
Integrating Textual Knowledge and Formal
Knowledge for Improving Traceability

Farid Cerbah and Jérôme Euzenat

Abstract. This article deals with traceability in knowledge
repositories. More precisely, we concentrate on the role of
terminological knowledge in the mapping between (infor-
mal) textual requirements and (formal) object models. We
show that terminological knowledge facilitates the produc-
tion of traceability links and model generation, provided that
language processing technologies allow to elaborate semi-
automatically the required terminological resources. The pre-
sented system is one step towards incremental formalization
from textual knowledge. As such, it is a valuable tool for
building knowledge repositories.

1 INTRODUCTION
Knowledge management has for long been preoccupied by
the relationships between formal and informal knowledge.
The informal is richer and familiar to any user while the for-
mal is more precise and necessary to the computer. It is recog-
nized that linking formal knowledge to informal knowledge
has several benefits in the context of knowledge management
including, (1) establishing the context for formalized knowl-
edge and documenting it, and (2) providing a natural way to
browse through formalized knowledge. A software tool for
supporting link generation, like the one presented in this pa-
per, is an opportunity to kick off incremental, corpus-driven
formalization.
In the field of knowledge management, there have been at-
tempts to provide tools supporting the linking of knowledge
sources [11, 15, 18]. However, the computational support
provided was quite limited. The links had to be established
manually and thus were error-prone and time consuming (not
only the initial setting of the links but, above all, the updating
operations). Besides, the browsing capabilities from formal
knowledge to the informal documents were minimal (e.g., the
hyperlinks had only one target document). In the meantime,
several works focused on the advantages of using a corpus-
based terminology for supporting formal knowledge acquisi-
tion [4, 1, 2]. These contributions emphasize the central role
of terminological resources in the mapping between informal
text sources and formal knowledge bases. We put forth an ar-
chitecture, centered around a terminology extration and man-

Dassault Aviation - DPR/DESA - 78, quai Marcel Das-
sault 92552 cedex 300 Saint-Cloud - France – E-mail:
farid.cerbah@dassault-aviation.fr
Inria Rhône-Alpes - 655, avenue de l’Europe 38330 Monbonnot St
Martin - France – E-mail: Jerome.Euzenat@inrialpes.fr
http://www.inrialpes.fr/exmo/

agement tool, which enables to generate models from texts
and navigate from one to another through the terminology.
We describe a fully implemented system that provides high-
level hypertext generation, browsing and model generation
facilities. From a more technical viewpoint, we introduce an
original XML based model for integrating software compo-
nents.
The rest of the paper is organized as follows. Section 2 in-
troduces the main concepts of our approach and the basic
tasks that should be performed by a user support tool which
exploits terminological knowledge for improving traceabil-
ity. Section 3 gives a detailed and illustrated description of
the implemented system. Finally, section 4 briefly compares
our contribution to related works and the conclusion provides
some directions for further research.

2 PRINCIPLES

2.1 Traceability in software engineering and
knowledge repositories

In software engineering, it is often stressed that design and
implementation decisions should be “traceable”, in the sense
that it should be possible to find out the requirements im-
pacted, directly or indirectly, by the decisions. In a similar
way, when building a somewhat formal (or at least structured)
repository from document sources, the concepts in the formal
repository must be linked to their original sources in the texts.
This mapping is useful in many respects:

It helps to ensure exhaustiveness: By following traceabil-
ity links, the user or a program can easily identify the con-
cepts which are not represented in the repository.
It facilitates the propagation of changes: At any time in
the elaboration process, traceability information allows to
find out the elements impacted by changes (upstream and
downstream).
When traceability is established with hyperlinks, the
browsing capabilities of the overall repository are in-
creased.

Moreover, in the context of generalized knowledge manage-
ment, traceability of elaborated knowledge from raw text pro-
vides both grounding and arguments for decisions.
In an object-oriented framework, many traceability links aim
at relating textual fragments of the documents in natural lan-
guage and model fragments. Putting on these links manually



Figure 1. Using terminological items to link textual requirements and object models

is a tedious and time consuming task and current tools for re-
quirement analysis or knowledge acquisition provide no sig-
nificant help for doing that job (except [15]).

2.2 The role of terminological resources
In many information systems where both textual knowledge
and formal knowledge are involved to describe related con-
cepts, terminology can play an intermediate role. As men-
tioned earlier, previous works in the fields of knowledge ac-
quisition and natural language processing have shown that
terminological resources extracted from corpora can help in
the incremental formalization processes from texts to formal
models. There exists other demonstrative examples in related
domains, such as product data management and software en-
gineering.
For example, in the DOCSTEP project [9], which deals with
product data management, terminological resources are used
to connect multilingual technical documentation and items
of product trees. Hyperlinks are established between term oc-
currences in documents and corresponding objects in product
trees.
In software engineering, the role of terminological knowl-
edge in the modeling process has often been pointed out
[19, 12, 3]. One of the first step in the modeling process con-
sists in a systematic identification of the technical terms (sim-
ple and compound nouns) in the documents, namely the ter-
minology used to describe the problem. Some of these tech-
nical terms represent concepts which will be subsequently
introduced in the formal models. These terms can be seen as
an intermediary level between the textual requirements and
the formal models. (see figure 1).

2.3 Functional view of a system that exploits
terminology

A system that takes advantage of terminological resources
may involve techniques pertaining to several technological
areas, and particularly natural language processing, informa-
tion retrieval and knowledge management:

Terminology Extraction. In technical domains, many pre-
cise and highly relevant concepts are linguistically rep-
resented by compound nouns. The multi-word nature of
the technical terms facilitates their automatic identification
in texts. Relevant multi-word terms can be easily identi-
fied with high accuracy using partial syntactic analysis [4],
[13] or statistical processing [6] (or even both paradigms
[8]). Terminology extraction techniques are used to auto-
matically build term hierarchies that will play the interme-
diate role between documents and models.

Document and Model Indexing. The technical terms are
used for indexing text fragments in the documents. Fine
grained indexing, i.e paragraph level indexing, is required
while most indexing systems used in information retrieval
work at the document level. Besides, most descriptors used
in this kind of indexing are multi-word phrases. The terms
are also used for indexing the model fragments (classes,
attributes . . . ).

Hyperlink Generation. The terminology driven indexing
of both texts and models with the same terminology is
the basis of the hyperlink generation mechanisms. Futher-
more, hyperlink generation should be controlled interac-
tively, in the sense that the user should be able to exclude
automatically generated links or add links that have not
been proposed by the system.

Model Generation. It is quite common that the concept hi-
erarchies mirror the term hierarchies found in the docu-
ments. This property can be used to generate model skele-
tons which will be completed manually.

These features are implemented in the system presented in
the next section.

3 A USER SUPPORT TOOL FOR
IMPROVING TRACEABILITY

The implemented system consists of two components, XTerm
and Troeps. XTerm deals with the document management
and linguistic processing functions, more particularly ter-
minological extraction and the document indexing. Troeps



Figure 2. The integrated system based on XTerm and Troeps.

deals with knowledge management and model indexing. The
model generation function is spread over both components.

3.1 Terminology extraction with XTerm
XTerm [5] is a natural language processing tool that provides
two services to end users:

Terminology acquisition from documents. It analyzes a
French or English technical documentation in order to
build a hierarchy of potential technical terms. The user can
explore and filter the extracted data via a graphical inter-
face.
Terminology-centred hypertext navigation. XTerm can be
seen as a hypertext browser. The extracted terms are sys-
tematically linked to their textual contexts in the docu-
ments. The user can easily access the textual fragments
containing term occurrences.

Starting with a document collection, XTerm scans all doc-
ument building blocks (paragraphs, titles, figures, notes) in
order to extract the text fragments. These word sequences are
then prepared for linguistic processing. Additionally, it pro-
vides the mechanisms for indexing and hyperlink generation
from technical terms to document fragments. Hyperlink gen-
eration is a selective process: To avoid overgeneration, the
initial set of links systematically established by the system
can be reduced by the user.
The first linguistic processing step is POS tagging. We used a
rule based tagger based on the Multex morphological parser

[17]. POS tagging starts with morphological analysis which
assigns to each word its possible morphological realizations.
Then, contextual desambiguation rules are applied to choose
a unique realization for each word. At the end of this process,
each word is unambigeously tagged.
As mentioned in section 2.3, the morpho-syntactical struc-
ture of technical terms follows quite regular formation rules
which represent a kind of local grammar. For instance, many
French terms can be captured with the pattern “Noun Prepo-
sition (Article) Noun”. Such patterns can be formalized with
finite state automata, where transition crossing conditions are
expressed in terms of morphological properties. To identify
the potential terms, the automata are applied on the tagged
word sequences provided by the POS tagger. A new potential
term is recognized each time a final state is reached. During
this step, the extracted terms are organized hierarchically. For
example, the term “flight plan” (“plan de vol” in figure 2) will
have the term “plan” as parent and “modified flight plan” as
a child in the hierarchy.
The candidate set obtained after this step is still too large.
Additional filtering mechanisms are involved to reduce that
set. Grouping rules are used to identify term variants. For in-
stance, in French technical texts, prepositions and articles are
often omitted for the sake of concision (the term “page des
buts” can occur in the elided form: “page buts)”3. Term vari-
ants are systematically conflated into a single node in the term

Whose English literal translations are respectively: “page of the
waypoints” and “page waypoints”. A plausible equivalent term in
English could be “Waypoint page”.



Figure 3. System architecture

hierarchy.
XTerm is highly interactive. Many browsing facilities are
provided to facilitate the manipulation of large data sets (ex-
tracted terms + text fragments). XTerm can be used as an
access tool to documentation repositories.

3.2 Knowledge modeling with the Troeps
system

Troeps [14, 21] is an object-based knowledge representation
system, i.e. a knowledge representation system inspired from
both frame-based languages and object-oriented program-
ming languages. It is used here for expressing the models.
An object is a set of field-value pairs associated to an iden-
tifier. The value of a field can be known or unknown, it can
be an object or a value from a primitive type (e.g. character
string, integer, duration) or a set or list of such. The objects
are partitioned into disjoint concepts (an object is an instance
of one and only one concept) which determines the key and
structure of its instances. For example, the “plan” concept
identifies a plan by its number which is an integer. The fields
of a particular “plan” are its time constraint which must be
a duration and its waypoints which must contain a set of in-
stances of the “waypoint” concept.
Objects can be seen under several viewpoints, each corre-
sponding to a different taxonomy. An object can be attached
to a different class in each viewpoint. For instance, a particu-
lar plan is classified as a “flight plan” under the nature view-
point and as a “logistic plan” under the functional viewpoint.
This is unlike other object systems, which usually allow only
one class hierarchy.
Object-based knowledge representation provides various fa-
cilities for manipulating knowledge among which filtering
queries (which find objects of a concept satisfying fields and
attachment constraints), similarity queries (function of field

values or attachment classes) involving a distance measure,
value inference (through default values, procedural attach-
ment, value passing or filtering), position inference (classi-
fication and identification) in which the possible positions of
an object or a class in a taxonomy are computed.
Troeps knowledge bases can be used as HTTP servers whose
skeleton is the structure of formal knowledge (mainly in the
object-based formalism) and whose flesh consists of pieces
of texts, images, sounds and videos tied to the objects. Turn-
ing a knowledge base into a HTTP server is easily achieved
by connecting it to a port and transforming each object refer-
ence into an URL and each object into a HTML page. If HTML
pages already document the knowledge base, they remain
linked to or integrated into the pages corresponding to the
objects. The Troeps user (through an Application Program-
ming Interface) can explicitly manipulate each of the Troeps
entities. The entities can also be displayed on a HTTP client
through their own HTML page. The Troeps program gener-
ates all the pages on demand (i.e. when a URL comes through
HTTP). The pages make numerous references to each others.
They also display various documentation (among which other
HTML pages and lexicon) and give access to Troeps features.
From a Troeps knowledge server it is possible to build com-
plex queries grounded on formal knowledge such as filtering
or classification queries. The answer will be given through
a semantically sound method instead of using a simple full-
text search. Moreover, it is possible to edit the knowledge
base. The system presented here takes advantage of this last
feature.

3.3 Communication between the components
The communication between the linguistic processing envi-
ronment and the model manager is bidirectional: Upon user
request, XTerm can call Troeps to generate class hierarchies



Figure 4. Class generation and traceability through hyperlinks

from term hierarchies. Conversely, Troeps can call XTerm to
provide the textual fragments related to a concept (via a tech-
nical term).
For example, figure 4 illustrates the class generation pro-
cess from a hierarchy of terms carefully validated by the user
(a hierarchy rooted in the term “Plan”). The class hierarchy
constructed by Troeps mirrors the hierarchy of the validated
terms (under the root “Plan”).
At the end of the generation process, the created classes
are still linked to their corresponding terms, which means
that the terminology-centred navigation capabilities offered
by XTerm are directly available from the Troeps interface.
As illustrated by figure 4, the Troeps user has access to the
multi-document view of the paragraphs which concern the
“Flight-Plan” concepts4. From this view, the user can consult
the source documents if required.
Data exchanges between XTerm and Troeps are based on the
XML language (see figure 3). Troeps offers an XML interface
which allows to describe a whole knowledge base or to take
punctual actions on an existing knowledge base. This last fea-
ture is used in the interface where XTerm sends to Troeps
short XML statements corresponding to the action performed
by the user. These actions correspond to the creation of a new
class or a subclass of an existing class and the annotation
of a newly created class with textual elements such as the
outlined definition of the term naming the class. For exam-
ple, to generate classes from the term hierarchy rooted at the
term “plan”, XTerm sends to Troeps an XML stream contain-
ing a sequence of class creation and annotation statements.

More precisely, this view displays the paragraphs where the term
“flight plan” and its variants occur.

XML representation of object models . We give below an ex-
tract of this sequence, corresponding to the creation of classes
“Flight-Plan” and “Current-Flight-Plan”:

<trp:ADD>
<trp:CLASS>
<trp:CLASSDSC name="Flight-Plan">
<trp:CLASSREF name="Plan"/>

</trp:CLASSDSC>
</trp:CLASS>

</trp:ADD>

<trp:ADD>
<trp:CLASS>
<trp:CLASSDSC name="Current-Flight-Plan">
<trp:CLASSREF name="Flight-Plan"/>

</trp:CLASSDSC>
</trp:CLASS>

</trp:ADD>

<trp:ANNOTATE label="comment">
<trp:CLASSREF name="Flight-Plan"/>
<trp:CONTENT>
A flight plan is a sequence of waypoints...

</trp:CONTENT>
</trp:ANNOTATE>

The term definition filled out in the XTerm description of the
term is added as a textual annotation in the class description.
After these automated steps, the classes can be completed
manually.

This XML interface has the advantage of covering the com-
plete Troeps model (thus it is possible to destroy or rename
classes as well as adding new attributes to existing classes).
Moreover, it is relatively standard in the definition of formal-
ized knowledge so that it will be easy to have XTerm gener-
ating other formats (e.g. XMI [16] or Ontolingua) which share
the notion of classes and objects.
More details about this approach of XML-based knowledge
modeling and exchange are given in [10].



4 RELATEDWORK

Terminology acquisition is one of the most robust language
processing technology [4, 13, 8] and previous works have
demonstrated that term extraction tools can help to link in-
formal and formal knowledge. The theoretical apparatus de-
picted in [4], [1] and [2] provides useful guidelines for inte-
grating terminology extraction tools in knowledge manage-
ment systems. However, the models and implemented sys-
tems suffer from a poor support for traceability, restricted to
the use of hyperlinks from concepts and terms to simple text
files. On this aspect, our proposal is richer. The system han-
dles real documents, in their original format, and offers vari-
ous navigation and search services for manipulating “knowl-
edge structures” (i.e., documents, text fragments, terms, con-
cepts . . . ). Moreover, the management services allow users to
build their own hypertext network.
With regard to model generation, our system and Terminae
[2] provide complementary services. Terminae resort to the
terminologist to provide a very precise description of the
terms from which a precise formal representation, in descrip-
tion logic, can be generated. In our approach, the system does
not require users to provide additional descriptions before
performing model generation from term hierarchies. Model
generation strictly and thoroughly concentrates on hierarchi-
cal structures that can be detected at the linguistic level using
term extraction techniques. For example, the hierarchical re-
lation between the terms “Flight Plan” and “Modified Flight
Plan” is identified by XTerm because of the explicit relations
that hold between the linguistic structures of the two terms.
Hence, such term hierarchies can be exploited for class gen-
eration. However, XTerm would be unable to identify the hi-
erarchical relation that hold between the terms “vehicle” and
“car” (which is the kind of relations that Terminae would try
to identify in the formal descriptions). As a consequence, the
formal description provided by our system is mainly a hier-
archy of concepts while that of Terminae is more structural
and the subsumption relations is computed by the description
logic system.
A recent contribution in the field of knowledge manage-
ment is that of [20] which provides automatic indexing of
mail messages in a corporate context. However, the indexing
mechanisms do not involve terminological resources.
In the field of software engineering, object-oriented methods
concentrate on the definition of formal or semi-formal for-
malisms, with little consideration for the informal-to-formal
processes [19, 12, 3]. However, to identify the relevant re-
quirements and model fragments, designers should perform
a deep analysis of the textual specifications. The recommen-
dations discussed in section 2.2 on the use of terminological
resources can be seen as a first step.
The transition from informal to formal models is also ad-
dressed in [22]. The approach allows users to express the
knowledge informally (within texts and hypertexts) and more
formally (through semantic networks coupled with an ar-
gumentation system). In this modeling framework, knowl-
edge becomes progressively more formal through small in-
crements. The system, called “Hyper-Objet substrate”, pro-
vides an active support to users by suggesting formal descrip-
tions of terms. The integrated nature of this system allows to
make suggestions while the users are manipulating the text,

and to exploit already formalized knowledge to deduce new
formalization steps. Our system, whose linguistic processing
component is far more developed, could be coherently em-
bedded in this comprehensive modeling framework.
Our work is also related to the WEB KB system [7] whose
goal is to automatically build large knowledge bases by ana-
lyzing the World Wide Web. The system starts with a prede-
fined domain model, composed of classes and relations be-
tween them. Potential instances are identified on the Web
using machine learning techniques. ”Informal instances” of
predefined classes and relations may correspond to Web
pages, hyperlinks or text fragments. Our approach concen-
trates on the extraction of model fragments whereas this work
focuses on instance identification. No linguistic processing is
involved in this system. Textual material is simply viewed
as bag of words (without stemming). However, some learn-
ing techniques developed in this context could be adapted for
model generation.

5 CONCLUSION
Structured knowledge repositories are by nature highly rela-
tional and the various relations that hold between knowledge
fragments are often expressed through hyperlinks. However,
hypertext editing is an expensive and time-consuming activ-
ity which, nowadays, is hardly processed automatically, even
partially. Our approach emphasizes the need for an active
support to hypertext editing. We have presented a fully im-
plemented system that helps users to link formal models to
their informal sources.
We assumed in this work that the sources had a low degree of
formality, roughly documents with a poorly structured con-
tent. Further investigation will adress the problem of link
generation from semi-formal sources such as SGML and XML
documents. With the success of XML, the availability of such
semi-formal sources tends to increase. We think that link gen-
eration can be significantly improved when the sources are
semi-formal. In particular, XML tagging provides useful infor-
mation about the content structure that allows to accurately
identify the potential link anchors.
We also adressed in this work the issue of model generation
from informal sources. We proposed robust class generation
mechanisms that take advantage of term hierarchies automat-
ically built with NLP techniques. Further work will adress
automatic generation of more complex knowledge structures
such as relations between classes and attributes.

ACKNOWLEDGEMENTS
This work has been partially realized in the GENIE II pro-
gram supported by the French ministry of education, research
and technology (MENRT) and the DGA/SPAé.



REFERENCES
[1] N. Aussenac-Gilles, D. Bourigault, A. Condamines, and

C. Gros, ‘How can knowledge acquisition benefit from ter-
minology ?’, in Proceedings of the 9th Knowledge Acquisi-
tion for Knowledge Based System Workshop (KAW ’95), Banff,
Canada, (1995).

[2] B. Biébow and S. Szulman, ‘Une approche terminologique
pour la construction d’ontologie de domaine à partir de textes
: TERMINAE’, in Proceedings of 12th RFIA Conference, pp.
81–90, Paris, (2000).

[3] G. Booch, Object-Oriented Analysis and Design with Applica-
tions, Addison-Wesley, 2d edn., 1994.

[4] D. Bourigault, ‘Lexter, a terminology extraction software for
knowledge acquisition from texts’, in Proceedings of the 9th
Knowledge Acquisition for Knowledge Based System Work-
shop (KAW ’95), Banff, Canada, (1995).

[5] F. Cerbah, ‘Acquisition de ressources terminologiques – de-
scription technique des composants d’ingénierie linguistique’,
Technical report, Dassault Aviation, (1999).

[6] K. W. Church and P. Hanks, ‘Word association norms, mu-
tual information and lexicography’, Computational Linguis-
tics, 16(1), 22–29, (1990).

[7] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery, ‘Learning to construct
knowledge bases from the World wide Web’, Artificial Intelli-
gence, Special Issue on Intelligent Internet Systems, 118(1-2),
69–113, (2000).

[8] B. Daille, ‘Study and implementation of combined techniques
for automatic extraction of terminology’, in The Balancing
Act: Combining Symbolic and Statistical Approaches to Lan-
guage, eds., J.L. Klavans and P. Resnik, MIT Press, Cam-
bridge, (1996).

[9] K. Elavaino and J. Kunz, ‘Docstep — technical documentation
creation and management using step’, in Proceedings of SGML
’97, (1997).

[10] Jérôme Euzenat, ‘XML est-il le langage de représentation de
connaissance de l’an 2000 ?’, in Actes des 6eme journées lan-
gages et modèles à objets, pp. 59–74, Mont Saint-Hilaire, CA,
(2000).

[11] B. Gaines and M. Shaw, ‘Documents as expert systems’, in
Proceedings of 9th British society expert systems conference,
ed., Cambridge University Press, pp. 331–349, (1992).

[12] I. Jacobson, Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, 1992.

[13] J. S. Justeson and S. M. Katz, ‘Technical terminology: Some
linguistic properties and an algorithm for identification in text’,
Natural Language Engineering, 1(1), 9–27, (1995).

[14] O. Mariño, F. Rechenmann, and P. Uvietta, ‘Multiple perspec-
tives and classification mechanim in object-oriented represen-
tation’, in Proceeding of 9th ECAI, pp. 425–430, Stockholm,
(1990).

[15] P. Martin, Exploitation de graphes conceptuels et de docu-
ments structurés et hypertextes pour l’acquisition de connais-
sances et la recherche d’information, Ph.D. dissertation, Uni-
versité de Nice-Sophia Antipolis, 1996.

[16] OMG, ‘XML Metadata Interchange (XMI)’, Technical report,
OMG, (1998).

[17] D. Petitpierre and G. Russell, ‘MMORPH – the Multext
morphology program’, Technical report, Multext Deliverable
2.3.1, (1995).

[18] F. Rechenmann, ‘Building and sharing large knowledge bases
in molecular genetics’, in Proceedings of 1st International
Conference on Building and Sharing of Very Large-Scale
Knowledge Bases, pp. 291–301, Tokyo, (1993).

[19] J. Rumbaugh, Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

[20] D. Schwartz, ‘When email meets organizational memories’,
International journal of human-computer studies, 51(3), 599–
614, (1999).

[21] Projet Sherpa, ‘Troeps 1.2 reference manual’, Technical report,
Inria, (1998).

[22] F. Shipman and R. McCall, ‘Supporting incremental formal-
ization with the hyper-object substrate’, ACM Transactions on
information systems, 17(2), 199–227, (1999).


