RDF and ontologies

Here are the 8 triples of an RDF graph G about writers and their works: (all identifiers correspond in fact to URIs, $_:b$ is a blank node):

\[
\begin{align*}
(d: Poe, o:wrote, d: TheGoldBug) & \quad (d: Baudelaire, o:translated, d: TheGoldBug) \\
(d: Poe, o:wrote, d: TheRaven) & \quad (d: Mallarmé, o:translated, d: TheRaven) \\
(d: TheRaven, rdf:type, o: Poem) & \quad (d: Mallarmé, o:wrote, _:b) \\
(_:b, rdf:type, o: Poem) & \quad (d: TheGoldBug, rdf:type, o: Novel)
\end{align*}
\]

1. Draw an RDF graph corresponding to these statements
2. Express in English the meaning of these statements.

Consider the RDFS ontology o containing, in addition to those of G, the following statements:

\[
\begin{align*}
(o: Novel, rdfs:subClassOf, o: Literature) \\
(o: Poem, rdfs:subClassOf, o: Literature) \\
(o: translated, rdfs:range, o: Literature) \\
(o: wrote, rdfs:domain, o: Writer)
\end{align*}
\]

3. Does this allow to conclude that $d: Poe$, $d: Baudelaire$ or $d: Mallarmé$ is a $o: Writer$? Explain why.
4. Can you express in OWL the statement that “anyone who write Literature is a Writer”?

SPARQL query containment

Consider the following queries q_1 and q_2 on the RDF graph of the previous exercise:

- $q_1 = \text{SELECT } ?w \text{ FROM } G \text{ WHERE } ((?w o:wrote ?x) \text{ AND } (?x rdf:type o:Poem)) \text{ UNION } (?w o:translated ?x)$;
- $q_2 = \text{SELECT } ?w \text{ FROM } G \text{ WHERE } ((?w o:wrote ?l) \text{ UNION } (?w o:translated ?l)) \text{ AND } (?l rdf:type o:Poem)$.

5. In the course, we defined the distinguished variables \vec{B}, the queried graph G and the query pattern P. Identify them in q_1 and q_2.
6. Provide the answers of q_1 and q_2 with respect to the graph G.

Query containment \(q \sqsubseteq q' \) between two queries \(q = \text{SELECT } \vec{B} \text{ FROM } G \text{ WHERE } P \) and \(q' = \text{SELECT } \vec{B} \text{ FROM } G \text{ WHERE } P' \) is defined by the fact that for any RDF graph, the answers to \(q \) are included in those to \(q' \) \((\forall G, \mathcal{A}(\vec{B}, G, P) \subseteq \mathcal{A}(\vec{B}, G, P')) \).

7. What does the answer to the previous questions tell you about query containment between \(q_1 \) and \(q_2 \)?

8. Do you think that query containment holds in some direction between \(q_1 \) and \(q_2 \) (either \(q_1 \sqsubseteq q_2 \) or \(q_2 \sqsubseteq q_1 \))?

9. Provide a proof for this. This may be done semantically by using the interpretation of query patterns or syntactically by translating queries into logic and showing that the query containment statement is a theorem.

Query modulo ontology

We now consider the ontology \(o \) and the following queries:

- \(q_3 = \text{SELECT } ?y \text{ FROM } o \text{ WHERE } \langle ?x, o:\text{translated}, ?y \rangle \);
- \(q_4 = \text{SELECT } ?y \text{ FROM } o \text{ WHERE } \langle ?y, \text{rdf:type}, o:\text{Literature} \rangle. \)

10. Do you think that query containment holds in some direction between \(q_3 \) and \(q_4 \) (either \(q_3 \sqsubseteq q_4 \) or \(q_4 \sqsubseteq q_3 \))? Tell why.

11. Can you provide a definition for query containment modulo an ontology \(o \) \((q \sqsubseteq_o q') \)?

12. Does it return different answers for \(q_3 \) and \(q_4 \) (either \(q_3 \sqsubseteq_o q_4 \) or \(q_4 \sqsubseteq_o q_3 \))? Tell why.

Network of ontologies

We now consider an ontology \(o' \) which defines the class \(\text{op:Buch} \) and contains the following statements:

\[\langle d:\text{Baudelaire}, o:\text{translated}, d:\text{Confessions} \rangle \langle d:\text{DeQuincey}, o:\text{wrote}, d:\text{Confessions} \rangle \]

and \(o'' \) which defines the class \(\text{opp:Roman} \) and contain the following statements:

\[\langle d:\text{Confessions}, \text{rdf:type}, \text{opp:Roman} \rangle \langle d:\text{Musset}, o:\text{translated}, d:\text{Confessions} \rangle \]

They are related together by the following three alignments:

- \(A_{o,o'} = \{ \langle o:\text{Literature}, \equiv, \text{op:Buch} \rangle \} \)
- \(A_{o',o''} = \{ \langle \text{op:Buch}, \subseteq, \text{opp:Roman} \rangle \} \)
- \(A_{o'',o} = \{ \langle \text{opp:Roman}, \equiv, o:\text{Novel} \rangle \} \)

So that we have a network of ontology \(\{ \langle o, o', o'' \rangle, \{ A_{o,o'}, A_{o',o''}, A_{o'',o} \} \} \).

13. Do you think that this network of ontologies is well designed? Why?

15. Provide the constraints that the alignments impose on models.

16. What does this entail for the class \(\text{rdf:type} \) of \(d:\text{Confessions} \) and \(d:\text{TheRaven} \) at \(o \) in this network?