Trees and Tree Automata

1. Every tree can be represented as a binary tree. Give the binary tree associated with the tree shown below by the encoding of trees into binary trees used during the course:

```
   a
  / \   /
 b   d e  h
 /   / \  / \   / \  
 c   f g /   /   /   /   
```

2. Give a bottom-up deterministic tree automaton that recognizes the tree language L composed of the two trees below:

```
   a
  / \   /
 b   c c  b
```

3. Bottom-up tree automata seen during the course traverse trees from the leaves to the root. In a similar manner, one may define top-down tree automata that recognize trees by going in the opposite direction: from the root to the leaves. Specifically, a top-down tree automaton A consists in:

- **Alphabet(A)**: finite alphabet of symbols
- **States(A)**: finite set of states
- **Rules(A)**: finite set of transition rules
- **Initial(A)**: finite set of initial states (\subseteq States(A))
- $q_{acc} \in$ States(A): final state

There are two major differences with automata seen during the course:

- transition rules are either of the form: $q \xrightarrow{a} (q_1, q_2)$ where $q, q_1, q_2 \in$ States(A) and $a \in$ Alphabet(A)
- a tree is accepted if and only if there exists a run for which all the leaves are labeled with q_{acc}.

Give a top-down tree automaton that recognizes L.

4. Do you see any interest of top-down tree automata in the context of XML stream processing where XML documents are sequentially parsed (only once) and processed on the fly? Explain.

5. A top-down tree automaton is deterministic iff (1) there is at most one initial state and (2) for each $q \in$ States(A) and $a \in$ Alphabet(A) there is at most one rule $q \xrightarrow{a} (q_1, q_2)$ (intuitively, there is at most one possible transition for each state and symbol).

Is it possible to give a deterministic top-down tree automaton that recognizes L? Either give it or justify.
6. It is known that non-deterministic bottom-up and non-deterministic top-down automata are equally expressive. From your answers to the previous questions, what can you conclude about the respective expressive power of deterministic bottom-up and deterministic top-down tree automata? Justify.