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Abstract

RDF is a knowledge representation language dedicated to the annotation of resources
within the framework of the semantic web. Among the query languages for RDF, SPARQL
allows querying RDF through graph patterns, i.e., RDF graphs involving variables. Other
languages, inspired by the work in databases, use regular expressions for searching paths
in RDF graphs. Each approach can express queries that are out of reach of the other one.
Hence, we aim at combining these two approaches. For that purpose, we define a language,
called PRDF (for “Path RDF”) which extends RDF such that the arcs of a graph can be
labeled by regular expression patterns. We provide PRDF with a semantics extending that
of RDF, and propose a correct and complete algorithm which, by computing a particular
graph homomorphism, decides the consequence between an RDF graph and a PRDF graph.
We then define the PSPARQL query language, extending SPARQL with PRDF graph pat-
terns and complying with RDF model theoretic semantics. PRDF thus offers both graph
patterns and path expressions. We show that this extension does not increase the computa-
tional complexity of SPARQL and, based on the proposed algorithm, we have implemented
a correct and complete PSPARQL query engine.
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1 Introduction

RDF (Resource Description Framework [49]) is a knowledge representation lan-
guage dedicated to the annotation of documents and more generally of resources
within the semantic web. It represents knowledge as a graph relating resources (see
Fig. 1). Nowadays, more resources are annotated via RDF due to its simple data
model, formal semantics, and a sound and complete inference mechanism. A query
language that provides a range of querying paradigms is therefore needed.
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Fig. 1. An RDF graph.

Several languages have been developed for querying RDF (cf. [37] for a comparison
of query languages for RDF). Among them, SPARQL [56] is a W3C recommenda-
tion for querying RDF. Answers to SPARQL queries can be computed by a kind of
graph homomorphisms known as projection in conceptual graphs [50]. More pre-
cisely, the answer to a SPARQL query Q relies on calculating the set of possible
homomorphisms from the basic graph pattern(s) ofQ into the RDF graph represent-
ing the knowledge base (see Example 1). Unfortunately, SPARQL lacks the ability
of expressing paths, which is necessary for many applications (see Example 2).

Example 1 SPARQL graph patterns allow to match a query graph against an ac-
tual RDF graph. Fig. 1(a) presents such a graph pattern. It can be used for find-
ing the name and email address of any one related in any way, i.e., not family
restricted, to a daughter of a person named "Faisal". If this pattern is used in a
SPARQL query against the graph G of Fig. 1, it will return "Natasha" (with email
"natasha@example.org").

Another approach, that has been successfully used in databases [25,28,48,59,62]
but little in the context of the semantic web, uses path queries, i.e., regular expres-
sions, for finding regular paths in a database graph. The answer to a path query R
over a database graph G, is the set of all pairs of nodes in G satisfying the language
denoted byR, i.e., all pairs connected by a directed path such that the concatenation
of the labels of the arcs along the path forms a word that belongs to the language
denoted by R (see Example 2).

Example 2 Assuming an RDF graph representing a social network, i.e., a graph
representing relations between people, like the graph G of Fig. 1, the regular ex-
pression (ex:son|ex:daughter)+·?b4, when used as a query, searches all pairs of
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nodes connected by paths with a sequence of son and daughter relations followed
by any relation (not restricted to family relation). Applied to node ex:c1 of G, it
should match the paths leading to ex:Person1, ex:Person2, ex:Person3 and
ex:c3. This query, as it represents paths of unknown length, cannot be expressed in
SPARQL. On the other hand, the graph of Fig. 1(a), which represents a basic graph
pattern of a SPARQL query, cannot be expressed by a regular expression.

None of these approaches can be reduced to the other, i.e., some queries that can be
expressed in one approach cannot be expressed in the other. As shown in Fig. 1(a), a
query whose homomorphic image in the database is not a path cannot be expressed
by a regular expression, while RDF does not allow expressing paths of undeter-
mined length. Furthermore, regular expressions provide a simple way to capture
additional information along paths that is not be provided by SPARQL graph pat-
terns, but they are not powerful enough as a query language.

Therefore, an approach that combines the advantages of both SPARQL and path
queries is herein investigated. This combined approach, in which the arcs of the
SPARQL graph patterns may be labeled with regular expression patterns, supports
path queries (see Example 3).

Example 3 Assuming that we are interested in finding, among the persons related
in any way, i.e., not family restricted, to Faisal’s descendants, people who know
Faisal, and we want to know their names and email addresses. This query can be
expressed using graph patterns labeled with regular expression patterns, as shown
graphically in Fig. 1(b).
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Fig. 2. A SPARQL graph pattern (a) and a PSPARQL graph pattern (b).

In order to formally define that language, we first introduce Path RDF (PRDF) as an
extension of RDF in which arcs of the graphs can be labeled by regular expression
patterns. Because we want to ground the definition of our language on the semantics
of RDF, and we want to leave the door open to further extensions, we define the
semantics of PRDF on top of RDF semantics and we provide a sound and complete
algorithm for checking if a PRDF graph is entailed by some RDF graph. However,
those readers who are not interested in the semantic justification of this extension,
and only require syntactic definitions, can skip Sections 2.2 and 4.2 (GRDF and
PRDF semantics) and trust Theorem 1 and Theorem 3 for grounding our language
semantically (see Appendix A).

PRDF graphs are then used to define an extension to SPARQL, called PSPARQL,
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that replaces RDF graph patterns used in SPARQL by PRDF graph patterns, i.e.,
graph patterns with regular expression patterns. We present the syntax and the se-
mantics of PSPARQL. We provide algorithms, which are sound and complete for
evaluating PSPARQL graph patterns over RDF graphs. We establish complexity
results on evaluating PSPARQL graph patterns over RDF graphs. We have imple-
mented a PSPARQL query engine.

Paper outline. This paper is organized as follows: we introduce simple RDF in
Section 2. Section 3 presents the two approaches mentioned so far for querying
RDF graphs. In Section 4, we give the syntax and the semantics of PRDF, as well
as a sound and complete inference mechanism for querying RDF graphs with PRDF
queries. Section 5 defines the syntax of the PSPARQL language and establishes the
complexity results of PSPARQL query evaluation. Section 6 presents sound and
complete algorithms for answering a PSPARQL query, i.e., for enumerating the set
of all answers to a PSPARQL query. We provide the first experimental results with
an implementation of a PSPARQL query evaluator (Section 7). After a review of
related work (Section 8), we conclude in Section 9. The proof of the most important
results are given in Appendix.

2 Simple RDF

This section is devoted to the presentation of the Simple RDF knowledge represen-
tation language. We first recall (Section 2.1) its abstract syntax [23], its semantics
(Section 2.2), using the notions of simple interpretations, models, simple entail-
ment of [39]), then Section 2.3 uses homomorphisms to characterize simple RDF
entailment (as done in [15] for a graph-theoretic encoding of RDF, and in [36] for
a database encoding), instead of the equivalent interpolation lemma of [39].

2.1 RDF syntax

To define the syntax of RDF, we need to introduce the terminology over which RDF
graphs are constructed.

Terminology The RDF terminology T is the union of three pairwise disjoint infi-
nite sets of terms [39]: the set U of urirefs, the set L of literals (itself partitioned
into two sets, the set Lp of plain literals and the set Lt of typed literals), and the set
B of variables. The set V = U ∪L of names is called the vocabulary. From now on,
we use different notations for the elements of these sets: a variable will be prefixed
by ? (like ?b1), a literal will be between quotation marks (like "27"), and the rest
will be urirefs (like foaf:Person — foaf: is the prefix used for identifying the
“Friend of a friend” name space used for representing personal information — or

4



ex:friend).

RDF graphs are usually constructed over the set of urirefs, blanks, and literals [23].
“Blanks” is a vocabulary specific to RDF. Because we want to stress the com-
patibility of the RDF structure with classical logic, we will use the term variable
instead. The specificity of a blank with regard to variables is their quantification.
Indeed, a blank in RDF is an existentially quantified variable. We prefer to retain
this classical interpretation which is useful when an RDF graph is put in a different
context. When switching to SPARQL, variables and blanks have different behav-
iors in complex cases. For example, a blank shared in different simple patterns of
a group query pattern has a local scope which is easier to describe as changing the
quantification scope of a variable than changing a blank into a variable. So, for the
purpose of this paper and without loss of generality, we have chosen to follow [54]
to not distinguish between variables and blanks, and speak of variables instead.

Definition 1 (RDF graph) An RDF triple is an element of (U ∪ B) × U × T . An
RDF graph is a finite set of RDF triples.

Excluding variables as predicates and literals as subject was an unnecessary restric-
tion in the RDF design, that has been relaxed in many RDF extensions. Relaxing
these constraints simplifies the syntax specification and neither changes RDF se-
mantics nor the computational properties of reasoning. In consequence, we adopt
such an extension introduced in [41] and called generalized RDF graphs, or simply
GRDF graphs.

Definition 2 (GRDF graph) A GRDF triple is an element of T × (U ∪ B)× T . A
GRDF graph is a finite set of GRDF triples.

Notations If 〈s, p, o〉 is a GRDF triple, s is called its subject, p its predicate, and
o its object. We denote by subj(G) the set {s | 〈s, p, o〉 ∈ G} the set of elements
appearing as a subject in a triple of a GRDF graph G. pred(G) and obj(G) are
defined in the same way for predicates and objects. We call nodes(G) the nodes
of G, the set of elements appearing either as subject or object in a triple of G, i.e.,
subj(G)∪ obj(G). A term of G is an element of term(G) = subj(G)∪pred(G)∪
obj(G). If Y ⊆ T is a set of terms, we denote Y ∩ term(G) by Y(G). For instance,
V(G) is the set of names appearing in G.

A ground GRDF graph G is a GRDF graph with no variable, i.e., term(G) ⊆ V .

GRDF graphs as graphs: A simple GRDF graph can be represented graphically
as a directed labeled multigraph〈N,E, γ, λ〉 where the set of nodes N is the set of
terms appearing as a subject or object in at least one triple of G, the set of arcs E
is the set of triples of G, γ associates to each arc a pair of nodes (its extremities)
γ(e) = 〈γ1(e), γ2(e)〉 where γ1(e) is the source of the arc e and γ2(e) its target;
finally, λ labels the nodes and the arcs of the graph: if s is a node of N , i.e., a
term, then λ(s) = s, and if e is an arc of E, i.e., a triple 〈s, p, o〉, then λ(e) = p.
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Fig. 3. A GRDF graph.

When drawing such graphs, the nodes resulting from literals are represented by
rectangles while the others are represented by rectangles with rounded corners. In
what follows, we do not distinguish between the two views of the RDF syntax (as
sets of triples or directed labeled multigraphs). We will then speak interchangeably
about their nodes, their arcs, or the triples which make it up.

Example 4 The GRDF graph defined by the set of triples {〈?b1, foaf:name,
"Faisal"〉, 〈?b1, ex:daughter, ?b2〉, 〈?b2, ?b4, ?b3〉, 〈?b3, foaf:knows,
?b1〉, 〈?b3, foaf:name, ?name〉} is represented graphically in Fig. 3. Intuitively,
this GRDF graph means that there exists an entity named (foaf:name) "Faisal"
that has a daughter (ex:daughter) that has some relation with another entity
whose name is non determined, and that knows (foaf:knows) the entity named
"Faisal".

2.2 Simple RDF semantics

[39] introduces different semantics for RDF graphs. Since RDF and RDFS entail-
ments can be polynomially reduced to simple entailment via RDF or RDFS rules
[36,39,41], we are only interested in the simple semantics without RDF/RDFS vo-
cabulary [18]. The definitions of interpretations, models, satisfiability, and entail-
ment correspond to the simple interpretations, simple models, simple satisfiability,
and simple entailments of [39].

Definition 3 (Interpretation of a vocabulary) Let V ⊆ V be a vocabulary. An
interpretation of V is a 5-tuple I = 〈IR, IP, IEXT , IS, IL〉, where:

– IR is a set of resources containing plain literals of Lp;
– IP ⊆ IR is a set of properties;
– IS : U → IR, maps each uriref to a resource;
– IL : Lt → IR, maps each typed literal to a resource;
– IEXT : IP → 2(IR×IR), maps each property p to a set of pairs of resources called

the extension of p.

In order to simplify the notations, and without loss of generality, we assume that
IP ⊆ IR, which is true for RDF, but not necessarily for Simple RDF. If I = 〈IR,
IP, IEXT , IS, IL〉 is an interpretation of a vocabulary V , we also denote by I the
mapping defined by:
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– ∀x ∈ U , I(x) = IS(x);
– ∀x ∈ Lt, I(x) = IL(x);
– ∀x ∈ Lp, I(x) = x.

We have defined the interpretation of a vocabulary. Now, we want to specify the
conditions under which an interpretation I is a model for a GRDF graph G, i.e., G
is satisfied by the interpretation I . For that matter, we need to extend the interpre-
tations of a vocabulary to interpret the variables in G.

Definition 4 (Extension to variables) Let I be an interpretation of a vocabulary
V ⊆ V , andB ⊆ B a set of variables. An extension of I toB is a mapping I ′ : V∪B
→ IR such that ∀x ∈ V , I ′(x) = I(x).

This definition implies that a variable can be interpreted (or mapped) to any re-
source of IR.

Definition 5 (Model of a GRDF graph) Let G be a GRDF graph. An interpreta-
tion I = 〈IR, IP, IEXT , IS, IL〉 of a vocabulary V ⊇ V(G) is a model of G
if and only if there exists an extension I ′ of I to B(G) such that for each triple
〈s, p, o〉 ∈ G, 〈I ′(s), I ′(o)〉 ∈ IEXT (I ′(p)). The mapping I ′ is called a proof of G.

This definition is necessary for GRDF graphs having variables as predicates [41],
and PRDF graphs (cf. Section 4). It is equivalent to the standard definition [39], i.e.,
〈I ′(s), I ′(o)〉 ∈ IEXT (I(p)), in the case of RDF graphs.

The notions of satisfiability and entailment are then defined as usual.

Definition 6 (Satisfiability) A GRDF graphG is satisfiable iff there exists a model
of G.

Definition 7 (Entailment) Let G and H be two GRDF graphs. Then G entails H
(denoted by G |=RDF H) iff every model of G is also a model of H .

The definitions of satisfiability and entailment will be the same when we extend the
syntax and the semantics of GRDF. Two GRDF graphs G, H are said equivalent
if and only if G |=RDF H and H |=RDF G. We associate to this semantics the
decision problem called SIMPLE RDF ENTAILMENT:

SIMPLE RDF ENTAILMENT

Instance: two GRDF graphs G and H .
Question: Does G |=RDF H?

SIMPLE RDF ENTAILMENT is an NP-complete problem for RDF graphs [36]. For
GRDF graphs, its complexity remains unchanged. Polynomial subclasses of the
problem have been exhibited based upon the structure or labeling of the query:

– when the query is ground [40], or more generally when it has a bounded number
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of variables,
– when the query is a tree or admits a bounded decompositions into a tree, accord-

ing to the methods in [35] as shown in [15].

2.3 Simple RDF entailment as a graph homomorphism

SIMPLE RDF ENTAILMENT [39] can be characterized as a kind of graph homo-
morphism. A graph homomorphism from an RDF graph H into an RDF graph G,
as defined in [15,36], is a mapping π from the nodes of H into the nodes of G
preserving the arc structure, i.e., for each node x ∈ H , if λ(x) ∈ U ∪ L then

λ(π(x)) = λ(x); and each arc x p−→ y is mapped to π(x)
π(p)−→ π(y). This definition

is similar to the projection used to characterize entailment of conceptual graphs
(CGs) [50] (cf. [26] for precise relationship between RDF and CGs). We modify
this definition to the following equivalent one that maps term(H) into term(G).

Definition 8 (Map) Let V1 ⊆ T , and V2 ⊆ T be two sets of terms. A map from V1

to V2 is a mapping µ : V1 → V2 such that ∀x ∈ (V1 ∩ V), µ(x) = x.

The map defined in [36,54] is a particular case of Definition 8. An RDF homomor-
phism is a map preserving some structure (here, the arc structure).

Definition 9 (RDF homomorphism) LetG andH be two GRDF graphs. An RDF
homomorphism from H into G is a map π from term(H) to term(G) such that
∀〈s, p, o〉 ∈ H , 〈π(s), π(p), π(o)〉 ∈ G.

Example 5 (RDF homomorphism) Fig. 4 shows two GRDF graphsQ andG (note
that the graph Q is the graph P of Fig. 3, to which the following triple is added
〈?b3, foaf:mbox, ?mbox〉. The map π1 defined by {〈"Faisal","Faisal"〉, 〈?b1,
ex:c1〉, 〈?name, "Natasha"〉, 〈?mbox, "natasha@example.org"〉, 〈?b2,ex:c2〉,
〈?b4, ex:friend〉, 〈?b3, ex:Person1〉} is an RDF homomorphism from Q into
G. And the map π2 defined by {〈"Faisal", "Faisal"〉, 〈?b1, ex:c1〉, 〈?name,
"Deema"〉, 〈?b3, ex:Person2〉, 〈?b4, ex:friend〉, 〈?b2, ex:c2〉} is an RDF ho-
momorphism from P into G. Note that π2 cannot be extended to an RDF homomor-
phism from Q into G since there is no mailbox for "Deema" in G.

Theorem 1 Let G and H be two GRDF graphs, then G |=RDF H if and only if
there is an RDF homomorphism from H into G.

The definition of RDF homomorphisms (Definition 9) is similar to the map defined
in [36] for RDF graphs. [36] provides without proof an equivalence theorem (The-
orem 3) between RDF entailment and maps. A proof is provided in [15] also for
RDF graphs, but the homomorphism involved is a mapping from nodes to nodes,
and not from terms to terms. In RDF, the two definitions are equivalent. However,
the terms-to-terms version is necessary to extend the theorem of RDF (Theorem 1)
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to the PRDF graphs studied in Section 3.1. The proof of Theorem 1 will be a par-
ticular case of the proof of Theorem 3 for PRDF graphs.

ex:c3 ex:Person3

ex:Person1 ex:c2 ex:Person2

ex:c1

?mbox ?b3 ?b2

?name ?b1

"natasha@example.org"

"Natasha"

"Faisal" "Deema"

"Faisal"

Gex:friend
foaf:

mbox
ex:son

foaf:knows

foaf:name ex:friend ex:friend
foaf:knows

ex:daughter

foaf:knows
foaf:name

foaf:name

Q
foaf:mbox ?b4

foaf:name foaf:knows ex:daughter

foaf:name

π1 π1 π1 π1 π1 π1

Fig. 4. An RDF homomorphism π from Q into G.

This equivalence between the semantic notion of entailment and the syntactic no-
tion of homomorphism is the ground by which a correct and complete query an-
swering procedure can be designed.

3 Querying RDF graphs

This section presents two approaches for querying RDF graphs. In Section 3.1, a
simplified version of the SPARQL query language, insisting on its development on
top of RDF, is given. Section 3.2 shows how “path queries” developed in databases,
and which use regular expression patterns, can be used to query RDF knowledge
bases. Lastly, in Section 3.3, we discuss the significance of the combined approach
which will be the goal of this paper.

3.1 The SPARQL query language

SPARQL is the RDF query language developed by the W3C [56]. SPARQL query
answering is characterized by defining a mapping from the query to the queried
RDF graph.

We think that query languages for a semantically defined language like RDF should
be defined semantically. This ensures the correct interpretation of the queried database,
e.g., guaranteeing that querying two semantically equivalent graphs will yield the
same result in the sense that the application of the variable assignments to the graph
patterns would return equivalent sets of graphs. This also preserves the opportunity
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to extend this language beyond what can be defined through simple maps or even
homomorphisms, e.g., querying modulo an OWL ontology.

Hence, we ground the definition of answers to a (P)SPARQL query on conse-
quence, i.e., we show that a GRDF graph G contains an answer σ to a (P/G)RDF
graph H if and only if G entails σ(H).

In this section we first define SPARQL semantically, i.e., we characterize SPARQL
answers with regard to entailment. Theorem 1 shows that this definition is conform
to the classical definition of SPARQL. As a benefit, this provides a standard way to
extend SPARQL – by changing the entailment relation – and to define new query
evaluation mechanisms – by proving them sound and complete with regard to the
definition. This is what we will do in Section 5.

The basic building blocks of SPARQL queries are graph patterns which are shared
by all SPARQL query forms. Informally, a graph pattern can be a triple pattern,
i.e., a GRDF triple, a basic graph pattern, i.e., a GRDF graph, the union of graph
patterns, an optional graph pattern, or a constraint (cf. [56] for more details).

Definition 10 (SPARQL graph pattern) A SPARQL graph pattern is defined in-
ductively in the following way:

– every GRDF graph is a SPARQL graph pattern;
– if P , P ′ are SPARQL graph patterns and R is a SPARQL constraint, then (P
AND P ′), (P UNION P ′), (P OPT P ′), and (P FILTER R) are SPARQL graph
patterns.

Our proposal is based upon extending these graph patterns, and leaving the re-
mainder of the query forms unchanged. So, we illustrate our extension using the
SELECT query form 1 . For a complete version of SPARQL, the reader is referred
to the SPARQL specification [56] or to [54,55] for formal semantics of SPARQL.

A SPARQL SELECT query is of the form SELECT ~B FROM u WHERE P where
u is the URL of an RDF graph G, P is a SPARQL graph pattern and ~B is a tu-
ple of variables appearing in P . Intuitively, an answer to a SPARQL query is an
instantiation σ of the variables of ~B by terms of the RDF graph G.

Such an instantiation, called a variable assignment, is a map from a set of variables
to terms. Any homomorphism is a map too (the converse is not true). Hence, we
can define operations on maps that will be used for maps, assignments and homo-
morphisms.

1 SPARQL provides several result forms that can be used for formating the query results.
For example, CONSTRUCT that can be used for building an RDF graph from the set of
answers, ASK that returns TRUE if there is a answer to a given query and FALSE otherwise,
and DESCRIBE that can be used for describing a resource RDF graph.
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Operations on maps. If µ is a map, then the domain of µ, denoted by dom(µ),
is the subset of T where µ is defined. The restriction of µ to a set of terms X is
defined by µ|X = {〈x, y〉 ∈ µ| x ∈ X} and the completion of µ to a set of terms X
is defined by µ|X = µ ∪ {〈x, null〉| x ∈ X and x /∈ dom(µ)}.

If P is a graph pattern, then µ(P ) is the graph pattern obtained by the substitution
of µ(b) to each variable b ∈ B(P ). Two maps µ1 and µ2 are compatible when ∀x ∈
dom(µ1)∩dom(µ2), µ1(x) = µ2(x). If µ1 and µ2 are two compatible maps, then we
denote by µ = µ1⊕ µ2 : T1 ∪ T2 → T the map defined by: ∀x ∈ T1, µ(x) = µ1(x)
and ∀x ∈ T2, µ(x) = µ2(x). Analogously to [54] we define the join of two sets of
maps Ω1 and Ω2 as follows:

– (join) Ω1 1 Ω2 = {µ1 ⊕ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible};
– (difference) Ω1 \ Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, µ1 and µ2 are not compatible}.

[55] defines different semantics for the join operation when the maps contain null

value, and their effects in the answers are outlined.

Definition 11 (Answers to a SPARQL graph pattern) Let P be a SPARQL graph
pattern and G be an RDF graph. The set S(P,G) of answers to P in G is defined
inductively in the following way:

S(P,G) = {σ|B(P )| G |= σ(P )} if P is a GRDF graph (1)
S((P AND P ′), G) = S(P,G) 1 S(P ′, G) (2)
S(P UNION P ′, G) = S(P,G) ∪ S(P ′, G) (3)
S(P OPT P ′, G) = (S(P,G) 1 S(P ′, G)) ∪ (S(P,G) \ S(P ′, G)) (4)

S(P FILTER R,G) = {σ ∈ S(P,G) | σ(R) = >} (5)

As usual for this kind of query languages, an answer to a query is an assignment of
distinguished variables (those variables in the SELECT part of the query). Such an
assignment is a map from variables in the query to nodes of the graph. The defined
answers may assign only one part of the variables, those sufficient to prove entail-
ment. The answers are these assignments extended to all distinguished variables.

Definition 12 (Answers to a SPARQL query) LetQ =SELECT ~B FROM u WHERE
P be a SPARQL query, G be the RDF graph identified by the URL u, and S(P,G)
is the set of answers to P in G, then the answers to the query Q are the restriction
and completion to ~B of answers to P in G, i.e., ANS(Q) = {σ| ~B~B| σ ∈ S(P,G)}.

From Theorem 1, this definition corresponds to the definition given in [54]:

Consequence 1 (Answers to SPARQL graph patterns and homomorphisms) Let
P be a GRDF graph and G be an RDF graph. The set S(P,G) of answers to P in
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G is

S(P,G) = {π|B(P ) | π is an RDF homomorphism from P into G}

Example 6 Consider the following SPARQL query Q:

SELECT ?name ?mbox

FROM < http : //example.org/index1.ttl >
WHERE {P OPT {(?b2, foaf:mbox, ?mbox)}}

such that P is the GRDF graph of Fig. 3, and the RDF graph identified by the
uriref of the FROM clause is the graph G of Fig. 4. We construct the answer to the
query by taking the join of homomorphism Q into G and the homomorphism from
the optional triple into G; i.e., the homomorphisms from Q into G, e.g., the homo-
morphism π1 of Example 5, and the homomorphisms from P into G that cannot be
extended to include the optional triple, e.g., the homomorphism π2 of Example 5.
There are therefore two answers to the query:

?name ?mbox

"Deema" null

"Natasha" "natasha@example.org"

Hence, what we have done so far is only to provide a semantic definition of answers
to SPARQL queries (through Definition 11 and 12) and to show that this definition
exactly corresponds to the original SPARQL definition (though Consequence 1).
We have gained two benefits in doing this:

– Finding an RDF homomorphism is now one way to find SPARQL answers which
is complete and correct; other ways may be designed.

– Extensions of SPARQL can be defined semantically and the proposed evaluation
strategies, like finding a particular kind of homomorphism, can be compared with
this definition. So extensions can be defined in the same way as SPARQL.

This is what we will do in the next sections.

SPARQL complexity. To evaluate the complexity of SPARQL, we consider the
decision problem which consists of checking if a given assignment is an answer
and is called SPARQL QUERY EVALUATION:

SPARQL QUERY EVALUATION [54]
Instance: an RDF graph G, a graph pattern P and an assignment σ.
Question: Is σ ∈ S(P,G)?

SPARQL QUERY EVALUATION is shown to be PSPACE-complete for SPARQL graph
patterns [54]. Restricting the graph pattern constructs to the AND, FILTER and
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UNION operators makes it NP-complete. This problem is equivalent to that of
checking the existence of a solution.

3.2 Regular expression patterns for path queries

Regular expressions are the usual way for expressing path queries [27,28,21,2,31,46].
Informally, the set of answers to a path query R over a database graph G is the set
of all pairs of nodes in G connected by a directed path such that the concatenation
of the labels of the arcs along the path forms a word that belongs to the language
denoted by R.

3.2.1 Languages and regular expression patterns

Let Σ be an alphabet. A language over Σ is a subset of Σ∗: its elements are se-
quences of elements of Σ called words. A (non empty) word (a1, . . . , ak) is denoted
by a1 · . . . ·ak. If A = a1 · . . . ·ak et B = b1 · . . . ·bq are two words over Σ, then A ·B
is the word over Σ defined by A ·B = a1 · . . . · ak · b1 · . . . · bq. Regular expressions
can be used for defining languages over Σ.

Definition 13 (Regular expression) Let Σ be an alphabet, the setR(Σ) of regular
expressions is inductively defined by:

– ∀a ∈ Σ, a ∈ R(Σ) and !a ∈ R(Σ);
– ε ∈ R(Σ);
– If A ∈ R(Σ) and B ∈ R(Σ) then A|B, A ·B, A∗, A+ ∈ R(Σ).

such that !a is the complement of a over Σ, A|B denotes the disjunction of A and
B, A ·B the concatenation of A and B, A∗ the Kleene closure, and A+ the positive
closure.

We have restricted regular expressions to atomic negation in order to have a rea-
sonable time complexity in the query language that we are building. However, the
semantics, soundness and completeness results as well as the algorithms defined
throughout this paper still work with non-atomic regular expressions [12].

Introduction of variables. More general forms of regular expressions are the ones
that include variables, we call them regular expression patterns. Their combined
power and simplicity contribute to their wide use in different fields. For example,
in [31], in which they are called universal regular expressions, they are used for
compiler optimizations. In [46], they are called parametric regular expressions, and
are used for program analysis and model checking. The use of variables in regular
expression patterns is different from the use of variables in Unix (“regular expres-
sions with back referencing” in [4]). A variable appearing in a regular expression
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pattern matches any symbol of the alphabet or any variable, while a variable in
regular expressions with back referencing can match strings. Matching strings with
regular expressions with back referencing has been shown to be NP-complete [4].

Definition 14 (Regular expression pattern) Let Σ be an alphabet, X be a set of
variables, the setR(Σ, X) of regular expression patterns is inductively defined by:

– ∀a ∈ Σ, a ∈ R(Σ, X) and !a ∈ R(Σ, X);
– ∀x ∈ X , x ∈ R(Σ, X);
– ε ∈ R(Σ, X);
– If A ∈ R(Σ, X) and B ∈ R(Σ, X) then A|B, A ·B, A∗, A+ ∈ R(Σ, X).

The language generated by a regular expression pattern R, denoted by L∗(R), is
given in the following definition.

Definition 15 (Language defined by a regular expression pattern) Let Σ be an
alphabet, X be a set of variables, and R,R′ ∈ R(Σ, X) be regular expression
patterns. L∗(R) is the set of words of (Σ ∪X)∗ defined by:

L∗(ε) = {ε};
L∗(a) = {a};
L∗(!a) = Σ \ {a};
L∗(x) = Σ ∪X;

L∗(R | R′) = {w | w ∈ L∗(R) ∪ L∗(R′)};
L∗(R ·R′) = {w · w′ | w ∈ L∗(R) and w′ ∈ L∗(R′)};
L∗(R+) = {w1 · . . . · wk |∀i ∈ [1 . . . k], wi ∈ L∗(R)};
L∗(R∗) = {ε} ∪ L∗(R+).

With regard to a more traditional definition of the language generated by a regular
expression, our definition ranges over Σ ∪ X . This is necessary because variables
may match variables in GRDF graphs.

3.2.2 Paths in graphs and languages

Informally, a pair of nodes 〈x, y〉 in a given graph satisfies a language L∗(R) if there
exists a directed path from x to y in the graph such that the word obtained from the
concatenation of arc labels along the path is in L∗(R). We define this notion more
precisely. First we define the notion of a path in a graph and the word associated to
this path.

Definition 16 (Path in a directed graph) Let G = 〈N,E, γ, λ〉 be a directed la-
beled graph, let x and y be two nodes of N , a path from x to y is a non-empty list
of arcs (a1, . . . , ak) of E such that γ1(a1) = x, γ2(ak) = y , and for all 1 ≤ i < k,
γ2(ai) = γ1(ai+1).

14



Definition 17 (Word associated to a path) Let G = 〈N,E, γ, λ〉 be a labeled di-
rected graph, whose arcs are labeled over an alphabet Σ ∪ X , the word λ(P ) =
λ(a1) · . . . · λ(ak) over (Σ ∪X)∗ is associated to the path P = (a1, . . . , ak) of G.

Then, we establish when a path satisfies a regular expression patterns as defined
above.

Definition 18 (Satisfaction of a regular expression pattern) LetG = 〈N,E, γ, λ〉
be a directed labeled graph where the arcs are labeled by elements of an alphabet
Σ andX a set of variables, a pair 〈x, y〉 of nodes ofG satisfies a regular expression
pattern over Σ and X , if one of the following conditions is satisfied:

– ε ∈ L∗(R) and x = y; or
– there exists a path P from x to y in G and a map µ from Σ∪X to term(G) such

that λ(P ) ∈ L∗(µ(R)).

The definition involves a map µ which ensures that variables which are matched
against several arcs in the path – because of multiple occurrences in the regular ex-
pression pattern or because of repetitions like in x+ – match the same label (pred-
icate or variable) in G. In fact, the same definition without the introduction of µ
would treat variables in regular expression patterns as wildcards, i.e., each occur-
rence of a variable would behave independently of the other ones, e.g., x · a · x
would behave exactly like x · a · y. Our definition of regular expression patterns is
thus more powerful than regular expression with wildcards which is more powerful
than simple regular expressions.

3.2.3 Regular expression patterns as queries

Let G be an RDF graph, and R be a regular expression pattern over Σ and X . An
answer to R in G is a triple (x, y, µ) (where x et y are two nodes and µ is a map
from terms of R to terms of G) such that there exists a path P from x to y and a
word w ∈ L∗(R) with λ(P ) = µ(w).

Example 7 Consider the RDF graph G of Fig. 4, and the regular expression pat-
ternR = (ex:son|ex:daughter)+·?b5. Intuitively, this regular expression pattern
encodes the paths from the entity x to the entity y such that y has a relation, by any
predicate, with a descendant of x. The answers to R are:

{〈ex:c1, ex:c3,{〈?b5, ex:son〉}〉,
〈ex:c1, ex:Person1,{〈?b5, ex:friend〉}〉,
〈ex:c1, ex:Person2,{〈?b5, ex:friend〉}〉,
〈ex:c1, ex:Person3,{〈?b5, ex:friend〉}〉}
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The decision problem for the satisfiability of regular expression patterns is defined
as follows:

PATH SATISFIABILITY [61]
Instance: a directed labeled graph G, two nodes x, y of G, and a regular expression
pattern R ∈ R(Σ, X), where Σ ⊇ V(G).
Question: Is there a map µ from Σ∪X to term(G) such that the pair 〈x, y〉 satisfies
L∗(µ(R))?

We have established the complexity results for two classes of regular expression
patterns. First, when paths are reduced to regular expressions, they satisfiability
can be checked efficiently.

Proposition 1 PATH SATISFIABILITY in which X = ∅ (R ∈ R is a regular ex-
pression that does not contain variables) can be decided in NLOGSPACE in G and
R.

Then, when paths contain variables, checking satisfiability requires to find a map
from the regular expression pattern to the graph. This increases complexity.

Proposition 2 PATH SATISFIABILITY is in NP.

3.3 Discussion

We have presented in this section the SPARQL query language and we have pro-
vided its semantics with regard to RDF entailment. We have also presented regular
expression patterns. Although regular expression patterns can easily capture infor-
mation along paths in a graph (they are good for graph traversals), they are not
powerful enough as a query language for RDF and for processing queried informa-
tion. Furthermore, both approaches are incomparable, i.e., there are some queries
that can be expressed by one approach and cannot be expressed by the other (cf.
Section 1).

In order to benefit from the query capabilities of both query frameworks, we will
extend SPARQL with regular expression patterns. To that extent, we will replace
the graph patterns of SPARQL queries with graph patterns embedding regular ex-
pression patterns that we call Path RDF graphs or simply PRDF graphs. This will
require extending RDF syntax, semantics, and the inference mechanism used for
SPARQL, i.e., RDF homomorphism, with path semantics as we will see in the fol-
lowing section.
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4 Path RDF graphs: syntax, semantics, and inference mechanism

PRDF graphs are GRDF graphs where predicates in the triples are regular expres-
sion patterns constructed over the set of urirefs and the set of variables. We extend
the RDF semantics to take into account these constructs. Section 4.1 presents its
abstract syntax, and its semantics is presented in Section 4.2. Section 4.3 presents
an inference mechanism for checking if a PRDF graph is a consequence of a GRDF
graph. This mechanism will be used for calculating the set of answers to a PRDF
graph over a GRDF graph when using PRDF graphs for constructing PSPARQL
graph patterns.

4.1 PRDF syntax

Since arcs in GRDF graphs are labeled by the elements of U ∪ B, path queries will
be defined by regular expression patterns over U and B.

We denote by Path RDF, or PRDF, the extension to GRDF with regular expression
patterns used in the predicate position of PRDF triples.

Definition 19 (PRDF graph) A PRDF triple is an element of T × R(U ,B) × T .
A PRDF graph is a set of PRDF triples.

All PRDF graphs with atomic predicates are not necessarily RDF graphs, but they
are GRDF graphs [41]. A PRDF graph can be represented graphically in the same
way as a GRDF graph in which arcs can be labeled by elements ofR(U ,B).

Notations Let R be a regular expression patterns, u ∈ U(R) if u ∈ U and U is the
smallest set such that R ∈ R(U,B). In the same way, b ∈ B(R) if b ∈ B and B is
the smallest set such thatR ∈ R(U , B). LetG be a PRDF graph, pred(G) is the set
of regular expression patterns appearing as a predicate in a triple of G. Let UB(R)
= U(R) ∪ B(R), ∀R ∈ pred(G). Then term(G) = subj(G) ∪ UB(R) ∪ obj(G).

For example, the graph P of Fig. 5 searches among any related one to Faisal’s
descendants, the names and email addresses of people who know Faisal.

4.2 PRDF semantics: interpretations and models

Since the terminology of RDF is the one used for PRDF, RDF interpretations re-
main unchanged in the case of PRDF. However, an RDF interpretation has specific
conditions to be a model for a PRDF graph. These conditions are the transposition
of the classical path semantics within the RDF semantics.
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Definition 20 (Support of a regular expression pattern) Let I = 〈IR, IP, IEXT , IS, IL〉
be an interpretation of a vocabulary V = U ∪L, I ′ be an extension of I to B ⊆ B,
and R ∈ R(U,B), a pair 〈x, y〉 of (IR× IR) supports R in I ′ if and only if one of
the two following conditions is satisfied:

(i) the empty word ε ∈ L∗(R) and x = y;
(ii) there exists a word of length n ≥ 1 w = w1 · . . . · wn where w ∈ L∗(R) and

wi ∈ U ∪B (1 ≤ i ≤ n), and a sequence of resources of IR x = r0, . . . , rn =
y such that 〈ri−1, ri〉 ∈ IEXT (I ′(wi)), 1 ≤ i ≤ n.

Instead of considering paths in RDF graphs, Definition 20 considers paths in the
interpretations of PRDF graphs, i.e., paths are now relating resources. This defini-
tion is the semantic substitute for the satisfaction of a regular expression pattern by
two nodes (Definition 18). It has the same function: ensuring that variables have
only one image. This is achieved by the “extension to variables” (I ′) which plays
the same role as µ in Definition 18.

It is used in the following definition of PRDF models in which it replaces the direct
correspondences that exists in RDF between a relation and its interpretation (see
Definition 5), by a correspondence between a regular expression pattern and a se-
quence of relation interpretations. This allows to match regular expression patterns,
e.g., r+, with variable length paths.

Definition 21 (Model of a PRDF graph) Let G be a PRDF graph, and I = 〈IR,
IP, IEXT , IS, IL〉 be an interpretation of a vocabulary V ⊇ V(G). I is a PRDF
model of G if and only if there exists an extension I ′ of I to B(G) such that for
every triple 〈s, R, o〉 ∈ G, 〈I ′(s), I ′(o)〉 supports R in I ′.

This definition extends the definition of RDF models (Definition 5), and they are
equivalent when all regular expression patterns R are reduced to atomic terms, i.e.,
urirefs or variables. Moreover, GRDF graphs are PRDF graphs with the regular
expression patterns used to label the arcs restricted to atomic regular expression
patterns.

Proposition 3 If G is a PRDF graph with pred(G) ⊆ U ∪ B, i.e., G is a GRDF
graph, and I be an interpretation of a vocabulary V ⊇ V(G), then I is an RDF
model of G (Definition 5) iff I is a PRDF model of G (Definition 21).

Complexity of PRDF-GRDF entailment. We associate the following decision
problems to the entailment between PRDF graphs.

PRDF ENTAILMENT

Instance: a PRDF graph G and a PRDF graph H .
Question: Does G |=PRDF H?
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We have studied independently the PRDF ENTAILMENT problem [8] which is useful
if one wants to consider query containment for instance. For the purpose of defining
a query language, we will only deal with the simpler PRDF-GRDF ENTAILMENT

problem:

PRDF-GRDF ENTAILMENT

Instance: a GRDF graph G and a PRDF graph H .
Question: Does G |=PRDF H?

This problem is at least NP-hard, since it contains SIMPLE RDF ENTAILMENT, an
NP-complete problem. However, when the entailed graph, i.e., the query, is ground,
this problem can be decided in NLOGSPACE.

Theorem 2 Let G be a GRDF graph and H be a ground PRDF graph, then PRDF-
GRDF ENTAILMENT is in NLOGSPACE.

The following section shows the complexity of the latter problem through the
equivalence between PRDF-GRDF ENTAILMENT and PRDF-GRDF HOMOMORPHISM.

4.3 PRDF homomorphisms

In order to answer queries, it is necessary to find homomorphisms between PRDF
graph patterns and the database. We consider that the database is made of simple
GRDF graphs, so we only investigate homomorphisms between PRDF graphs and
GRDF graphs.

This section presents a restriction of PRDF homomorphism for checking if a PRDF
graph is a consequence of an RDF graph. It extends RDF homomorphisms to deal
with nodes connected with regular expression patterns, that can be mapped to nodes
connected by paths. PRDF homomorphism will then be used for answering PRDF
graphs over RDF graphs.

Definition 22 (PRDF homomorphism) Let G be a GRDF graph, and H be a
PRDF graph. A PRDF homomorphism from H into G is a map π from term(H)
into term(G) such that: ∀〈s, R, o〉 ∈ H , either

(i) the empty word ε ∈ L∗(R) and π(s) = π(o); or
(ii) ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = π(s), nk = π(o), and

p1 · . . . · pk ∈ L∗(π(R)).

Definition 22 is equivalent to ∀〈s, R, o〉 ∈ H , 〈π(s), π(o)〉 satisfies π(R) inG (Def-
inition 18). This means that we can reformulate the definition using Definition 18.
If R is a regular expression pattern, then π(R) is the regular expression pattern
obtained by substituting π(x) to each atom x in R. Also (thanks to Definition 8),
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π(x) = x where x ∈ U : no mapping is needed in that case.

Example 8 Fig. 5 shows a PRDF homomorphism from the PRDF graph P into the
RDF graph G. Note that the path satisfying the regular expression pattern of P is
one of those given in Example 7.

ex:c3

ex:Person2 ex:c2 ex:Person3

ex:Person1 ex:c1

?person?mbox

?name ?b1

"Deema"

"Sara"

"Faisal"

"sara@example.org"

"Natasha" "natasha@example.org"

"Faisal"

foaf:name ex:son
ex:fri

end foaf:mbox

ex:friend
foaf:namefoaf:knows

ex:friend

ex:daughter foaf:knows

foaf:knows foaf:name

foaf:name foaf:mbox

G

P
foaf:knows

foaf:mbox

foaf:name (ex:son | ex:daughter)
+ ·?b5

foaf:name

Fig. 5. A PRDF homomorphism from a PRDF graph to a GRDF graph represented in
dashed lines.

The existence of a PRDF homomorphism is exactly what is needed for deciding
entailment between GRDF and PRDF graphs:

Theorem 3 Let G be a GRDF graph, and H be a PRDF graph, then there is a
PRDF homomorphism from H into G iff G |=PRDF H .

This result, which proof is in appendix, shows that, as for RDF, there is an equiva-
lence between PRDF homomorphisms and entailment of a PRDF graph by a GRDF
graph. So, testing the entailment between PRDF graphs and RDF graphs, can be re-
duced to the PRDF-GRDF HOMOMORPHISM problem.

PRDF-GRDF HOMOMORPHISM

Instance: a PRDF graph H and a GRDF graph G.
Question: Is there a PRDF homomorphism from H into G?

Since any solution can be checked by checking as many times as there are edges in
the query an instance of the PATH SATISFIABILITY problem, the problem is subject
to its satisfaction checking. Since PATH SATISFIABILITY is in NP and PRDF-GRDF

HOMOMORPHISM contains RDF HOMOMORPHISM which is equivalent to SIMPLE

RDF ENTAILMENT, an NP-complete problem, then PRDF-GRDF HOMOMORPHISM

is NP-complete.
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The next section presents how this framework is used to extend the SPARQL query
language, and Section 6 presents algorithms for enumerating the answers to such
queries, i.e., computing PRDF homomorphisms.

5 The PSPARQL query language

We have defined, in the previous section, the syntax and the semantics of PRDF,
where regular expression patterns can be used in the predicate position of PRDF
graphs. The PSPARQL query language is built on top of PRDF in the same way
that SPARQL is built on top of RDF. Section 5.1 presents the syntax of PSPARQL.
Section 5.2 defines the answer to a given PSPARQL query following the frame-
work of [54], as well as an evaluation algorithm. Finally, Section 5.3 presents the
complexity study of evaluating PSPARQL graph patterns.

5.1 PSPARQL syntax

PSPARQL graph patterns are built on top of PRDF in the same way that SPARQL
graph patterns are built on top of RDF, by building on basic graph patterns which
are here PRDF graphs instead of GRDF graphs.

Definition 23 (PSPARQL graph patterns) A PSPARQL graph pattern is defined
inductively in the following way:

– every PRDF graph is a PSPARQL graph pattern;
– if P , P ′ are PSPARQL graph patterns and R is a SPARQL constraint, then (P
AND P ′), (P UNION P ′), (P OPT P ′), and (P FILTER R) are PSPARQL graph
patterns.

Example 9 The following PSPARQL graph pattern P

{ { ex:Paris (ex:train|ex:plane)+ ?City . }
{

{ ?City ex:capitalOf ?Country . }
UNION

{ ?City ex:populationSize ?Population .
FILTER (?Population > 200000)

}
}

}

consists of the following basic graph patterns, i.e., PRDF graphs, and constraint:

P = (P1 AND (P2 UNION (P3 FILTER R))), where

P1 = { ex:Paris (ex:train|ex:plane)+ ?City . } that finds cities reachable
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from Paris by a sequence of trains or planes;
P2 = { ?City ex:capitalOf ?Country . } that finds capital cities together with
their countries;
P3 = { ?City ex:populationSize ?Population . } that finds cities and their
population size;
R = Filter (?Population > 20000) is a constraint that restricts the values
of the variable ?Population to be greater than 200000.

PSPARQL query. A PSPARQL query is of the form SELECT ~B FROM u WHERE
P . The only difference with a SPARQL query is that, this time, P is a PSPARQL
graph pattern, i.e., a PRDF graph. The use of variables in PRDF regular expression
patterns is a generalization of the use of variables as predicates in the basic graph
patterns of SPARQL.

As PSPARQL introduces PRDF graph patterns, we give in Table 1 the necessary
modifications to the SPARQL grammar [56] in the extended Backus-Naur form,
where the production rule [21’] replaces [21] in SPARQL, and all other rules are
added to SPARQL grammar to have a complete grammar for PSPARQL (see also
psparql.inrialpes.fr).

Example 10 The following PSPARQL query:

SELECT ?First
WHERE { (?First) rdf:rest*.rdf:first "X" . }

searches the first element of a collection (a list) containing an element "X". For
instance, if queried against an RDF graph reduced to the list ["A""B""X""C"], it
will return the answers {〈?First, "A"〉, 〈?First, "B"〉, 〈?First, "X"〉}. How-
ever, if we use + instead of *, then "X" is not an answer.

5.2 Evaluating PSPARQL queries

As in the case of GRDF, the answer to a query reduced to a PRDF graph is also
given by an assignment to distinguished variables. The definition of an answer to
a PSPARQL query will thus be identical to that given for SPARQL in Section 3.1
(but it will use PRDF entailment).

Definition 24 (Answers to a PSPARQL graph pattern) Let P be a PSPARQL graph
pattern and G be an RDF graph, the set S(P,G) of answers to P in G is defined
inductively in the following way:

– if P is a PRDF graph, S(P,G) = {σ|B(P )| G |=PRDF σ(P )};
– (2,3,4,5) are the rules used to define answers to SPARQL graph patterns of Def-

inition 11.
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[21’] 〈TriplesBlock〉 ::= 〈PathTriples1〉

| (‘.’ 〈PathTriples1〉?)*

[30.1] 〈PathTriples1〉 ::= 〈V arOrTerm〉 〈PathPropLNE〉

| 〈PathTripleNode〉 〈PathPropL〉

[31.1] 〈PathPropL〉 ::= 〈PathPropLNE〉?

[32.1] 〈PathPropLNE〉 ::= 〈PathV erb〉 〈PathObL〉 (‘;’ 〈PathPropL〉)?

[33.1] 〈PathObL〉 ::= 〈PathGraphNode〉 (‘,’ 〈PathObL〉)?

[34.1] 〈PathV erb〉 ::= 〈RegularExp〉

[35.1] 〈PathTripleNode〉 ::= 〈PathCollection〉

| 〈PathBNodePropL〉

[36.1] 〈PathBNodePropL〉 ::= ‘[’ 〈PathPropLNE〉 ‘]’

[37.1] 〈PathCollection〉 ::= ‘(’ 〈PathGraphNode〉+ ‘)’

[38.1] 〈PathGraphNode〉 ::= 〈V arOrTerm〉

| 〈PathTripleNode〉

[39.1] 〈RegularExp〉 ::= 〈Rexp〉 ((‘|’ | ‘·’) 〈Rexp〉)*

[39.2] 〈Rexp〉 ::= (‘+’ | ‘*’)? 〈Atom〉

[39.3] 〈Atom〉 ::= ‘!’ 〈IRIref〉

| 〈V arOrIRIref〉

| ‘(’ 〈RegularExp〉 ‘)’

Table 1
PSPARQL graph pattern grammar.

The answers to a PSPARQL query are defined from the answers to PSPARQL graph
patterns, exactly like answers to a SPARQL query in Definition 12.

As a consequence of Theorem 3, PSPARQL answers can be computed through
PRDF homomorphisms because they corresponds to PRDF-GRDF ENTAILMENT.

Consequence 2 (Answers to PSPARQL graph patterns and PRDF homomorphisms)
Let P be a PRDF graph and G be an RDF graph, the set S(P,G) of answers to P
in G is

S(P,G) = {π|B(P )| π is a PRDF homomorphism from P into G}

This means that it is possible to obtain answers to PSARQL queries by computing
PRDF homomorphisms.
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Example 11 According to Consequence 2, the set of answers to the PSPARQL
graph pattern P of Example 9 in a given RDF graph G is defined as:

P = (S(P1, G) 1 (S(P2, G) ∪ ({σ ∈ S(P3, G) | σ(R) = >})))

In words, the set of maps, i.e., PRDF homomorphisms, from P1 into G joined with
the union of that from P2 into G and those from P3 into G that satisfy the constraint
R.

Example 12 The following PSPARQL query that uses the graph pattern P of Ex-
ample 9:

SELECT ?City
WHERE { P }
ORDER BY Asc(?City)

returns in an ascending order the set of cities reachable from Paris by a sequence of
trains and planes, which are either capital cities or have a population size greater
than 200000.

5.3 PSPARQL complexity

We define the PSPARQL QUERY EVALUATION decision problems for PSPARQL in
the same way as for SPARQL. This problem depends on calculating PRDF homo-
morphisms, and hence it is parametrized by the PRDF HOMOMORPHISM problem.

PSPARQL QUERY EVALUATION

Instance: an RDF graph G, a PSPARQL graph pattern P and a assignment σ.
Question: Is σ ∈ S(P,G)?

We have studied the PSPARQL QUERY EVALUATION problem for basic graph pat-
terns. We have first considered ground graph patterns, which is reduced to checking
if a given map is a PRDF homomorphism. So there is no need to seek such a map,
and the REGULAR PATH problem is considered in this case (see Appendix). Theo-
rem 4 shows that PSPARQL QUERY EVALUATION for ground basic graph patterns
is no more difficult than REGULAR PATH (defined in Appendix).

Theorem 4 PSPARQL QUERY EVALUATION is in NLOGSPACE for ground basic
graph patterns and NP-complete for basic graph patterns.

The complexity of PSPARQL QUERY EVALUATION for basic graph patterns is thus
the same as SPARQL QUERY EVALUATION for basic graph patterns [36]. Since
PSPARQL queries are the same as SPARQL queries with the difference of the kind
of basic graph patterns and since PSPARQL QUERY EVALUATION for PRDF graphs
is in NP, our extension does not increase the worst case complexity of SPARQL,
i.e., PSPACE-complete [54].

24



6 Answering PSPARQL queries: algorithms for PRDF homomorphism

To answer a PSPARQL query Q involving PRDF graphs as basic graph patterns,
mandates to enumerate all PRDF homomorphisms from the graph pattern(s) of Q
into the data RDF graph of Q. So, we are interested in an algorithm which, given a
PRDF graph H and an RDF graph G, answers the following problems:

(1) Is there a PRDF homomorphism from H into G? (PRDF-GRDF HOMOMOR-
PHISM)

(2) Exhibit, if it exists, a PRDF homomorphism from H into G.
(3) Enumerate all PRDF homomorphisms from H into G.

Two possible methods can be used for solving these problems: a method based on
evaluating the PRDF graph triple-by-triple is presented in Section 6.1; a backtrack-
ing method based on the standard backtrack techniques is presented in Section 6.2.

6.1 Triple-by-triple evaluation

One possible method to enumerate all PRDF homomorphisms from a given PRDF
graph H into an RDF graph G is to evaluate the graph H triple-by-triple and take
the join of the intermediate results. This method is similar to the edge-by-edge
evaluation method presented in [28].

[46,31] present the algorithm Reach(G,R, s, µi) (see also Appendix B), where G
is a graph (for us, an RDF graph),R is a regular expression patterns, and s is a node
of G. This algorithm calculates the set of triples 〈s, o, µ〉, where o is a node of G
and µ is a map from terms of R into terms of G such that there exists a path P from
s to o in G and a word w ∈ L∗(R) with λ(P ) = µ(w) and µi is compatible with µ.

TheReach(G,R, s, µi) algorithm is used by the algorithmEvaluate (Algorithm 1),
which, given an RDF graph G and a PRDF triple 〈x,R, y〉, calculates the set of
maps µ such that 〈µ(x), µ(y)〉 satisfies R in G with the map µ (it is said that µ
satisfies 〈x,R, y〉 in G).

The results of the algorithm Evaluate are used to calculate the PRDF homomor-
phisms of a PRDF graph P into an RDF graph G by successive joins in the algo-
rithm Eval (Algorithm 2), whose initial call will be Eval(P,G, {µ∅}), where µ∅ is
the map with the empty domain.

The Eval algorithm is given for evaluating PRDF graphs, and can be extended
to evaluate PSPARQL graph patterns following the Eval algorithm for evaluating
SPARQL graph patterns [54].
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Algorithm 1. Evaluate(t, G).
Data: An RDF graph G, a PRDF triple t = (x,R, y).
Result: The set of maps µ satisfying t in G.
if x ∈ U then
SG(t)← Reach(G,R, x, ∅);

else
SG(t)← ⋃

s∈GReach(G,R, s, {〈x, s〉});
end if
if y ∈ B then
SG(t)← {(s, y, µ) ∈ SG(t)};

else
SG(t) ← {(s, o, µ′) | (s, o, µ) ∈ SG(t), (µ, (y ← o)) are compatible, and
µ′ ← µ⊕ {(y ← o)}}

end if
return {µ | (s, o, µ) ∈ SG(t)};

Algorithm 2. Eval(P,G,Ω).
Data: An RDF graph G, a set of maps, a PRDF graph P .
Result: The set of PRDF homomorphisms from P into G}.
if P = {t} then

return Ω 1 Evaluate(t, G);
SG(t)← Reach(G,R, x, ∅);

else if P = (t ∪ P ′) then
return Eval({t}, G,Eval(P ′, G,Ω));

end if

Algorithmic time complexity. TheReach algorithm has worst-case time complex-
ity O(|G| × |Ri| × maps × (predicateSize + vars(Ri))) (the notations used in
Table 2 are reformulated from [46] and adapted to our problem). Now, for each
triple 〈x,Ri, y〉 in P , the Reach algorithm is called by the Evaluate algorithm
once if x is a constant, i.e., a uriref or a literal if it is allowed in the subject po-
sition; otherwise it is called for each node in G multiplied by the number of vari-
ables in P in the subject position. So, the Evaluate algorithm has overall worst-
case time complexityO((varss(P )× subj(G) + consts(P ))× |G| × |Ri| ×maps
×(predicateSize + vars(Ri))), where varss(P ) (respectively, consts(P )) is the
number of variables (respectively, constants) appearing in the subject position in a
triple of P .

This result shows an exponential complexity with respect to the number of vari-
ables in the regular expression patterns of the PRDF graph representing the query
(O(pred(G)vars(R)))). However, the size of the query, and in particular, the number
of variables is usually considered very small with regards to the knowledge base.
Hence, the number of variables in each regular expression pattern can be assumed
a constant. With this assumption, the data complexity, which is defined as the com-
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Name Meaning

vars the number of variables.

predicateSize the maximum predicate size appearing in G or as a term in R.

maps the number of possible maps from variables and variables of R into

terms of G that match some path in G with some path in R; the

worst case is pred(G)vars(R).
Table 2
Notations for complexity analysis

plexity of query evaluation for a fixed query [60], is O(|G|2), i.e., not much worse
than the one of SPARQL [54].

Though the above method is correct and complete, it is not efficient, in particular,
for testing the existence of a PRDF homomorphism which is sufficient for check-
ing if a PRDF graph is a consequence of an RDF graph. Using this method, we
need to perform the join operation for all PRDF triples to have the set of PRDF ho-
momorphism, while we need to test the existence of one PRDF homomorphisms.
Consider the PRDF graph P and the RDF graph of Fig. 6. To test if there exists a
PRDF homomorphism from P into G, we need to solve PATH SATISFIABILITY N2

times for the regular expression pattern R in P , where N is the number of nodes
of G. However, we need to solve PATH SATISFIABILITY only once as it appears in
Fig. 6. More precisely, since the extremities of the regular expression R are vari-
ables (namely, ?b6 and ?b7), we need to check for each pair of nodes 〈x, y〉 of G
if they satisfy R in G while, in this example, ?b6 and ?b7 can be only mapped to
ex:c1 and ex:c2, respectively. In such a case, it is sufficient to determine whether
the pair 〈ex:c1, ex:c2〉 satisfies R in G.

ex:Grenoble ex:c1
. . .

. . .

. . .

ex:c2 ex:Amman

ex:Grenoble ?b6 ?b7 ex:Amman P

G
ex:train ex:bus

ex:train R ex:bus

Fig. 6. A case in which the path closure method is not efficient.

The next section presents a backtracking algorithm for calculating the set of PRDF
homomorphisms from PRDF graph into an RDF graph. This algorithm has the same
worst-case time as the triple-by-triple method, but it is more efficient in practice
since in some cases there is no need to traverse all the backtrack tree to find the first
PRDF homomorphism.
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Algorithm 3. Extendhomomorphism(H,G, partialProj).
Data: a PRDF graph H , an RDF graph G, and a partial map partialProj

from term(H) to term(G).
Result: extends the partial map to a set of PRDF homomorphisms.
if complete(partialProj) then

return solution-Found(partialProj);
end if
x← chooseTerm(nodes(H));
for each 〈y, θ〉 ∈ candidates(partialProj, x,G) do
Extendhomomorphism(H,G, partialProj 1 {〈x, y〉} 1 θ);

end for

6.2 A backtrack algorithm for calculating PRDF homomorphisms

An alternative method for evaluating PSPARQL graph patterns, i.e., enumerating
all PRDF homomorphisms from the PRDF graph of a given PSPARQL query into
the data graph, is based on a backtracking technique that generates each possible
map from the current one by traversing the parse tree in a depth-first manner and
using the intermediate results to avoid unnecessary computations.

Algorithm 3 is a simple recursive version of the basic Backtrack algorithm [34]. The
input of this algorithm is: a PRDF graph, an RDF graph, and a partial map, denoted
by partialProj. partialProj includes a set of pairs {〈xi, yi〉} such that xi is a
term of H , i.e., xi ∈ term(H), and yi is the image of xi in G, i.e., yi ∈ term(G).

The other parts of the algorithm perform as follows (see [10] for a full description
of the algorithm):

complete(partialProj) checks if each term x ∈ nodes(H) is mapped to a term
in G. It returns TRUE if all x ∈ nodes(H) are mapped, and FALSE otherwise.

chooseTerm(nodes(H)) chooses a term x ∈ nodes(H).
candidates(partialProj, x,G) calculates all possible candidate images in G for

the current term x satisfying the partial map partialProj. It returns all sets of
pairs 〈y, θ〉 such that y is a possible image of x, and θ is the possible map from the
terms of each regular expression pattern Ri appearing in a triple with x and one
of the terms in nodes(H) already mapped in partialProj. That is, if there is no
term in nodes(H) involved in a triple with x, then the possible candidate images
of x are all y in nodes(G) such that x can be mapped to y (cf. the definition
of mapping Definition 8). Otherwise, there exists a set of terms z1, . . . , zk ∈
nodes(H) involved in a triple with x, which are already mapped in partialProj.
In this case, image(zi) and y satisfies θ(Ri), where Ri is the regular expression
pattern appearing in the predicate position of the triple between zi and x. The
order in which the two nodes image(zi) and y satisfy θ(Ri) depends on the
order in which x and zi appear in the triple, that is, if the triple is 〈zi, Ri, x〉 then
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ex:Grenoble ex:Genève

ex:Lyon ex:Paris ex:Amman

ex:train

ex:plane

ex:train ex:train

ex:train

ex:train

ex:plane

ex:plane

(a) An RDF graph with cycles.

0 1

?Trip

?Trip

(b) A NDFA of
(?Trip)+.

Fig. 7. An RDF graph and a NDFA.

〈image(zi), y〉 satisfies θ(Ri) in G, otherwise 〈y, image(zi)〉 satisfies θ(Ri) in
G. θ maps the terms appearing in the regular expression patterns of H into the
terms appearing along the paths in G with respect to partialProj, that is, θ is a
possible map such that θ and partialProj are compatible.

Then the algorithm takes each candidate y of the current term x ∈ nodes(H)
and the possible map θ, put y in the image(x), and tries to generate the possi-
ble candidates of y with the current map partialProj 1 {〈x, y〉} 1 θ (note that
partialProj, {〈x, y〉} and θ are compatible, since the set 〈y, θ〉 is calculated with
respect to partialProj). This is done recursively in a depth-first manner through
the call of Extendhomomorphism(H,G, partialProj 1 {〈x, y〉} 1 θ). At the
end of the algorithm, we have a tree that contains one level with a term from H ,
i.e., a node from H , and one level with the possible images of that term in G. The
input to each node of each level is the current map. Each possible path in the tree
from the root to a leaf labeled by a term of G represents a possible PRDF homo-
morphism.

If we call Extendhomomorphism(H,G, partialProj∅) where partialProj∅ de-
notes the empty map, then at the end of the algorithm we have all PRDF homomor-
phisms from the PRDF graph H into the RDF graph G.

Proposition 4 Algorithm 3 is correct and complete for enumerating all PRDF ho-
momorphisms from a given PRDF graph into an RDF graph.

This can be proved inductively because, at the beginning, the set of all homomor-
phisms is complete for the empty set, and at each step the partial homomorphism,
i.e., partialProj, are completely extended for the current node if Algorithm 4 [46]
is complete, and the number of nodes being finite. The procedure ends having a
homomorphic image for each node in H .

In our case, we do not need to enumerate all paths but instead we search the exis-
tence of paths satisfying (C)PRDF homomorphisms.

Example 13 Consider the following PSPARQL query:

SELECT ?Trip
WHERE { ex:Paris (?Trip)+ ex:Paris . }
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and the RDF graph of Fig. 7(a). As it is shown in this graph, there are several cy-
cles (going through Amman and Genève) that can generate an infinite number of
paths. For example, considering non-simple paths, we can generate:
{〈ex:Paris, ex:plane, ex:Amman, ex:plane, ex:Paris〉}
{〈ex:Paris, ex:plane, ex:Amman, ex:plane, ex:Paris, ex:plane,

ex:Amman, ex:plane, ex:Paris〉}
etc.

To overcome this problem, i.e., to cut cycles, our evaluation algorithm calculates
all possible finite maps (or homomorphisms in the case of (C)PRDF graphs).

To this end, we can go from Paris with a state 0 of the automata correspond-
ing to the regular expression (see Fig. 7(b)) to Amman with a state 1 and a map
{〈?Trip,ex:plane〉}, then we can return to Paris since the state is different from
the first visit to Paris (with a state 1). A possible answer therefore is:

?Trip→ {〈ex:plane〉}

A second answer is to go from Paris to Genève through Grenoble, and then Paris
with a map {〈?Trip,ex:train〉} (we can take Paris since the map is different
from the first answer):

?Trip→ {〈ex:train〉}

Now, we can also go from Paris to Genève, through Grenoble, Lyon and then Paris.
However, this path is not explored since Paris is already visited with the same map
and state (second answer). Similarly, when we arrive at Genève or Amman for the
second time, we cut the cycles since they are already visited with the same map
and/or state.

For illustrating non-simple paths, consider the following PSPARQL query:

SELECT ?City
WHERE { ex:Paris (ex:train.ex:plane)+ ?City . }

In simple paths, nodes must not be visited more than once. If we consider simple
paths in this example, then we cannot retrieve Amman since we cannot go through
the path Paris, Genève, Grenoble, Paris, and then Amman (Paris has been visited
twice).
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7 Implementation and experiments

We have implemented in Java a PSPARQL query evaluator 2 . It is provided with
two parsers: one for parsing PSPARQL queries based upon the syntax of PSPARQL,
and the second one for parsing RDF graphs (documents) written in the Turtle lan-
guage [17].

The algorithm follows the backtrack technique presented before and the evaluation
of regular expression patterns generalizes those of [46]. They are used for calculat-
ing the satisfiability set of a given regular expression pattern, to take into account
the multiple appearances of a given variable in different places of the query, i.e., to
take into account the current mappings.

This evaluator successfully passed all test cases designed by DAWG (Data Access
Working Group) for the SPARQL query language 3 except the ones that concern
the DESCRIBE query format. In addition, the evaluator can parse PRDF graphs
and evaluate PSPARQL queries. It is currently being thoroughly tested for perfor-
mances and practical hard problem detection [10] as well as for the test suite 4 .

8 Related work

We divide related works in four areas: graph query languages with path expressions,
RDF structural query languages, extensions of SPARQL and work on defining RDF
query language semantics.

8.1 (Semi)-Structured Query Languages

Semi-structured data models [20,1] deal with data whose structure is irregular, im-
plicit, and partial, and with schema contained in the data.

Query languages for structured graph data models can be used for querying RDF
viewing RDF data as a graph that may contain transitive or repetitive patterns of
relations. Among them, G [27] and its extension G+ [28] are two languages for
querying structured databases. A simple G+ query has two elements, a query graph
that specifies the pattern to be matched and a summary graph that defines graphi-
cally how the answers are to be structured and then presented to the user

2 http://psparql.inrialpes.fr/
3 http://www.w3.org/2001/sw/DataAccess/tests/
4 http://www.w3.org/2001/sw/DataAccess/tests/r2
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Example 14 Given a graph that represents relations between people, the G+ query
of Fig. 8 finds pairs of people who share a common ancestor.

?person1

?person2

?ancestor ?person1 ?person2

(mother | father)+

(mother | father)+

Fig. 8. A G+ query to find common ancestor.

The left hand side of the bold arrow is the pattern to be matched in the knowledge
base while the right hand side is the summary graph.

Graphlog — a visual query language which has been proven equivalent to linear
Datalog [25] — extends G+ by combining it with the Datalog notation. It has been
designed for querying hypertext. A Graphlog query is only a graph pattern contain-
ing a distinguished edge or arc, i.e., it is a restructuring edge, which corresponds to
the summary graph in G+.

Example 15 Fig. 9 shows a Graphlog query: dashed lines represent edge labels
with the positive closure, a crossed dashed line represents a negated label, e.g.,
!descendant+ between ?person2 and ?person3, person is a unary predicate,
and finally a bold line represents a distinguished edge that must be labeled with a
positive label. The effects of this query is to find all instances of the pattern that
occur in the database, i.e., finding descendant of ?person1 which are not descen-
dant of ?person2. Then, for each one of them, define a virtual link represented by
the distinguished edge.

?person1

?person2

?person3

descendant+

descendant+

person

not-desc-of(?person2)

Fig. 9. A Graphlog query.

These query languages (namely G, G+ and Graphlog) support only graphical queries
similar to PRDF queries. In contrast to PRDF, they are limited to finding simple
paths (cycle-free paths). The main problem with finding only simple paths, is that
there are situations in which answers to such queries are all non simple, e.g., if the
only paths matching a regular expression pattern have cycles (see end of Exam-
ple 13 or the example of non-simple paths in [14]). In addition, the complexity of
finding simple paths problem is NP-complete even without variables in regular ex-
pressions [61]. Moreover, they do not provide complex functionalities, for example,
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for filtering, ordering, projection, union of graph patterns, optional graph patterns
and other useful features (see SPARQL features and examples below).

Lorel [2] is an OEM-based language for querying semi-structured documents. OEM
(Object Exchange Model) [53] is based on objects that have unique identifiers, and
property value that can be simple types or references to objects. However, labels in
the OEM model cannot occur in both nodes (objects) and edges (properties). Lorel
is a powerful query language which uses regular expression patterns for traversing
object hierarchy paths, restricted to simple path semantics (or acyclic paths; see
why this matters in Example 13). UnQL [21] is a language closely related to Lorel
for querying semi-structured data. It is based on a data model similar to OEM [22].
A particular aspect of the language is that it allows some form of restructuring even
for cyclic structures. A traverse construct allows one to transform a database graph
while traversing it, e.g., by replacing all labels A by the label A0. This powerful op-
eration combines tree rewriting techniques with some control obtained by a guided
traversal of the graph. For instance, one could specify that the replacement occurs
only if a particular edge is encountered on the way from the root. STRUQL [32],
a query language for a web-site management system, incorporates regular expres-
sions and has precisely the same expressive power as stratified linear Datalog.

As stated in [43], these query languages are not well suited for RDF because they
do not take into account its specific semantics. This is not a real problem for RDF
itself: the semantics being simple enough this roughly manifests only in the lack
of blank interpretation and the enforcing of strict typing constraints. However, this
prevents to extend further the query language towards ontology languages such as
RDFS or OWL.

8.2 RDF Query Languages

Several query languages have been proposed for RDF [37]. Most of them use a
query model based on relational algebra [24], where RDF graphs are viewed as
a collection of triples and the queries are triple-based formulas expressed over a
single relation. In spite of the benefits gained from the existing relational database
systems such as indexing mechanisms, underlying storage of triples as relations
[38], query optimization techniques, and others; relational queries cannot express
recursive relations and even the most simple form, the transitive closure of a relation
[6], directly inherited from the graph nature of RDF triples.

There are many real-world applications, inside and outside the domain of the se-
mantic web, requiring data representation that are inherently recursive. For that
reason, there has been several attempts to extend relational algebra to express com-
plex query modeling. Outside the domain of the semantic web, [3] extends the
relational algebra to represent transitive closure and [42] to represent query hier-
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archies. In the domain of RDF, some query languages such as RQL [43] attempt
to combine the relational algebra with some special class hierarchies. It supports a
form of transitive expressions over RDFS transitive properties, i.e., subPropertyOf
and subClassOf, for navigating through class and property hierarchies. Versa [52],
RxPath [58], PRDF [11,9] and [47] are all path-based query languages for RDF
that are well suited for graph traversal but do not support SQL-like functionalities.
WILBUR [45] is a toolkit that incorporates path expressions for navigation in RDF
graphs.

SQL-like query languages for RDF include SeRQL [19], RDQL [57] and its current
successor, the SPARQL recommendation [56].

In contrast to all the above mentioned languages, PSPARQL uses regular expres-
sion patterns, i.e., regular expressions with variables, and is not restricted to finding
simple paths. This provides polynomial classes of the satisfiability problem of reg-
ular expressions, e.g., when they do not contain variables. The originality of our
proposal lies in our adaptation of RDF model-theoretic semantics to take into ac-
count regular expression patterns, effectively combining the expressiveness of these
two languages. In addition, the integration of this combination on top of SPARQL
provides a wider range of querying paradigms than the above mentioned languages.

8.3 SPARQL extensions

Two extensions of SPARQL, which are closely similar to PSPARQL, have been
recently defined after our initial proposal [11]: SPARQLeR and SPARQ2L.

SPARQLeR [44] extends SPARQL by allowing query graph patterns involving path
variables. Each path variable is used to capture simple, i.e., acyclic, paths in RDF
graphs, and is matched against any arbitrary composition of RDF triples between
given two nodes. This extension offers good functionalities like testing the length
of paths and testing if a given node is in the found paths. Since SPARQLeR is not
defined with a formal semantics, its use of path variables in the subject position is
unclear, in particular, when they are not bound. Even when this is the case, multiple
uses of the same path variable is not fully defined: it is not specified which path is
to be returned or if the variable occurences have to match the same path.

SPARQ2L [14] also allows using path variables in graph patterns and offers good
features like constraints in nodes and edges, i.e., testing the presence or absence of
nodes and/or edges; constraints in paths, e.g., simple or non-simple paths, presence
of a pattern in a path. This extension is also not described semantically. One can
only try to guess what is the intuitive semantics of the constructs. It seems that
the algorithms are not complete with regard to their intuitive semantics, since the
set of answers can be infinite in absence of constraints for using shortest or acyclic
paths. Moreover, this extension is quite restricted: it does not allow using more than
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one triple pattern having a path variable. Relaxing this restriction requires adapting
radically the evaluation algorithm which otherwise is inoperative. This occurs due
to the compatibility function that does not take into account the use of the same
path variable in multiple triple patterns.

In both cases, the proposal adds expressivity to PSPARQL, in particular due to
the use of path variables. However, the lack of a clearly defined semantics raises
questions about what should be the returned answers and this does not allow to
assess the correctness and completeness of proposed procedures.

8.4 Work on SPARQL

[29] presents a relational model of SPARQL, in which relational algebra opera-
tors (join, left outer join, projection, selection, etc.) are used to model SPARQL
SELECT clauses. The authors propose a translation system between SPARQL and
SQL to make a correspondence between SPARQL queries and relational algebra
queries over a single relation. [38] presents an implementation of SPARQL queries
in a relational database engine, in which relational algebra operators similar to [3]
are used. [30] addresses the definition of mapping for SPARQL from a logical
point of view. [33], in which we can find a preliminary formalization of the seman-
tics of SPARQL, defines an answer set to a basic graph pattern query using partial
functions. The authors use high level operators (Join, Optional, etc.) from sets of
mappings to sets of mappings, but currently they do not have formal definitions for
them, stating only their types. [55] provides translations from SPARQL to Datalog
with negation as failure, some useful extensions of SPARQL, like set difference and
nested queries, are proposed. Finally, [54] presents the semantics of SPARQL using
traditional algebra, and gives complexity bounds for evaluating SPARQL queries.
The authors use the graph pattern facility to capture the core semantics and com-
plexities of the language, and discussed their benefits. We followed their framework
to define the answer set to PSPARQL queries.

9 Conclusion and future work

In this paper, we have extended SPARQL with regular expressions patterns allow-
ing path queries. In order to achieve this goal, we have provided an extension of
RDF graphs, called PRDF, in which regular expression patterns are used as pred-
icates. We provided the syntax and semantics of PRDF and proved the validity of
the homomorphism approach for finding entailment. Then PRDF graphs have been
used as graph patterns in SPARQL queries yielding the PSPARQL query language.
We have defined semantically SPARQL and shown that PSPARQL is an actual
extension of SPARQL replacing RDF entailment by PRDF entailment. We have
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shown that finding PRDF homomorphism is a sound and complete approach for
answering PSPARQL queries over RDF graphs and we have provided algorithms
for calculating these answers. Finally, we proved that the problem of PRDF-GRDF
entailment is NP-complete, as is RDF entailment, and thus answering PSPARQL
queries over RDF graphs, remains PSPACE-complete.

This work, because it is grounded on a semantic redefinition of SPARQL, is the
first stone on which further extensions can be safely built. Indeed, the semantic
definition of the query language allows to define simply new query languages ei-
ther by changing data and query languages or by changing the entailment regime
of the query language. The query answering procedure can also change and is not
restricted to simple homomorphisms. This approach is worth because regular ex-
pression patterns are not the only extension that could be considered for SPARQL.
We mention below some work that we have already done and other work that would
be worth pursuing.

We have shown here that using PRDF homomorphisms, which are more complex
than simple graph homomorphisms, works for PSPARQL. We have also investi-
gated various possible regular expression pattern generators [12] and considered
PRDF ENTAILMENT with regard to these generators [8,10]. We have also been able
to add constraints to PSPARQL in CPSPARQL [13]. However, for dealing with
queries against ρdf (a subset of RDFS introduced in [51]), we have found a pro-
cedure finding (C)PRDF homomorphisms between a transformed query and the
queried graph [10]. But when considering expressive ontology languages, allowing
the use of disjunction and negation in class definitions, the procedure will have to
go beyond homomorphisms.

Finally, PSPARQL itself has been extended with path variables following SPARQ2L
and SPARQLeR but providing a clear semantics for the path variables [13]. This
extension is implemented in the PSPARQL prototype.
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1

A Proofs

Theorem 1 Let G and H be two GRDF graphs, then G |=RDF H if and only if
there is an RDF homomorphism from H into G.

Proof. The proof of this theorem is an immediate consequence of the proof of
Theorem 3, since each GRDF graph is a PRDF graph. Moreover, any PRDF homo-
morphism between GRDF graphs is an RDF homomorphism and, by Proposition 3,
PRDF entailment applied to GRDF graphs is equivalent to RDF entailment.

2

Consequence 1 Let P be a GRDF graph and G be an RDF graph. The set S(P,G)
of answers to P in G is

S(P,G) = {π|B(P ) | π is an RDF homomorphism from P into G}

Proof. We must show that to each RDF homomorphism π corresponds an assign-
ment σ such that G |=RDF σ(P ) coinciding on B(P ) assignments and vice versa.

(⇒) Let G and P be two GRDF graphs and π be an RDF homomorphism from P
into G. We want to show that there exists an assignment σ from X ⊆ B to T (G)
such that G |=RDF σ(P ) and σ|B(P ) = π|B(P ).

Assume an RDF homomorphism π from P into G. Since, π preserves constants,
its application is equivalent to that of the assignment σ = π|B(P ). Then, there exists
the identity RDF homomorphism from σ(P ) into G, then, by Theorem 1, G |=RDF

σ(P ).

(⇐) Let G and P be two GRDF graphs and σ be an assignment from X ⊆ B
to T (G) such that G |=RDF σ(P ). We want to show that there exists an RDF
homomorphism π from P to G such that σ|B(P ) = π|B(P ).

Let σ : X −→ T (G) be an assignment such that G |=RDF σ(P ). According to
Theorem 1, there exists an RDF homomorphism π1 from σ(P ) intoG. Consider the
map π2 from P to σ(P ), such that if x ∈ dom(σ), then π2(x) = σ(x), otherwise,
π2(x) = x. It is clear that π2 is an RDF homomorphism from P into σ(P ) since
∀〈s, p, o〉 ∈ P , 〈π2(s), π2(p), π2(o)〉 ∈ σ(P ). Now, the map defined by π = π1 ◦ π2

is an RDF homomorphism from P into G.

2
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Proposition 1 PATH SATISFIABILITY in which X = ∅ (R ∈ R is a regular expres-
sion that does not contain variables) is in NLOGSPACE in G and R.

Proof. The labels of paths between x and y form a regular language Px,y [62]. So,
construct a non-deterministic finite automaton AG accepting the regular language
Px,y with initial state x and final state y (G can be transformed to an equivalent
NDFA in NLOGSPACE). Constructing a NDFA M accepting L∗(R), the language
generated by R, can be done in NLOGSPACE. Constructing the product automaton
P , that is, the intersection ofG andM , can be done in NLOGSPACE. Checking if the
pairs 〈x, y〉 satisfies L∗(R) is equivalent to checking whether L∗(P) is not empty,
and each of these operations can be done in NLOGSPACE in P [48,7] (with the
fact that the class of LOGSPACE transformations is closed under composition [16]).
An automaton for the intersection of L∗(R) with M is constructed by taking the
product of the automaton for the two languages. That is, the states of the product
automaton are of the form 〈s, u〉 such that s is a state of M and u is a node of G;
and there exists a transition on letter a (respectively, letter b) from a state 〈s, u〉 to
another state 〈t, v〉 if M has a transition on a (respectively, on letter !a 5 ) from s
to t and 〈u, a, v〉 ∈ G (respectively, 〈u, b, v〉 ∈ G and b 6= a). The construction is
similar to the one presented in [62] without atomic negation.

2

When regular expressions do not contain variables, there is no need to guess a map
and the problem is reduced to the following decision problem [48,7]:

REGULAR PATH [48]
Instance: a directed labeled graph G, two nodes x, y of G, a map µ, and a regular
expression pattern R ∈ R(U,B).
Question: Does the pair 〈x, y〉 satisfies L∗(µ(R))?

Proposition 2 PATH SATISFIABILITY is in NP.

Proof. PATH SATISFIABILITY is in NP, since each variable in the regular expression
pattern R can be mapped (assigned) to p terms, where p denotes the number of
terms appearing as predicates in G. If the number of variables in R is n, then there
are (pn) possible assignments (mappings) in all. Once an assignment of terms to
variables is fixed, the problem is reduced to PATH SATISFIABILITY (Σ ⊆ U), which
is in NLOGSPACE.

It follows that a non-deterministic algorithm needs to guess a map µ and check in
NLOGSPACE if the pair 〈x, y〉 satisfies L∗(µ(R)).

2

5 !a is an atomic negation, i.e., a negated uriref.
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Proposition 3 If G is a PRDF graph with pred(G) ⊆ U ∪ B, i.e., G is a GRDF
graph, and I be an interpretation of a vocabulary V ⊇ V(G), then I is an RDF
model of G (Definition 5) iff I is a PRDF model of G (Definition 21).

Proof. We prove both directions of the proposition.

(⇒) Assume that I is an RDF model of G, then there exists an extension I ′ of
I to B(G) such that ∀〈s, p, o〉 ∈ G, 〈I ′(s), I ′(o)〉 ∈ IEXT (I ′(p)) (Definition 5).
Since pred(G) ⊆ U ∪B, 〈I ′(s), I ′(o)〉 supports p in I ′ (Definition 20)(with a word
w = p), i.e., I is also a PRDF model (Definition 21).

(⇐) Assume that I is a PRDF model of G, then there exists an extension I ′ of I to
B(G) such that ∀〈s, p, o〉 ∈ G, 〈I ′(s), I ′(o)〉 supports p in I ′ (Definition 21). Since
pred(G) ⊆ U ∪ B, ε /∈ L∗(p). So there there exists a word of length = 1 where
w ∈ L∗(p), w = p, and a sequence of resources of IR I ′(s) = r0, I ′(o) = r1 such
that 〈r0, r1〉 ∈ IEXT (I ′(w)) (Definition 20). So ∀〈s, p, o〉 ∈ G, 〈I ′(s), I ′(o)〉 ∈
IEXT (I ′(p)) (by replacing r0 with I ′(s), r1 with I ′(o), and w with p). So I is also
an RDF model (Definition 5).

2

Theorem 2 Let G be a GRDF graph and H be a ground PRDF graph, then PRDF-
GRDF ENTAILMENT is in NLOGSPACE.

Proof. We prove first that the PRDF-GRDF HOMOMORPHISM problem is in NLOGSPACE.
If H is ground, for each node x in H , π(x) is determined in G. Then it remains to
verify independently, for each triple 〈s, R, o〉 in H , if 〈π(s), π(o)〉=〈s, o〉 satisfies
π(R) = R. Since each of these operations corresponds to the case of PATH SAT-
ISFIABILITY, in which Σ ⊆ U and X = ∅, the complexity of each of them is
NLOGSPACE (see Proposition 1) (Since H is ground, R does not contain variables).
So, the total time is also NLOGSPACE. Given the equivalence between PRDG-GRDF

ENTAILMENT and checking the existence of PRDF homomorphism (Theorem 3),
PRDF-GRDF ENTAILMENT is thus in NLOGSPACE.

2

Theorem 3 Let G be a GRDF graph, and H be a PRDF graph, then there is a
PRDF homomorphism from H into G iff G |=PRDF H .

We have proven Theorem 3 via a transformation to hypergraphs following the proof
framework in [15]. Since this requires a long introduction to hypergraphs, we prefer
here to give a simple direct proof to Theorem 3.

The following lemma (called satisfiability lemma) will be used to prove the theo-
rem. We prove it through the construction of the isomorphic model. A similar proof
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can be found in [40].

Lemma (Satisfiability lemma [40]) Each GRDF graph is satisfiable.

Proof. To each GRDF graph G we associate an interpretation of V(G), noted
ISO(G), called an isomorphic model of G. We prove that ISO(G) is a model
of G. It follows that every GRDF graph admits a model, so it is satisfiable.

(1) Construction of ISO(G).
To each term x ∈ term(G), we associate a distinct resource ι(x) (if x ∈ Lp,
ι(x) = x) :

(i) IR = {ι(x) | x ∈ term(G)}, note that ι is a bijection between term(G)
and IR;

(ii) IP = {ι(x) | x ∈ pred(G)};
(iii) ∀x ∈ U(G) ∪ Lt(G), I(x) = ι(x);
(iv) ∀p ∈ IP , IEXT (p) = {〈x, y〉 ∈ IR × IR | 〈ι−1(x), ι−1(p), ι−1(y)〉 ∈

G}.
(2) Let us prove that ISO(G) is a model of G.

(a) ISO(G) is an interpretation of V(G) (Definition 3).
(b) ι is an extension of ISO to B(G) (Definition 4).
(c) It remains to prove (Definition 5), that for all 〈s, p, o〉 ∈ G, 〈ι(s), ι(o)〉 ∈

IEXT (ι(p)). If 〈s, p, o〉 ∈ G, then ι(p) ∈ IP (1.ii). Then IEXT (ι(p)) =
{〈x, y〉 ∈ IR×IR | ∃s, o ∈ term(G) with ι(s) = x, ι(o) = y and 〈s, p, o〉 ∈
G} (1.iv), i.e., 〈ι(s), ι(o)〉 ∈ IEXT (ι(p)).

2

Proof. We prove both directions of Theorem 1.

(⇒) Assume that there exists a PRDF homomorphism π from H into G (π :
term(H)→ term(G)). We want to prove that G |=PRDF H , i.e., that every model
of G is a model of H . Consider the interpretation I of a vocabulary V = U ∪ L.

If I is a model of G, then there exists an extension I ′ of I to B(G) such that
∀〈s, p, o〉 ∈ G, 〈I ′(s), I ′(o)〉 ∈ IEXT (I ′(p)) (Definition 5). We want to prove that
I is also a model of H , i.e., that there exists an extension I ′′ of I to B(H) such that
∀〈s, R, o〉 ∈ H , 〈I ′′(s), I ′′(o)〉 supports R in I ′′.

Let I ′′ be the map defined by:

∀x ∈ T , I ′′(x) =

 (I ′ ◦ π)(x), if π is defined;

x, otherwise.
.

We show that I ′′ verifies the following properties:
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(1) I ′′ is an interpretation of V(H) (in particular, I ′′(x) = I(x), ∀x ∈ (V(H) ∩
nodes(H))) 6 .

(2) I ′′ is an extension to variables of H , i.e., ∀x ∈ V(H), I ′′(x) = I(x) (Defini-
tion 4).

(3) I ′′ satisfies the conditions of PRDF models (Definition 21), i.e., for every triple
〈s, R, o〉 ∈ H , the pair of resources 〈I ′′(s), I ′′(o)〉 supports R in I ′′.

Now, we prove the satisfaction of these properties:

(1) From the definition of I ′′, I ′′ interprets all x ∈ V(H). Moreover, since each
term x ∈ (V(H) ∩ nodes(H)) is mapped by π to a term x ∈ V(G) and
π(x) = x, I ′′(x) = I ′(x) = I(x).

(2) ∀x ∈ V(H), I ′′(x) = (I ′ ◦ π)(x) (definition of I ′′). Now, if π(x) is defined,
I ′′(x) = I ′(x) (since π(x) = x by Definition 22). Since I ′(x) = I(x) (∀x ∈
V(H), Definition 4), I ′′(x) = I(x). Otherwise, I ′′(x) = I ′(x) = I(x) (∀x ∈
V(H), definition of I ′′)

(3) It remains to prove that for every triple 〈s, R, o〉 ∈ H , the pair of resources
〈I ′′(π(s)), I ′′(π(o))〉 supports R in I ′′ (by Definition 20):

(i) If the empty word ε ∈ L∗(R) and π(s) = π(o) = y (y ∈ term(G),
Definition 22), then I ′′(s) = (I ′ ◦π)(s) = I ′(y), and I ′′(o) = (I ′ ◦π)(o)
= I ′(y). So I ′′(s) = I ′′(o) = I ′(y). Hence, 〈I ′′(s), I ′′(o)〉 supports R in
I ′′ (Definition 21).

(ii) If ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = π(s), nk =
π(o), and p1 · . . . · pk ∈ L∗(π(R)) (cf. Definition 22). It follows that
〈I ′(π(s)), I ′(n1)〉 ∈ IEXT (I ′(p1)), . . ., 〈I ′(nk−1), I

′(π(o))〉 ∈ IEXT (I ′

(pk)) (Definition 5). So the two resources 〈I ′(π(s)), I ′(π(o))〉 supports
π(R) in I ′. 〈I ′(π(s)), I ′(π(o))〉 supports π(R) in I ′′ (since I ′′ = (I ′ ◦π),
we have ∀x ∈ term(H), I ′′(x) = I ′(π(x)) and π(x) ∈ term(G). More-
over, we can choose every variable b appearing in H to be interpreted by
the resource of π(b)). Hence, 〈I ′′(s), I ′′(o)〉 supports R in I ′′ (since for
every word w ∈ π(R), w ∈ R).

(⇐) Assume that G |=PRDF H . We need to prove that there is a PRDF homomor-
phism from H into G. Every model of G is also a model of H . In particular, the
isomorphic model ISO = 〈IR,IP ,IEXT , IS , IL〉 of G, where there exists a bijec-
tion ι between term(G) and IR (cf. the satisfiability lemma). ι is an extension of
ISO to B(G) such that ∀〈s, p, o〉 ∈ G, 〈ι(s), ι(o)〉 ∈ IEXT (ι(p)) (Definition 5).
Since ISO is a model of H , there exists an extension I ′ of ISO to B(H) such
that ∀〈s, R, o〉, 〈I ′(s), I ′(o)〉 supports R in I ′ (Definition 21). Let us consider the
function π = (ι−1 ◦ I ′). To prove that π is a PRDF homomorphism from H into G,
we must prove that:

6 An interpretation can be a model of a PRDF graph H even if it does not interpret all
terms of H . This is due to the disjunction operator that occurs inside constrained regular
expressions.
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(1) π is a map from term(H) into term(G);
(2) ∀x ∈ V(H), π(x) = x;
(3) ∀〈s, R, o〉 ∈ H , either

(i) the empty word ε ∈ L∗(R) and π(s) = π(o); or
(ii) ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = π(s), nk = π(o),

and p1 · . . . · pk ∈ L∗(π(R)).

(1) Since I ′ is a map from term(H) into IR and ι−1 is a map from IR into
term(G), π = (ι−1 ◦ I ′) is clearly a map from term(H) into term(G)

(term(H)
I′−→ IR

ι−1

−→ term(G)).
(2) ∀x ∈ V(H), I ′(x) = ι(x) (Definition 4 and the satisfiability lemma. ∀x ∈
V(H), (ι−1 ◦ I ′)(x) = (ι−1 ◦ ι)(x) = x.

(3i) If ε ∈ L∗(R) and I ′(s) = I ′(o) = r ∈ IR (Definition 20), then π(s) = (ι−1 ◦
I ′)(s) = ι−1(r), and π(o) = (ι−1 ◦ I ′)(o) = ι−1(r). So π(s) =π(o)= ι−1(r).

(3ii) If there exists a word of length n ≥ 1 w = a1 · . . . · an where w ∈ L∗(R)
and ai ∈ U ∪ B(G) (1 ≤ i ≤ k), and there exists a sequence of resources
of IR I ′(s) = r0, . . . , rk = I ′(o) such that 〈ri−1, ri〉 ∈ IEXT (I ′(ai)), 1 ≤
i ≤ k (Definition 20). It follows that 〈ni−1, pi, ni〉 ∈ G with ni = ι−1(ri),
and pi = (ι−1 ◦ I ′)(ai) (construction of ISO(G), the satisfiability lemma). So
(ι−1 ◦ I ′)(s) = ι−1(r0) = n0, (ι−1 ◦ I ′)(o) = ι−1(rk) = nk, and p1 · . . . · pk ∈
L∗((ι−1 ◦ I ′)(R)).

2

Consequence 2 Let P be a PRDF graph and G be an RDF graph. The set S(P,G)
of answers to P in G is

S(P,G) = {π|B(P ) | π is a PRDF homomorphism from P into G}

Proof. The proof is exactly the same as that of Consequence 1 by replacing |=RDF

by |=PRDF , RDF homomorphisms by PRDF homomorphisms and Theorem 1 by
Theorem 3.

2

Theorem 4 PSPARQL QUERY EVALUATION is in NLOGSPACE for ground basic
graph patterns and NP-complete for basic graph patterns.

Proof. The first assertion (NLOGSPACE for ground PRDF graphs) follows directly
from Theorem 2. For the second assertion (NP-complete), when reduced to PRDF
graphs, PSPARQL QUERY EVALUATION is equivalent to PRDF-GRDF HOMOMOR-
PHISM (Definition 12). Indeed, PRDF-GRDF HOMOMORPHISM can be reduced to
PSPARQL QUERY EVALUATION with the empty SELECT clause ( ~B = ∅). In such a
case, PSPARQL QUERY EVALUATION is true when there exist a PRDF homomor-
phism between P and G. On the other way, PRDF-GRDF EVALUATION is reduced
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to PRDF-GRDF HOMOMORPHISM betweenG and σ(P ). Since PRDF-GRDF HOMO-
MORPHISM is NP-complete, then PSPARQL QUERY EVALUATION is NP-complete
for PRDF graphs.

2

B Reach algorithm

Algorithm 4 reuses the definition of matching two regular expression patterns found
in [46].

Matching. Let R1 and R2 be two regular expression patterns, then R2 matches R1

under the mapping µ, denoted by match(R2, R1, µ), if one of the following condi-
tions holds: (1) R1 = µ(R2); (2) R2 ∈ B and R2 /∈ dom(µ); (3) R1, R2 ∈ B
and (µ(R2) = R1 or R2 /∈ dom(µ)); (4) R2 = #; (5) R2 =!R3, and recur-
sively, R1 does not match R3; (6) R1 = (e1, . . . , ek), R2 = (a1, . . . , ak), and
recursively ei matches ai, ∀1 ≤ i ≤ k, where ei, ai are the atomic elements
of R1, R2, respectively. For example, the regular expression pattern (?z · ?y)
matches the regular expression pattern (ex:train · ex:plane) with the mapping
{〈?z, ex:train〉, 〈?y, ex:plane〉}.

Algorithm 4 uses a non deterministic finite automaton, denoted by NDFA, that
recognizes a language equivalent to a given regular expression pattern. It can be
constructed in the usual way (cf. [5]).
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Algorithm 4. Reach(G,R, v0, µi)
Construct the NDFA A = 〈S, s0, δ, F 〉 accepting L∗(R);
Eliminate ε-transitions from A;
R← {};
W ← {};
for 〈v0, el, v〉 ∈ G do

for 〈s0, tl, s〉 ∈ A do
if match(tl, el, µi) then
µ← {〈tl, el〉};
if µ and µi are compatible then
µ2 ← µ 1 µi;
W ← W ∪ {〈v, s, µ2〉};

end if
end if

end for
end for
while exists 〈v, s, µ〉 ∈ W do
R← R ∪ {〈v, s, µ〉};
W ← W − {〈v, s, µ〉};
for 〈v, el, v1〉 ∈ G do

for 〈s, tl, s1〉 ∈ A do
if match(tl, el, µ) then
µ1 ← {〈tl, el〉};
if µ and µ1 are compatible then
µ2 ← µ 1 µ1;
if 〈v1, s1, µ2〉 /∈ R then
W ← W ∪ {〈v1, s1, µ2〉};

end if
end if

end if
end for

end for
if s ∈ F then
S(G)← S(G) ∪ {〈v0, v, µ〉};

end if
end while
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