsd:string. }
WHERE { ?X rdf:type v:VCard .
 OPTIONAL {?X v:workTel ?PH.}
 OPTIONAL {?X v:workAdr [v:locality ?L]}
 FILTER (startsWith(?PH, “+33476”)
 OR ?L = “Grenoble”) }
(c)

Figure 2. SPARQL data-translation
examples: (a) simple mapping from vCard
to the FOAF person concept, (b) simple
mapping of that concept’s related
properties, and (c) combined mapping
including combination of properties
(Examples omit FROM clauses.)

CONSTRUCT { ?P os:latestRelease
 MAX(?V : ?P doap:release ?R.
 ?R doap:revision ?V) }
WHERE { ?P rdf:type doap:Project . }
(a)

CONSTRUCT {?X a foaf:phone
 xsd:anyURI(
 fn:concat(“tel:”,fn:encode-for-uri(?T))).}
WHERE { ?X vc:tel ?T . }
(b)

CONSTRUCT { ?X rdf:type ex:PotentialSalesPerson }
WHERE {?X foaf:knows+ [foaf:worksFor
 [vc:adr [vc:city “Innsbruck”]]] }
(c)

Figure 3. Example SPARQL extensions
for accurate translation: (a) using
aggregates to map DOAP to the Open
Source Software Vocabulary, (b) using
value-generation in CONSTRUCTs
to map vCard telephone numbers
(represented as strings) to FOAF
telephone numbers (represented as
URIs), and (c) a complex mapping using
regular path expressions. (Examples
omit FROM clauses.)

<Cell>
 <entity1 rdf:resource=”&foaf;Person”/>
 <entity2 rdf:resource=”&vc;VCard”/>
 <measure rdf:datatype=”&xsd;float”>1.0
 </measure>
 <relation>equivalence</relation>
</Cell>

Figure 1. A sample correspondence in
the Alignment format.

84 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

on reconciling the different proposed ex-
tensions toward a common prototype.

Acknowledgments

The authors thank Faisal Alkhateeb, the main
designer of PSPARQL. Alex Polleres’ work is
supported by the Science Foundation Ireland
under the Lion project (SFI/02/CE1/I131) and
by the European Commission under project in-
Context (FP6 IST-034718). A longer version of
this essay appeared in the 2008 Proc. 2nd Int’l
Conf. on Complex, Intelligent, and Software-
Intensive Systems (CISIS 08), IEEE CS Press,
pp.913–917.

References
 1. J. Euzenat, F. Scharffe, and A. Zimmer-

mann, Expressive Alignment Language
and Implementation, tech. report D2.2.10,
Knowledge Web Network of Excellence
(EU-IST-2004-507482), 2007.

 2. E. Prud’hommeaux and A. Seaborne, eds.,
SPARQL Query Language for RDF, W3C
Recommendation, 2008.

 3. A. Polleres, F. Scharffe, and R. Schind-
lauer, “SPARQL++ for Mapping between
RDF Vocabularies,” Proc. 6th Int’l Conf.
Ontologies, DataBases, and Applications
of Semantics (ODBASE 07), LNCS 4803,
Springer, 2007, pp. 878–896.

 4. F. Alkhateeb, J.-F. Baget, and J. Euzenat,
Extending SPARQL with Regular Expres-
sion Patterns, Tech. report 6191, Institut
National de Recherche en Informatique et
en Automatique (INRIA), 2007.

 5. J. Euzenat and P. Shvaiko, Ontology
Matching, Springer, 2007.

 6. J. Euzenat, “An API for Ontology Align-
ment,” Proc. 3rd Int’l Semantic Web Conf.,
Springer, 2004, pp. 698–712.

 7. F. Scharffe et al., Analysis of Knowledge
Transformation and Merging Techniques
and Implementations, tech. Report D2.2.7,
Knowledge Web Network of Excellence
(EU-IST-2004-507482), 2007.

 8. F. Scharffe et al., “Correspondence Pat-
terns for Ontology Mediation,” Ontology
Matching Workshop, CEUR-WS Vol. 304,
2007, pp. 296-300.

Ontology Matching:
Status and Challenges
Konstantinos Kotis,
University of the Aegean
Monika Lanzenberger,
Vienna University of Technology

Ontology matching is a significant Se-
mantic Web research topic and a critical
operation in many domains—for example,
heterogeneous systems interoperability,
data warehouse integration, e-commerce
query mediation, and semantic-services
discovery. The matching operation takes
two (sometimes more) ontologies as input,
each consisting of a set of discrete entities
and axioms, and outputs the relationships
between the entities, such as equivalence or
subsumption.

Researchers have proposed many solu-
tions to the ontology-matching problem.1,2
Although it’s a different problem from
schema matching, the techniques developed
for each of them has benefitted the other.
Most research has focused on specific cri-
teria for evaluating and distinguishing be-
tween matching approaches according to

algorithm input—for example, entity la-
bels, internal structures, attribute types,
and relationships with other entities;
matching-process characteristics—for
example, the approximate or exact nature
of its computation or the way it interprets
input data (syntactic, external, or seman-
tic); and
algorithm output—for example, a one-
to-one matching or a one-to-many or
many-to-many correspondence.

Other significant distinctions in the output
results include the confidence and probabil-
ity percentages of the mapping results and
the kinds of relations provided (equiva-
lence, subsumption, incompatibility, and
so on).

Human involvement during the ontology-
matching process is usually a trade-off with
the results’ precision and recall percent-
ages. Fully automated tools are still looking
for higher accuracy. International contests
such as the Ontology Alignment Evaluation
Initiative (http://oaei.ontologymatching.
org) provide a forum and benchmarks for
this task.3 Still, both automated and semi-
automated tools need to improve their per-
formance. For instance, most of them can’t
handle large real-domain ontologies such as

•

•

•

those in medicine and biology, although the
research community has developed more
and more realistic testbeds to evaluate tool
solutions to the scalability problem.

Beyond ontology-matching methods, tools,
and evaluation initiatives, recent efforts have
focused on design frameworks for ontology-
matching tools, such as AUTOMS-F.4 Such
frameworks let developers use APIs to not
only develop ontology-matching methods but
also, and more important, synthesize these
methods into robust tools for producing more
accurate mappings. Beyond this, existing
methods need more work to improve their
matching quality.

Dilemmas and Critical Questions
The research community’s efforts to provide
diverse solutions to the matching problem by
developing a variety of tools haven’t yet gen-
erated a dominant set of methods that can
serve as a benchmark for designing other
matching tools. This might reflect the vari-
ety of domain-specific user or application
needs. In fact, we conjecture that the com-
munity couldn’t nominate “the best tool” be-
cause so many critical questions arise within
a specific problem-solving context.

For example, should the tool be fully or
semiautomated? To answer this question
satisfactorily requires knowing the extent
of human involvement, if any, and how this
influences the accuracy of mapping results.
How much time must users spend validat-
ing mapping results? Can we ensure that
mapping results are valid without users’
involvement? Ultimately, the questions
resolve to what is most critical for their ap-
plication: investing in human involvement
to validate resources or automating the
ontology-matching tool? If user interaction
is essential, you must provide the means to
analyze the matching results and under-
stand the source ontologies’ characteristics.

Another important question is whether
the tool should provide very high precision
and indifferent recall or vice versa. What
balance between these parameters does the
user’s application require? What are the
trade-offs? Is there an optimal trade-off, and
can users tune the methods to achieve it?

Performance involves another set of
questions. Does the application call for
a tool that supports high computational
complexity and rather slow execution time,
or are rapid results more important? What
percentage of precision and recall are users
willing to sacrifice to speed up the ontol-

Jérôme Euzenat is a senior research sci-
entist at INRIA Grenoble Rhone-Alpes and
Laboratoire d’Informatique de Grenoble.
Contact him at jerome.euzenat@inrialpes.fr.

Axel Polleres is a lecturer and project leader
at the Digital Enterprise Research Institute at
the National Unviersity of Ireland, Galway.
Contact him at axel.polleres@deri.org.

François Scharffe is a researcher at the Se-
mantic Technology Institute and PhD candi-
date at the University of Innsbruck. Contact
him at francois.scharffe@uibk.ac.at.

