RDF assertions

Consider the four graphs of Figure 1.

1. Are they all valid RDF graphs? Why?
 Graph (b) is not a valid RDF graph because a literal, “La peste” is the subject of a relation (rdf:type).

2. Express the graph of Figure 1(a) as a set of triples.
 - ?x foaf:name "Albert".
 - ?x m:aecrit ?l.
 - ?l rdf:type m:Roman.
 - ?l dc:title "La peste".

You will list the sets of literals, URIRefs and variables (or blanks) found in this graph.

Literal: “Albert”, “La peste”
URIRefs: foaf:name, m:aecrit, m:Roman, rdf:type, dc:title
Variables: ?x, ?l

3. Give an informal meaning of this graph or its expression in the predicate calculus
 Some entity named “Albert” has written a Novel titled “La peste”.

 \[\exists x, \exists l, \text{name}(x, “Albert”) \land \text{aecrit}(x, l) \land \text{Roman}(l) \land \text{title}(l, “La peste”) \]

4. Consider the RDF graphs of Figure 1 which are well-formed, do some of them entail others?

 \((a) \models (d) \) and \((d) \models (a) \)

 Explain why.

 Since (a) is a strict subgraph of (d), then it is obvious that (d) \models (a).

 For the opposite direction, it is sufficient to see that the node labeled by ?y in (d) can be projected to
the node labeled $?l$ in (a) while projecting the other nodes to those nodes bearing the same label. This projection preserves all the edges of the graph and it is complete, then (a) $\models (d)$.

In predicate calculus, this is:

$$\exists x, \exists l, \text{name}(x, "Albert") \land \text{aecrit}(x, l) \land \text{Roman}(l) \land \text{title}(l, "La peste")$$

is equivalent to:

$$\exists x, \exists l, \text{name}(x, "Albert") \land \text{aecrit}(x, l) \land \text{Roman}(l) \land \text{title}(l, "La peste") \land \exists y, \text{aecrit}(x, y)$$

which is equivalent to:

$$\exists x, \exists l, \exists y, \text{name}(x, "Albert") \land \text{aecrit}(x, l) \land \text{Roman}(l) \land \text{title}(l, "La peste") \land \text{aecrit}(x, y)$$

OWL ontologies

5. Describe in OWL (RDF or XML/RDF) the ontology containing the following assertions:

- All authors are persons;
- A book (m:Livre) has exactly one year of publication (m:annee);
- A novel (m:Roman) is a book (m:Livre) and a book is a work (m:Oeuvre);
- The title (dc:title) of a work is a character string (xsd:string);
- The relation "a écrit" (m:aecrit) relates an author to a work.

```xml
<owl:Class rdf:about="#Auteur">
  <owl:subClassOf rdf:resource="#Personne"/>
</owl:Class>
```
6. If one associates the graph (a) of Figure 1 and the ontology resulting from the previous question, is it possible to deduce the type (rdf:type) of ?x?

\[?x \text{ rdf:type } m:\text{Auteur}. \]

Can you semantically justify how?

\[I(aecrit) \subseteq I(\text{Auteur}) \times I(\text{Oeuvre}) \]
\[(I(?x), I(?l)) \in I(aecrit) \]

\[\text{hence} \]
\[I(?x) \in I(\text{Auteur}) \]

\[\text{thus: } ?x \text{ rdf:type Auteur} \]

What else can be deduced?

Figure 2: OWL ontologies.

```
<owl:Class rdf:about="#Oeuvre">
  <owl:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="dc:title"/>
      <owl:datatype>&xsd;string</owl:datatype>
    </owl:Restriction>
  </owl:subClassOf>
</owl:Class>

<owl:Class rdf:about="#Livre">
  <owl:subClassOf rdf:resource="#Oeuvre"/>
  <owl:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#annee"/>
      <owl:cardinality>1</owl:cardinality>
    </owl:Restriction>
  </owl:subClassOf>
</owl:Class>

<owl:Class rdf:about="#Roman">
  <owl:subClassOf rdf:resource="#Livre"/>
</owl:Class>

<owl:ObjectProperty rdf:about="#aecrit">
  <rdfs:domain rdf:resource="#Auteur"/>
  <rdfs:range rdf:resource="#Oeuvre"/>
</owl:ObjectProperty>

which corresponds to the diagram of Figure 2.
```
7. Does the use of this ontology for defining the graphs of Figure 1 would change something to the answer to Question 4? What?
Yes: \((a) \models (c)\) because \(?1 \text{ rdf:type m:Roman } \models ?1 \text{ rdf:type m:Livre}\) and \((d) \models (c)\) because \((d) \models (a)\).

SPARQL queries

Given the following SPARQL query:

```
SELECT ?t
PREFIX foaf: http://xmlns.com/foaf/0.1/
m: http://mydomain.com/myExample#
dc: http://purl.org/dc/elements/1.1/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
WHERE
?x foaf:name "Albert".
?r rdf:type rdf:Property.
?l rdf:type m:Roman.
```

8. What is the informal meaning of this query?

Find all titles (dc:title) of novels (m:Roman) related (?r) to an entity (?x) whose name (foaf:name) is “Albert”.

9. Draw the RDF graph corresponding to the graph patterns of the query.

It is given in Figure 3.

10. What is the difference between such graph patterns and simple RDF graphs?

These graph patterns are generalised RDF graphs: they can contain blanks or variables as edge labels (or as properties in RDF triple terms).

11. Evaluate this query on each of the well-founded graphs of Figure 1 and provide the answer:

\[(a) : \{\{"La peste"\}\}\]
\[(c) : \{\}\] *(?l is a book (Livre) but not a novel (Roman))*
\[(d) : \{\{"La peste"\}\}\]

12. What must be added to this query for returning the year of publication of the m:Roman if it is available?

An optional clause:

```
SELECT ?t ?y
...
OPTIONAL { ?l m:annee ?y. }
```
Semantic peer-to-peer system

Given a peer-to-peer system with peers \(n_1 \), \(n_2 \) and \(n_3 \) all related to each others. Peers \(n_1 \) and \(n_2 \) share the ontology \(o \) that has been defined at Question 5, \(n_3 \) uses the ontology \(o' \) defining:

\[
\begin{align*}
\text{t:Work} & \text{ rdf:type owl:Class.} \\
\text{t:copyrightHolder} & \text{ rdf:type rdf:Property.} \\
\text{t:year} & \text{ rdf:type rdf:Property.} \\
\text{t:year} & \text{ rdfs:domain t:Work.} \\
\text{t:year} & \text{ rdfs:range xsd:integer.}
\end{align*}
\]

There exists an alignment \(A \) between \(o \) and \(o' \) containing two correspondences: \(\text{t:Work} \geq \text{m:Livre}, \text{t:year} \equiv \text{m:annee} \). Assume that \(n_1 \) does not contain instances; \(n_2 \) contains:

http://mm.com#a345 m:aecrit http://isbn.org/2070360423.
http://mm.com#a345 m:aecrit http://isbn.org/2070360024.
http://mm.com#a345 m:aecrit http://isbn.org/2070322882.
http://mm.com#a345 foaf:name "Albert".
http://isbn.org/2070360423 rdf:type m:Roman.
http://isbn.org/2070360423 dc:title "La peste".
http://isbn.org/2070360024 rdf:type m:Roman.
http://isbn.org/2070360024 dc:title "L'étranger".
http://isbn.org/2070322882 rdf:type m:Livre.
http://isbn.org/2070322882 dc:title "Le Mythe de Sisyphe".
...

and \(n_3 \) contains:

...

13. Express the alignment \(A \) in OWL.

\[
\begin{align*}
\text{<owl:Class rdf:about="m:Livre">} \\
\text{ <owl:subClassOf rdf:resource="t:Work"/>} \\
\text{<owl:Class>}
\end{align*}
\]

\[
\begin{align*}
\text{<owl:DataProperty rdf:about="t:year">} \\
\text{ <owl:equivalentProperty rdf:resource="m:annee"/>} \\
\text{<owl:DataProperty>}
\end{align*}
\]

14. The peer \(n_1 \) would like to evaluate the following query:

\[
\begin{align*}
\text{SELECT ?t, ?y} \\
\text{PREFIX ...} \\
\text{WHERE } \\
\text{ ?x foaf:name "Albert".} \\
\text{ ?x m:aecrit ?l.} \\
\text{ ?l rdf:type m:Roman.} \\
\text{ ?l dc:title ?t.} \\
\text{ OPTIONAL { ?l m:annee ?y. }}
\end{align*}
\]

How is it possible to answer this query by using \(n_2, n_3 \) and \(A \)?

It can be evaluated directly in \(n_1 \) and \(n_2 \). It can be translated with the help of \(A \) for being evaluated in \(n_3 \). However, the three data base do not contain the same type of information: \(n_1 \) contains no data,

\[1\]This exercise has not been given at the actual exam.
contains information about authors and titles while \(n_3\) contains information about publication year. Hence, instead of transforming the query for evaluating it on \(n_3\), it is better to split it into two queries:

The result of the transformation would be:

```
SELECT ?l, ?t
PREFIX ...
WHERE
  ?x foaf:name "Albert".
  ?x m:aecrit ?l.
  ?l rdf:type m:Roman.

and

SELECT ?l, ?y
PREFIX ...
WHERE
  OPTIONAL { ?l m:annee ?y }
```

The second query can be transformed thanks to A into:

```
SELECT ?l, ?y
PREFIX ...
WHERE
  OPTIONAL { ?l t:year ?y }
```

and their results can be joined. This is not particularly efficient but this should work. It is also possible to first evaluate the former query to retrieve \(?l\) and then to issue queries for specific values of the first answer.

15. Provide the answer on the available data.

Evaluating directly the query on \(n_2 \) would yield:

\[
\{("La peste",null),
("L’étranger",null)\ldots\}
\]

while evaluating a transformation of this query against \(n_3 \) would yield an empty answer set.

Using the strategy provided above would yield the results:

\[
\{("La peste",1947),
("L’étranger",null)\ldots\}
\]