Evaluation Approaches

• **Industry outcome**
 - Add-on sales
 - Click-through rates

• **In research**
 - Offline: To anticipate the above beforehand
 • No actual users are involved and an existing dataset is split into a test and a training set
 • Using the ratings in the training set, predict the ratings in the test set
 • Predicted ratings are compared with ratings in the test set using different measures
 • In K-fold cross validation (a common cross validation technique), the data set is partitioned into K equal-sized subsets: one is retained and used as the test set, the other subsets are used as training set. This process is repeated K times, each time with a different test set.
 - Online: User satisfaction
Evaluation Metrics

• Accuracy Metrics
 – measure how well a user’s ratings can be reproduced by the recommender system, and also how well a user’s ranked list is predicted
 – 3 kinds of accuracy metrics
 • Predictive
 • Classification
 • Rank

• Other metrics:
 – Coverage, Confidence, Diversity, Novelty and Serendipity
Predictive Metrics

- measure to what extent a recommender system can predict ratings of users.
- useful for systems that display the predicted ratings to their users.
- \[MAE = \frac{1}{|B_i|} \sum_{b_k \in B_i} |r_i(b_k) - p_i(b_k)| \]

\[
MAE = \frac{|0|+|1|+|3|+|0|+|-2| + |0| + |2|}{7} = 1.143
\]

<table>
<thead>
<tr>
<th>Item</th>
<th>User</th>
<th>RS</th>
<th>User</th>
<th>RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Classification Metrics

• measure to what extent a RS is able to correctly classify items as interesting or not.
• Ignores rating difference

• *Precision*: \#good items recommended/\#recommendations
 – measures proportion of recommended items that are good

• *Recall*: \#good items/\#all good items
 – measures proportion of all good items recommended
Rank Metrics
DCG, nDCG for list comparison

- A measure of effectiveness of a web search engine algorithm or related applications
- DCG measures the usefulness, or gain, of a document based on its position in the result list
- Two assumptions are made in using DCG:
 - Highly relevant documents are more useful when appearing earlier in a search engine result list (have higher ranks)
 - Highly relevant documents are more useful than marginally relevant documents, which are in turn more useful than irrelevant documents.
- DCG originates from an earlier, more primitive, measure called Cumulative Gain.
Cumulative Gain: CG

It is the sum of the graded relevance values of all results in a search result list.

The CG at a particular rank position p is defined as:
where rel_i is the graded relevance of the result at position i.

$$CG_p = \sum_{i=1}^{p} rel_i$$
CG Example

\[D_1, D_2, D_3, D_4, D_5, D_6 \]
the user provides the following relevance scores:
\[3, 2, 3, 0, 1, 2 \]
\[CG_p = \sum_{i=1}^{p} rel_i = 3 + 2 + 3 + 0 + 1 + 2 = 11 \]

does not account for document ordering.
Discounted Cumulative Gain: DCG

DCG is that highly relevant documents appearing lower in a search result list should be penalized as the graded relevance value is reduced logarithmically proportional to the position of the result. The discounted CG accumulated at a particular rank position is defined as:

\[\text{DCG}_p = \text{rel}_1 + \sum_{i=2}^{p} \frac{\text{rel}_i}{\log_2(i)} \]

No theoretical justification for using a logarithmic reduction factor other than it produces a smooth reduction.
An alternative formulation of DCG places stronger emphasis on retrieving relevant documents:

\[\text{DCG}_p = \sum_{i=1}^{p} \frac{2^{\text{rel}_i} - 1}{\log_2(i + 1)} \]
DCG Example

The user provides the following relevance scores:

\[3, 2, 3, 0, 1, 2\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(rel_i)</th>
<th>(\log_2 i)</th>
<th>(\frac{rel_i}{\log_2 i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.585</td>
<td>1.892</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2.322</td>
<td>0.431</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2.584</td>
<td>0.774</td>
</tr>
</tbody>
</table>

So the \(DCG_6\) of this ranking is:

\[
DCG_6 = rel_1 + \sum_{i=2}^{6} \frac{rel_i}{\log_2 i} = 3 + (2 + 1.892 + 2 + 0.431 + 0.774) = 8.10
\]
Search result lists vary in length depending on the query.

Comparing a search engine's performance from one query to the next cannot be consistently achieved using DCG alone.

The cumulative gain at each position for a chosen value of should be normalized across queries.

Ideal DCG (IDCG) at position is obtained by sorting documents of a result list by relevance, producing the maximum possible DCG till position \(p \).
D_1, D_2, D_3, D_4, D_5, D_6
the user provides the following relevance scores:
3, 2, 3, 0, 1, 2

3, 3, 2, 2, 1, 0
The DCG of this ideal ordering, or \textit{IDCG}, is then:
\[
\text{IDCG}_6 = 8.69
\]
And so the nDCG for this query is given as:
\[
n\text{DCG}_6 = \frac{DCG_6}{\text{IDCG}_6} = \frac{8.10}{8.69} = 0.932
\]
Online Evaluation: User Studies

- Traditionally small-scale controlled experiments: at best 50 subjects
- Large-scale controlled experiments using crowdsourcing such as Amazon Mechanical Turk
Mechanical Turk Summary

• Provide a “crowd-sourcing” marketplace where
 – requesters (i.e., individuals or institutions who have tasks to be completed)
 – workers (i.e., individuals who can perform the tasks in exchange for monetary reward) can come together.

• A platform where the tasks (i.e. HITs) are
 – hosted and executed, money is transferred securely
 – the reputation of workers and requesters is tracked

• The simplest HIT often presented as
 – a web form, where the worker answers the questions on the form
 – AMT transmits the answers to the requester for further analysis

• The requester can also specify certain criteria that a worker must satisfy in order to perform the task.

• A single user can be limited to perform at most x HITs from each group, ensuring user diversity