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Abstract

These notes are largely extracted from [9].

1 Motivation

We are dealing with a space of knowledge sources called the semantic web. Each
source provides knowledge expressed in its own vocabulary called ontology1.
There is no a priori reason that this knowledge be expressed:

– in the same knowledge representation language,
– with the same vocabulary, or
– with the same modelling of that vocabulary.

Example 1 (Heterogeneity). Consider two knowledge sources to be found on the
the web The first one, o, is a simple set of triples :

May childOf Peter.
Peter childOf Paul.
Paul childOf Zeno.

The second source, o′, is an axiom in some first order logic dialect:

grandParent( x, y ) ⇐ ∃ z; parent( x, z ) ∧ parent( z, y )

One would expect, given these two sources to be able to deduce that
grandParent( Paul, May ) (that we will refer to as δ holds. This is however
not the case since:

– The two sources use different knowledge representation languages (syntactic
heterogeneity);

1In fact, an ontology provides both the vocabulary and axioms governing the terms in the vocab-
ulary
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– The two sources use different vocabularies: child versus parent (termi-
nological heterogeneity);

– Even if the vocabulary were the same, the modelling of these notion may be
different.

This can be summarised by the following remarks:

– o 6|= δ and o′ 6|= δ;
– o ∪ o′ impossible
– even o ∪ o′ 6|= δ

This problem can be solved by imposing to the word a unique ontology and a
unique knowledge representation language. However, this is both unrealistic and
unwishable. Instead, we propose to draw relations between knowledge sources
mostly based on their ontologies. We call “ontology matching” the process of
finding the relations between ontologies and we call “alignment” the result of this
process expressing declaratively these relations. In an open world in which on-
tologies evolve, managing ontologies requires using alignments for expressing the
relations between ontologies.

Example 2 (Alignment). In the present case, we can imagine to provide an align-
ment A containing the following correspondence:

childOf^-1 ≡ parent

This alignment would solve our current problem because o∪o′∪A |= δ. However,
the merge of the ontologies provided by o ∪ o′ ∪ A may not be the solution that
works in any case. For instance, if o′ contained in addition, the following axioms:

parent( x, y ) ⇒ Human( x ) ∧ Human( y )
childOf( x, y ) ⇒ Tree( x ) ∧ Tree( y )
Human ⊥ Tree

The merge would be an inconsistent knowledge source. In such a case, it may be
better to use the alignment as a data transformation programme that would import
whatever childOf formula entailed by o into the corresponding parent formula
in o′.

Several classes of applications can be considered (they are more extensively
described in [9], we only summarise them here). They are the following:

Ontology evolution uses matching for finding the changes that have occurred be-
tween two ontology versions [5].

Schema integration uses matching for integrating the schemas of different
databases under a single view;

Catalog integration uses matching for offering an integrated access to on-line
catalogs;
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Figure 1: Query mediation (from [9]). From two matched ontologies o and o′,
resulting in alignment A, a mediator is generated. This allows the transformation
of queries expressed with the entities of the first ontology into a query using the
corresponding entities of a matched ontology and the translation back of the results
from the second ontology to the first one.

Data integration uses matching for integrating the content of different databases
under a single database;

P2P information sharing uses matching for finding the relations between ontolo-
gies used by different peers [21], Figure 1 is an example of the use of align-
ments for mediation in such systems;

Web service composition uses matching between ontologies describing service
interfaces in order to compose web services by connecting their interfaces;

Multiagent communication uses matching for finding the relations between the
ontologies used by two agents and translating the messages they exchange;

Context matching in ambient computing uses matching of application needs and
context information when applications and devices have been developed in-
dependently and use different ontologies;

Query answering uses ontology matching for translating user queries about the
web;

Semantic web browsing uses matching for dynamically (while browsing) anno-
tating web pages with partially overlapping ontologies.

It is clear, from the above examples, that matching ontologies is a major issue
in ontology related activities. It is not circumscribed to one area of ontology, but
applies to any application that communicates through ontologies.

We will be interested here, in providing the basis for ontology matching and
alignment within the semantic web. In particular, we will establish the constraints



2 Reminder: ontology semantics

An ontology is a set of assertions that selects the set of interpretations which sat-
isfy them. These interpretations are called models. They constitute the possible
interpretations of an ontology.

Definition 1 (Model). Given an ontology o, a model of o is an interpretation m =
〈I,D〉 of o, which satisfies all the assertions in o:

∀δ ∈ o,m |= δ

The set of models of an ontology o is denoted as M(o).

Finally, an important notion is the set of assertions that are consequences of
an ontology. These are the assertions implicitly entailed by an ontology and they
determine the answers to queries.

Definition 2 (Consequence). Given an ontology formula δ, δ is a consequence of
an ontology o, if and only if, it is satisfied by all models of o. This is denoted as
o |= δ.

Given a model m, we will denote as m(e) the application of the interpretation
function of the model to some ontology entity e.

This digression introduced more precisely, albeit generally, a simplified syntax
and semantics of ontologies. This will be useful when considering the meaning of
matching ontologies.

3 Alignment syntax

Alignments express the correspondences between entities belonging to different
ontologies. All definitions here are given for matching between two ontolo-
gies. In case of multiple matching, the definitions can be straightforwardly ex-
tended by using n-ary correspondences. A correspondence must consider the
two corresponding entities and the relation that is supposed to hold between
them. We provide the definition of the alignment following the work in [7;
2].

Since the related entities are an important part of alignments, they have to be
defined. We separate the matched entities from the ontology language because it
can be desirable to have a different language for identifying the matched entities.
Given an ontology language, we use an entity language for expressing those entities
that will be put in correspondence by matching. The expressions of this language
will depend on the ontology on which expressions are defined.

The entity language can be simply made of all the formulas of the ontology
language based on the ontology vocabulary. It can restrict its scope to particular
kinds of formulas from the language, for instance, atomic formulas, or even to
terms of the language, like class expressions. It can also restrict the entities to



be only named entities. This is convenient in the context of the semantic web
to restrict entities to those identifiable by their URIs. The entity language can
also be an extension of the ontology language: this can be a query language, such
as SPARQL [19], adding operations for manipulating ontology entities that are
not available in the ontology language itself, like concatenating strings or joining
relations. Finally, this entity language can combine both extension and restriction,
e.g., by authorising any boolean operations over named ontology entities.

Definition 3 (Entity language). Given an ontology language L, an entity language
QL is a function from any ontology o ⊆ L which defines the matchable entities of
ontology o.

In the following we will assume that each ontology interpretation can be ex-
tended to an interpretation of the entity language associated with the ontology.

The next important component of the alignment is the relation that holds be-
tween the entities. We identify a set of relations Θ that is used for expressing
the relations between the entities. Matching algorithms primarily use the equiv-
alence relation (=) meaning that the matched objects are the same or are equiv-
alent if these are formulas. It is possible to use relations from the ontology lan-
guage within Θ. For instance, using OWL, it is possible to take advantage of
the owl:equivalentClass, owl:disjointWith or rdfs:subClassOf rela-
tions in order to relate classes of two ontologies. These relations correspond to
set-theoretic relations between classes: equivalence (=); disjointness (⊥); more
general (w). They can be used without reference to any ontology language. Fi-
nally, relations can be of any type and are not restricted to relations present within
the ontology language, such as fuzzy relations or probability distributions over a
complete set of relations, or similarity measures.

For pragmatic reasons, the relationship between two entities is assigned a de-
gree of confidence which can be viewed as a measure of trust in the fact that the
correspondence holds – ‘I trust 70% the fact that the correspondence is correct or
reliable’ – and can be compared with the certainty measures provided with meteo-
rological forecasts.

Definition 4 (Confidence structure). A confidence structure is an ordered set of
degrees 〈Ξ,≤〉 for which there exists a greatest element > and a smallest element
⊥.

The usage of confidence degrees is that the higher the degree with regard to ≤,
the most likely the relation holds. It is convenient to interpret the greatest element
as the boolean true and the smallest element as the boolean false.

The most widely used structure is based on the real number unit interval [0 1],
but some systems simply use the boolean lattice. Some other possible structures
are fuzzy degrees, probabilities or other lattices. [13] has investigated the structure
of fuzzy confidence relations. This structure can be extended, for instance, if one
wants to compose alignments. Thus, in this case, it may be necessary to define
operations for combining these degrees.



With these ingredients, it is possible to define the correspondences that have to
be found by matching algorithms.

Definition 5 (Correspondence). Given two ontologies o and o′ with associated
entity languages QL and QL′ , a set of alignment relations Θ and a confidence
structure over Ξ, a correspondence is a 5-uple:

〈id, e, e′, r, n〉,

such that

– id is a unique identifier of the given correspondence;
– e ∈ QL(o) and e′ ∈ Q′

L′(o′);
– r ∈ Θ;
– n ∈ Ξ.

The correspondence 〈id, e, e′, r, n〉 asserts that the relation r holds between the
ontology entities e and e′ with confidence n.

Example 3 (Correspondence). For example, a simple kind of correspondence is as
follows:

http://book.ontologymatching.org/example/culture-shop.owl#Book =
http://book.ontologymatching.org/example/library.owl#Volume

It asserts the equivalence relation with full confidence between what is denoted by
two URIs, namely the Book class in one ontology and the Volume class in another
one. Some examples of more complex correspondences are as follows:

author(x, concat(w.firstname, w.lastname)) ⇐.85

Book(x)
∧ writtenBy(x,w)
∧ Writer(w)

is a Horn clause expressing that if there exists a Book x written by Writer w, the
author of x in the first ontology is identified by the concatenation of the first and
last name of w. The confidence in this clause is quantified with a .85 degree.

There can be several possible correspondences for the same entities depending
on the language in which correspondences are expressed. For instance, one could
have the simple correspondence that speed in one ontology is equivalent to velocity
in another one:

speed ≡ velocity



or record that they are expressed in miles per hour and metre per second respec-
tively:

speed = velocity× 2.237
0.447× speed = velocity

Finally, an alignment is defined as a set of correspondences.

Definition 6 (Alignment). Given two ontologies o and o′, an alignment is made
up of a set of correspondences between pairs of entities belonging to QL(o) and
QL′(o′) respectively.
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Figure 2: Alignment between two ontologies. Correspondences are expressed by
arrows. By default their relation is = and their confidence value is 1.0; otherwise,
these are mentioned near the arrows.

Example 4 (Alignment). Figure 2 displays a possible alignment for a pair of on-
tologies. It can be expressed by the following correspondences:

Book =1.0 Volume name ≥1.0 title

id ≥.9 isbn author =1.0 author

Person =.9 Human Science ≤.8 Essay



So far, our alignments are very simple: they are sets of pairs of entities from
two ontologies. However, there are, in the literature, at least three types of n:m,
multiple or complex alignments:

1. alignments involving more than two ontologies produced by multiple match-
ing, that we may call multialignments,

2. alignments involving correspondences between more than two entities (still
belonging to two ontologies),

3. alignments with entities involved in more than one correspondence that are
denoted by the use of * (zero-or-more) or + (more-than-zero) in their cardi-
nalities.

In case of multiple matching (1), the alignments must contain correspondences
relating more than two entities. The definitions above must then be extended ac-
cordingly. This is not covered further here.

The second kind of correspondences (2) can be thought of as using non binary
relations. However, given the nature of the problem: matching two ontologies, we
will consider that these objects can be grouped by operators in the entity language
QL which can include operators such as concatenation, arithmetic operations or
logical connectors for that purpose. In its simplest expression the only construction
can be a set.

Option (3) is related to the multiplicity of the alignment if it is considered as
a relation. By analogy with mathematical functions, it is useful to define some
properties of the alignments. These apply when the only considered relation is
equality (=) and the confidence measures are not taken into account. One can
ask for a total alignment with regard to one ontology, i.e., all the entities of one
ontology must be successfully mapped to the other one. This property is purposeful
whenever thoroughly transcribing knowledge from one ontology to another is the
goal: there is no entity that cannot be translated.

One can also require the alignment to be injective with regard to one ontology,
i.e., all the entities of the other ontology is part of at most one correspondence.
Injectivity is useful in ensuring that entities that are distinct in one ontology re-
main distinct in the other one. In particular, this contributes to the reversibility of
alignments.

Definition 7 (Total alignment, injective alignment). Given two ontologies o and o′,
an alignment A over o and o′ is called a total alignment from o to o′ if and only if:

∀e ∈ QL(o),∃e′ ∈ QL′(o′); 〈e, e′,=〉 ∈ A

and, it is called an injective alignment from o to o′ if and only if:

∀e′ ∈ QL′(o′),∃e1, e2 ∈ QL(o); 〈e1, e
′,=〉 ∈ A ∧ 〈e2, e

′,=〉 ∈ A =⇒ e1 = e2

These properties heavily depend on the ontology entity languages which are
chosen for these alignments.



Usual mathematical properties apply to these alignments. In particular, a total
alignment from o to o′ is a surjective alignment from o′ to o. A total alignment from
both o and o′, which is injective from one of them, is a bijection. In mathematical
English, an injective function is said to be one-to-one and a surjective function to
be onto. Due to the wide use among matching practitioners of the term one-to-
one for a bijective, i.e., both injective and surjective, alignment, we will only use
one-to-one for bijective.

Finally, we can extend these definitions when correspondence relations are not
equivalence. In such a case, they do not ensure the same properties. For instance,
injectivity does not guarantee reversibility of the alignment used as a transforma-
tion.

In conceptual models and databases, the term multiplicity denotes the con-
straints on a relation. Usual notations are 1:1 (one-to-one), 1:m (one-to-many),
n:1 (many-to-one) or n:m (many-to-many). If we consider only total and injective
properties, denoted as 1 for injective and total, ? for injective, + for total and * for
none, and the two possible orientations of the alignments, from o to o′ and from o′

to o, the multiplicities become: ?:?, ?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*, *:?,
1:*, *:1, +:*, *:+, *:* [6].

Example 5 (Alignment multiplicity). The alignment of Table 4 is ?:?. If we add
the correspondence Product ≥ Volume, then it is ?:*. If we now consider relating
any entity of the second ontology to another entity of the first one, then it becomes
?:+.

The four pictures below display some of the possible configurations for two
ontologies composed of three classes each.
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4 Alignment semantics

We provide a simple foundation for alignments because it is useful to know what
is expected from a matching algorithm. However, as will be demonstrated, the
semantics of alignment provides a definition of how alignments must be interpreted
and not of how alignments must be found by a matching algorithm. In this respect,
we provide only a semantics for interpreting alignment and not for the matching
operation.

The usual way of providing a semantics for related conceptual systems is
through modal logic of knowledge and belief [11; 25]. In the line of the work on
data integration, we only give a first-order model theoretic semantics. It depends
on the semantics of ontologies but does not interfere with it. In fact, given a set of
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Figure 3: Equalising semantics.

ontologies and a set of alignments between them, we can evaluate the semantics of
the whole system in terms of the semantics of each individual ontology.

The main problem arising is the non compatibility of the domains of interpre-
tation. Given several ontologies, it is possible to consider different positions with
regard to the domain of interpretation:

– For all these ontologies, the domain of interpretation D is unique. This ap-
proach is useful when ontologies describe a set of well defined entities, like
the set of files shared in a peer-to-peer system. This approach has been taken
in [4; 3].

– For each ontology o, the domain Do may be different. Domains are re-
lated with the help of domain relations ro,o′ which map elements of Do

to corresponding elements of domain Do′ . This approach is used in [15;
1].

– There is no constraint on the domain of interpretation of ontologies. This is
the assumption that will be considered here. For dealing with this assump-
tion, we use a universal domain U , that may be defined as the union of all
the domains under consideration, and an equalising function γ or rather a set
of equalising functions: γo : Do −→ U .

[26] considers the implications of these three models. Here, because the models
of various ontologies can have different interpretation domains, we use the notion
of an equalising function, which helps make these domains commensurate.

Definition 8 (Equilising function). Given a family of interpretations 〈Io, Do〉o∈Ω of
a set of ontologies Ω, an equalising function for 〈Io, Do〉o∈Ω is a family of functions
γ = (γo : Do −→ U)o∈Ω from the ontology domains of interpretation to a global
domain of interpretation U . The set of all equalising functions is called Γ.

When it is unambiguous, we will use γ as a function. The goal of this γ func-
tion is only to be able to (theoretically) compare elements of the domain of inter-
pretation. It is simpler than the use of domain relations in distributed first-order
logics [15] in the sense that there is one function per domain instead of relations
for each pair of domains.



The equalising functions can be different for each ontology. This means, in
particular, that even if two ontologies are interpreted over the same domain of
interpretation, it is not compulsory that the equalising function maps their elements
to the same element of U , though it remains possible. This allows for a loose
coupling of the interpretations.

The relations used in correspondences do not necessarily belong to the on-
tology languages. As such, they do not have to be interpreted by the ontology
semantics. Therefore, we have to provide semantics for them.

Definition 9 (Interpretation of alignment relations). Given r ∈ Θ an alignment re-
lation and U a global domain of interpretation, r is interpreted as a binary relation
over U , i.e., rU ⊆ U × U .

For the sake of simplicity, we consider correspondences that are only triples of
the following form: 〈e, e′, r〉. The definition of correspondence satisfiability relies
on γ and the interpretation of relations. It requires that in the equalised models, the
correspondences are satisfied.

Definition 10 (Satisfied correspondence). A correspondence c = 〈e, e′, r〉 is sat-
isfied for an equalising function γ by two models m, m′ of o, o′ if and only if
γo ·m ∈M(o), γo′ ·m′ ∈M(o′) and

〈γo(m(e)), γo′(m′(e′))〉 ∈ rU

This is denoted as m,m′ |=γ c.

Definition 11 (Satisfied alignment). An alignment A is satisfied for an equalising
function γ by two models m, m′ of o, o′ if and only if all its correspondences are
satisfied for γ by m and m′. This is denoted as m, m′ |=γ A.

This is useful for defining the classical notions of validity and satisfiability.

Definition 12 (Alignment validity). An alignment A of two ontologies o and o′ is
said to be valid if and only if

∀m ∈M(o),∀m′ ∈M(o′),∀γ ∈ Γ,m, m′ |=γ A

This is denoted as |= A.

From the practical perspective, this is not a very useful definition since unless
the ontologies have no models, it will be very difficult to find valid alignments. A
relaxed definition could consider the validity that, given an equalising function, de-
scribes how domains are related. Valid alignments are direct logical consequences
of the two ontologies. Thus they do not provide additional information than what
is already in these ontologies. Satisfiable alignments offer more information.

Definition 13 (Satisfiable alignment). An alignment A of two ontologies o and o′

is said to be satisfiable if and only if

∃m ∈M(o),∃m′ ∈M(o′),∃γ ∈ Γ;m,m′ |=γ A



Thus, an alignment is satisfiable if there are models of the ontologies that can
be combined in such a way that this alignment makes sense. The satisfiable set
of alignments is far larger than the set of valid ones. Again, one can define γ-
satisfiable alignments, i.e., alignments satisfiable for a given equalising function.

Given an alignment between two ontologies, the semantics of the aligned on-
tologies can be defined as follows.

Definition 14 (Models of aligned ontologies). Given two ontologies o and o′ and
an alignment A between these ontologies, a model m′′ of these ontologies aligned
by A is a triple 〈m,m′, γ〉 ∈ M(o)×M(o′)× Γ, such that m,m′ |=γ A.

In that respect, the alignment acts as a model filter for the ontologies. It selects
the interpretations of ontologies which are coherent with the alignments. This
allows transferring information from one ontology to another since reducing the
set of models will entail more consequences in each aligned ontology.

These definitions can be generalised to an arbitrary number of alignments and
ontologies captured in the concept of a distributed system [15; 12].

Definition 15 (Distributed system of networked ontologies). A distributed system
of networked ontologies 〈Ω,Λ〉 is made of a set Ω of ontologies and a set Λ of
alignments between these ontologies. We denote as Λ(o, o′) the set of alignments
in Λ between o and o′.

Definition 16 (Models of distributed systems). Given a finite set of n ontologies Ω
and a finite set of alignments Λ between pairs of ontologies in Ω, a model of the
distributed system 〈Ω,Λ〉 is a n + 1-uple of models 〈m1 . . .mn, γ〉 ∈ M(o1) ×
. . .M(on) × Γ, such that for each alignment A ∈ Λ(oi, oj), A is satisfied by
〈mi,mj , γ〉.

This definition coincides with a coherent model of the world in which all mod-
els satisfy all alignments. This is the standpoint of an omniscient observer and it
corresponds to the global knowledge of a distributed system as defined in [11].

However, if one agent has an inconsistent ontology then the distributed system
has no model. Therefore, even agents not connected to the inconsistent ontology
cannot compute reasonable models. Moreover, an agent knowing an ontology and
the related alignments would like to use the system by gathering information from
its neighbours and considering only the models of this information. Thereby, it
would be able to compute consequence through some complete deduction mecha-
nisms. This is important when asking agents to answer queries and corresponds to
local knowledge in [11]. This is the knowledge an agent can achieve by communi-
cating only with the agents it is connected to in a distributed system.

From that standpoint, there can be several ways to select the acceptable models



given the distributed system:

M1
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ;∀o′ ∈ Ω,∀A ∈ Λ(o, o′),∃m′ ∈M(o′);m,m′ |=γ A}
M2

Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ;∀o′ ∈ Ω,∀A ∈ Λ(o, o′),∃m′ ∈M2
Ω,Λ(o′);m,m′ |=γ A}

M3
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ;∀o′ ∈ Ω,∃m′ ∈M(o′);∀A ∈ Λ(o, o′),m, m′ |=γ A}
M4

Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ;∀o′ ∈ Ω,∃m′ ∈M4
Ω,Λ(o′);∀A ∈ Λ(o, o′),m, m′ |=γ A}

M5
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ;∀o′ ∈ Ω,∀A ∈ Λ(o, o′),∀m′ ∈M5
Ω,Λ(o′);m,m′ |=γ A}

M6
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ;∀o′ ∈ Ω,∀A ∈ Λ(o, o′),∀m′ ∈M(o′);m,m′ |=γ A}

The selection of the γ would ideally be made after the models are chosen because
they determine the domains on which the equalising function is built. In prac-
tice, the satisfiability condition will only select those equalising functions that are
compatible with each of the models.

These approaches have been ordered from the more optimistic to the more cau-
tious. M1

Ω,Λ selects the models that satisfy each alignment in at least one model
of the connected ontology. M3

Ω,Λ is stronger since it requires that the same model
of the connected ontology satisfies all the alignments between the two ontologies.
M6

Ω,Λ is very strong since all alignments must be satisfied by all models of the con-
nected ontologies. M2

Ω,Λ, M4
Ω,Λ and M5

Ω,Λ are fixed point characterisations that,
instead of considering the initial models of the connected agents, consider their se-
lected models by the same function. This contributes propagating the constraints to
the whole connected components of the distributed system. While for M2

Ω,Λ and
M4

Ω,Λ this strengthens the constraints, for M5
Ω,Λ, this relaxes them with regard to

M6
Ω,Λ. Here, an inconsistent model is a problem only to related agents and only

for versions M1
Ω,Λ, M3

Ω,Λ and M4
Ω,Λ which require the existence of a model for

each related ontology.
Each of these options allows the definition of a semantics for distributed sys-

tems that is different from the model of distributed system considered above. It is
also analogous to the distributed knowledge of the system following [11]. M5

Ω,Λ

would correspond to the semantics given in [12; 2]. A definition of acceptable
models for an ontology corresponding to option M4

Ω,Λ is given as follows.

Definition 17 (Models of an ontology modulo alignments). Given a distributed
system 〈Ω,Λ〉, the models of o ∈ Ω modulo Λ are those models of o, such that for
each ontology o′ there exists a model that satisfies all elements of Λ between o and



o′:

M4
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ;∀o′ ∈ Ω,∃m′ ∈M4
Ω,Λ(o′);∀A ∈ Λ(o, o′),m, m′ |=γ A}

One can be even more restrictive, as in local model semantics [14], by consid-
ering only a subset of the possible models of each ontology.

When dealing with ontology matching between a pair of ontologies, the matter
of semantics between ontologies is not related to the alignment but to the interpre-
tation of the full distributed system, for instance, depending if one wants to enforce
global consistency or not. In this book we will not take a position on such a matter
and will only retain the basic interpretation framework provided above.

Note: A distributed system can be seen as an ontology defining a |= relation.
It thus can be included within a distributed system as an ontology.

Finally, such a formalism contributes to the definition of the meaning of align-
ments: it describes what are the consequences of ontologies with alignments, i.e.,
what can be deduced by an agent. However, it does not describe what the cor-
rect alignments are: matching is not a deductive task but an inductive one. The
framework is nevertheless particularly useful for deciding if delivered alignments
are consistent, i.e., if distributed systems have a model or not. Hence, it is useful
for specifying what is expected from matching algorithms and how they should be
designed or evaluated.

5 Matching ontologies

The ontology matching problem may be described in one sentence: given two on-
tologies each describing a set of discrete entities (which can be classes, properties,
rules, predicates, or even formulas), find the correspondences, e.g., equivalence or
subsumption, holding between these entities. This set of correspondences is called
an alignment.

The matching operation determines the alignment A′ for a pair of ontologies
o and o′. There are some other parameters that can extend the definition of the
matching process, namely:

(i) the use of an input alignment A, which is to be completed by the process;
(ii) the matching parameters, p, e.g., weights, thresholds; and

(iii) external resources used by the matching process, r, e.g., common knowledge
or domain specific thesauri.

So, the matching process can be seen as a function f which, from a pair of ontolo-
gies o and o′, an input alignment A, a set of parameters p and a set of resources r,
returns an alignment A′ between these ontologies:

A′ = f(o, o′, A, p, r)



o

o′

A matching A′

parameters

resources

Figure 4: The ontology matching process: it establishes an alignment (A′) from
two ontologies (o and o′) and optionally an input alignment (A), parameters and
external resources.

There have already been many reviews of ontology matching algorithms [20;
24; 17; 9], so we will be brief and refer the reader to these presentations.

Ontology matching consists of generating an alignment from two (or more)
ontologies. There are many different features of ontologies that are usually used
for providing matching:

terminological techniques are based on the text found within ontologies for iden-
tifying ontology entities (labels), documenting them (comments) or other
surrounding textual sources (related element labels). These techniques come
from natural language processing and information retrieval. They can use
the string structure themselves, e.g., string distances, the ontology as corpus,
e.g., statistical measures based on the frequency of occurrence of a term, or
external resources, such as dictionaries.

structural techniques are based on the relations between ontology entities. These
can be relations between entities and their attributes, including constraints on
their values, or relations with other entities. These techniques take advantage
of type comparison techniques or more elaborate graph techniques, e.g., tree
distances, path matching, graph matching.

extensional techniques compare the extension of entities. These extensions can
be made of other entities, e.g., instances, as well as related resources, e.g.,
indexed documents. They differ depending on if the two ontologies share
resources, e.g., they index the same set of documents, or not (in which case
a similarity between the extensions may be established). These techniques
can come from data analysis and statistics.

semantic techniques are based on the semantic definition of ontologies. They use
extra formalised knowledge and theorem provers for finding consequences
of a particular alignment. This can be used for expanding the alignment or,
on the contrary, for detecting conflicting correspondences.

Of course, most of the systems combine several techniques in order to improve
their results. The techniques can be combined by aggregating distance results [23],



by using selection functions for choosing which one to use in the present case [16;
22], or by deeply involving them all in global distance computation [10; 18].

Moreover, there is a difference when training sets are available or not (this is
most often useful when a matching algorithm is needed for recognising instances).
When available, one can apply machine learning techniques such as Bayes learn-
ing, vector support machines or decision trees.

6 Applications of alignment semantics

The goal is to show the incidence of the chosen semantics for particular applica-
tions.

6.1 Evaluating alignments

See [8].

6.2 Ontology modules

6.3 Alignment composition

See [26] and manuscript notes.

6.4 Distributed reasoning

7 Conclusion
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